首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since 2005, the evolution and spread of herbicide-resistant Echinochloa crus-galli biotypes have posed a serious threat to crop production in the Philippines. A comprehensive knowledge of E. crus-galli ecology and fecundity is fundamental in managing different biotypes of this weed. It was hypothesized that (a) high weed plant density produces more biomass and fertile seeds per unit area, (b) rice interference reduces the biomass and fecundity of the weed, and (c) a delay in weed emergence reduces the soil seed bank. In 2013, experiments were conducted in the wet season (WS) and dry season (DS), to understand the effect of E. crus-galli densities (40 and 80 plants m−2) on its growth, survival, and fecundity, with varying emergence times of 2, 15, 30, and 45 d after rice emergence (DARE). Relative to the weed plants grown without rice interference, E. crus-galli growth and seed production was lower in the presence of rice. Percent survival and plant height of E. crus-galli declined in a linear manner in the DS, and declined in a quadratic manner in the WS. Tiller number, inflorescence number, inflorescence biomass, and shoot biomass per plant declined in an exponential manner, with a delay in emergence of each cohort relative to rice. Across rice seeding rate, weed density, and emergence time, there was a linear relationship (y = 110x − 272 in the DS and y = 100x − 220 in the WS) between E. crus-galli shoot biomass and the number of seeds plant−1. Relative to the late-emerging weed cohorts, E. crus-galli seed production (1320–1579 seeds plant−1), 1000-seed weight (2.2–2.9 g), and seed yield (2808–2334 kg ha−1) were higher when seedlings emerged with the crop (2 DARE). None of the seedlings that emerged 45 DARE produced viable seeds. Seed germination of the first two cohorts (2 and 15 DARE) ranged from 84 to 91%. The delay in emergence of E. crus-galli beyond 30 DARE reduced the percentage of germinable and viable seeds, and increased the percentage of non-viable seeds produced plant−1. The results suggest that cultural weed management approaches that delay the emergence of E. crus-galli can reduce weed biomass and seed production, and is thus valuable for preventing seed rain to the seed bank by noxious weed biotypes in the field.  相似文献   

2.
Summary

Weeds continue to have major impacts on crop production in spite of efforts to eliminate them. Most weed species rely on seed for regeneration and persistence. The species composition and density of weed seed in the soil vary greatly and are closely linked to the cropping history of the land. Altering tillage practices changes patterns of soil disturbance and weed seed depth in the soil, which plays a role in weed species shifts. Crop rotation and weed control practices also impact the weed seed bank in the soil. Information on the weed seed bank should be a useful tool for integrated weed management. Decision aid models are being developed that use information on the composition of the weed seed bank to estimate weed populations, crop yield loss, and to recommend weed control tactics. Understanding weed seed bank dynamics can also be used to guide management practices. Improving and applying our understanding of weed seed and seed bank dynamics is essential to developing improved weed management systems.  相似文献   

3.
Crop rotation and tillage systems have important implications for weed infestation and crop productivity. In this study, five tillage systems viz. zero tillage (ZT), conventional tillage (CT), deep tillage (DT), bed sowing (60/30 cm with four rows; BS1) and bed sowing (90/45 cm with six rows; BS2) were evaluated in five different crop rotations viz. fallow-wheat (FW), rice-wheat (RW), cotton-wheat (CW), mungbean-wheat (MW) and sorghum-wheat (SW) for their effect on weed infestation and productivity of bread wheat. Interaction between different tillage practices and cropping systems had significant effect on density and dry biomass of total, broadleaved and grass weeds, agronomic and yield-related traits, and grain yield of bread wheat. The un-disturbed soils (ZT) under fallow-wheat or mungbean-wheat rotations favoured the weed prevalence (a total weed dry biomass of 72.4–109.6 and 105.6–112.1 g m−2 in first and second year, respectively). Contrary to this, the disturbed soils (CT, DT, BS1 and BS2) had less weed infestation with either of the rotations (a total weed biomass of 0.4–7.1 and 1.1–5.4 g m−2 in first and second year, respectively). Sorghum-wheat rotation had strong suppressive effect on weed infestation in all tillage systems. The impact of crop rotation was more visible during second year of experimentation. Bed sown wheat (BS1 and BS2) in mungbean-wheat rotation had the highest wheat grain yield (6.30–6.47 t ha−1) compared to other tillage systems in different crop rotation combinations.  相似文献   

4.
A field experiment was conducted to investigate the spatial distribution of nutsedge (Cyperus spp L.) seed bank in rice growth cycle using geostatistics in 2010–11. The sampling from seed banks were performed prior to rice farm preparation and after rice harvest; also weeds density was determined in three different dates during the growing season. The results showed that the highest amount of weed population was belonging to nutsedge (Cyperus spp. L.) including Cyperus difformis, C. rotundus and C. esculentus species. Nugget/sill ratios for all variogram models ranged from 15.2 to 46.9%, indicated that there was strong and moderate spatial correlation as spherical and exponential variograms models between weed and seedling nutsedge at all stages of sampling. Visual assessments of the weed growth in these field indicated that the weed exist in patches, but mapping results showed that the size and morphology of these patches varied within field. In the present study, seed bank patchy pattern was roughly in accordance with seedling germination pattern. Generally the provided seed bank maps can be used not only as information database of seedling germination, but also for predicting of seed bank dynamics and weed management programs.  相似文献   

5.
Conyza bonariensis is currently a frequent and abundant weed in fruiting tree crops associated with non-tillage in Mediterranean climate areas, such as citrus groves and olive orchards. Because of the mild winters characteristic of this climate, an extended season of seedling emergence, from early autumn to early spring, is often found for this species, this leading to multiple annual cohorts. In this work, a cohort-based stochastic model of C. bonariensis population dynamics was developed and used to simulate the behaviour of the seed bank in Mediterranean fruiting tree crops under ten contrasting management strategies, including single or integrated herbicide and non chemical control measures. The demographic impact of tillage system (ploughing vs. no-till), the use of cover, and timing of herbicide applications was simulated. The model was parameterized with information taken from the literature. In the absence of any control and under no-tillage the modelled seed bank reached an average equilibrium density of 378,092 ± 10,865 seeds m−2. The most effective management strategy integrated no-till, the use of cover and early and late applications of herbicides, which reduced the equilibrium densities of the seed bank by 78.7%. A sensitivity analysis indicated that C. bonariensis populations in Mediterranean fruiting tree crops are particularly sensitive to small changes in the demographic parameters associated with the earlier cohort and to the efficacy of early herbicide treatments. A diversified, integrated approach including different interventions of chemical and cultural nature appears to be the most successful strategy at the field level for controlling C. bonariensis in Mediterranean fruiting tree crops.  相似文献   

6.
The decline of farmland biodiversity is mainly attributed to the intensive use of chemical inputs in agriculture. Cover crop residues may contribute to improve weed management while maintaining a high level of weed diversity. A 2-year field experiment was carried out in central Italy to study the effect of cover crop species and their residue management on weed community composition and weed species diversity in a winter cover crop – pepper sequence. Hairy vetch (Vicia villosa Roth.), oat (Avena sativa L.) and canola (Brassica napus L.) were sown in September 2009 and 2010 and grew undisturbed during the winter season until spring when they were suppressed one week before pepper transplanting. Cover crop residues were: (i) green manured at 30 cm depth (conventional tillage, CT), (ii) green manured at 10 cm depth (minimum tillage, MT), and (iii) left on the soil surface as mulch strips covering 50% of the ground area in no-tilled soil (NT). A winter weedy fallow and a bare soil without cover crop in NT, MT and CT were also included as controls. Weed plant density data in pepper were used for calculating weed species richness. Compared to weedy fallow, oat, hairy vetch and canola consistently reduced the weed density and weed aboveground biomass by the time of their suppression (on average 3.6, 21.5, and 41.3 plants m−2 and 11.0, 49.2, and 161.8 g m−2 of DM, respectively). In pepper, oat residues generally determined a higher reduction of weed density and species richness compared to hairy vetch and canola regardless the residue management treatments. Converting cover crop aboveground biomass into mulch strips greatly reduced weed species density but did not always imply a reduction of weed species diversity in pepper compared to MT and CT. The weed species richness was reduced inside the mulch strips, while a richer and more diverse weed community was found outside the mulch strips in NT. Weed community in pepper was mainly composed of annual dicot weeds such as Amaranthus retroflexus, Chenopodium album, Solanum nigrum, Polygonum aviculare which were mostly associated with MT and CT tillage systems, while in NT an increase of perennial species such as Rumex crispus was observed. These results suggest that it is possible to manage cover crop residues in NT in order to obtain a lower weed density and consequently a higher yield in pepper compared to MT and CT while maintaining a high level of weed diversity.  相似文献   

7.
Direct-seeded rice systems are increasing in Asia as farmers respond to the high labor cost and shortage of water. Echinochloa crus-galli is one of the most problematic and competitive weeds in direct-seeded rice systems. Because of concerns about excessive herbicide use, there is an interest in developing cultural weed management strategies. However, the design of such strategies requires a better understanding of the weed response to crop density, nutrition, and water regime. A study was therefore conducted in pots to determine the effect of water (flooded and aerobic), nitrogen (N) fertilization (0, 100, and 200 kg N ha−1), and rice density [0, 4 rice plants (≈20 kg seed ha−1), and 16 rice plants (≈80 kg seed ha−1)] on the growth and reproduction of E. crus-galli. When grown alone, the growth and seed production of E. crus-galli were higher in flooded conditions than in aerobic conditions. However, no such differences were observed when E. crus-galli was grown with rice interference. E. crus-galli growth and seed production increased with increases in N rate. Irrespective of water regime and N rate, the growth and seed production of E. crus-galli declined with increases in rice density. At 100 kg N ha−1, for example, E. crus-galli shoot biomass and seed production decreased by 84–86% and 82–87%, respectively, when grown with 16 rice plants compared with its growth without rice interference. The results suggest that growth and seed production of E. crus-galli can be greatly reduced by increasing rice seeding rate. However, there is a need to involve other weed management strategies to achieve complete control of E. crus-galli and other weed species.  相似文献   

8.
Polygonum aviculare L. is a troublesome weed in chickpea cultivated in the Mediterranean environment of Central Italy. A 2-year field study was carried out to evaluate the competitive ability and the yield response of different chickpea genotypes against P. aviculare. Experimental treatments consisted in six chickpea genotypes (Alto Lazio, C1017, C133, C134, C6150 stable lines and cultivar Sultano) cultivated in weed-free conditions and with P. aviculare at four densities (4, 8, 16, 32 plants m−2). The competitive ability of chickpea against P. aviculare was assessed on the basis of (i) the relative biomass total (RBT); (ii) the competitive balance index (Cb), and (iii) the competitive index (CI). The chickpea seed yield in weed-free conditions ranged from 2.6 to 2.1 t ha−1 of DM and was higher in C6150 and Sultano. P. aviculare caused an average chickpea seed yield loss of 14, 46, 74 and 88% at the density of 4, 8, 16, 32 plants m−2 compared to the weed-free crop. The relationship between the P. aviculare density and the percentage of chickpea yield loss was described by the rectangular hyperbola model with the asymptote constrained to 100% maximum yield loss. The estimated coefficient I (yield loss per unit density as density approaches zero) was lower in C133, Sultano, and C1017. RBT was higher than 1 in all chickpea genotypes at 4 plants m−2 of P. aviculare, while at higher P. aviculare densities it was similar to 1 suggesting that there is no resource use complementarity between chickpea and the weed. Generally, at the density of 50 plants m−2 the chickpea crop was more competitive than P. aviculare at 4 plants m−2 (Cb > 0), equally competitive at 8 plants m−2 (Cb = 0), and less competitive at 16 and 32 plants m−2 (Cb < 0). No chickpea genotype achieved the objective of combining a high seed yield potential and a great competitive ability against P. aviculare. C6150 and Sultano had a high seed yield production in weed-free conditions, but they were poorly competitive against P. aviculare at intermediate and high weed infestation, while C1017 showed a satisfactory level of Cb and CI at all P. aviculare densities although its seed yield was the lowest in weed-free conditions. However, the results suggest that, from an agronomical point of view, P. aviculare plant density should be less than 4 plant m−2 in order to prevent severe chickpea seed yield loss in field conditions.  相似文献   

9.
Winter cover crops were evaluated for their effect on Amaranthus palmeri establishment and growth in cotton production. Cover crops examined included rye and four winter legumes: narrow-leaf lupine, crimson clover, Austrian winter pea, and cahaba vetch. Each legume was evaluated alone and in a mixture with rye. Cover crop biomass in monoculture was greatest for rye and lupine (>6750 kg ha1), while clover, pea, and vetch were less and ranged from 2810 to 4610 kg ha1. Cover crop biomass was more than doubled when rye was mixed with clover or vetch relative to the legume monoculture. In early-June, A. palmeri densities were 46 seedlings m2 in the non-disturbed areas between cotton rows in the fallow, while populations were <4 seedlings m2 with rolled vetch or pea and 18 and 29 seedlings m2 in rolled clover and lupine. Rye and legume mixtures reduced A. palmeri densities to <3 seedlings m2, while rye monocultures had 8 seedlings m2. There were no differences in A. palmeri densities (≥144 plants m2) in the cotton row among cover crop treatments. By late-June, rye and winter pea controlled A. palmeri in the row middle >80% relative to the non-cover crop fallow treatment, while control from clover, vetch and lupine ranged from 64 to 70%. The relationship between A. palmeri control in between cotton rows and cover crop biomass was described by a log-logistic regression model with 4530 kg ha1 providing median weed control (Bio50); predicted A. palmeri control was 25, 50, and 75% from 2950, 4900, and 8600 kg ha1 cover crop biomass, respectively. However, A. palmeri plants in the cotton rows prevented yield production in the absence of herbicides. Where A. palmeri was controlled with herbicides, the highest yields occurred following rye, with lower yields following lupin/rye mixture and treatments including pea. Management of herbicide resistant weed species requires diverse management tactics; this may include high-biomass cover crops to reduce weed establishment between crop rows. However, greater research effort is needed to devise weed management options for the crop row that do not rely exclusively on the diminishing array of herbicide tools.  相似文献   

10.
Weed control in smallholder farming systems of sub-Saharan Africa is labour intensive or costly. Many researchers have therefore advocated for the use of cover crops in weed management as an affordable alternative for smallholders. Cover crops may be grown in rotations to suppress weeds and reduce the reliance on herbicides. The use of cover crops creates microenvironments that are either conducive or inhibitive to the emergence of certain weed species. A study, initiated in 2008 in contrasting soils at four different locations of Zimbabwe, investigated the effect of maize (Zea mays L.)-cover crop rotations on the emergence of weeds that showed dominance in those soils. Weed assessments were however, carried out from 2011 to 2014. The weed species Galinsoga parviflora Cav., Commelina benghalensis L., and Richardia scabra L. showed dominance in all four locations with weed densities as high as 500 plants m−2 being recorded for R. scabra L. in a sandy soil. Maize-cover crop rotations resulted in higher densities of Bidens pilosa compared with maize monocropping (control treatment) due to its high nitrogen (N) requirement to produce more seeds. On the other hand, the integration of cover crops such as pigeon pea [Cajanus cajan (L.) Millsp.] that had poor shading qualities, due to large gaps or spaces and slower initial growth, had limited effects on competitive weeds such as Cyperus esculentus L. which tend to dominate exhausted soils. The density of C. esculentus was 38% greater in maize–pigeon pea rotations compared with the control treatment. Variability between seasons and sites affected emergence of all weeds in the present study, which masked long-term trends. The results suggest that there is need to identify the germination and emergence requirements of specific weeds and select cover crops best suitable for their control. The study provides useful information for farmers and advisors on the best cover crops for control of certain problematic weeds in different soil types of Zimbabwe.  相似文献   

11.
Cover crops may suppress weeds due to their competitive effects and the release of inhibitory compounds. We examined the inhibitory influence of 11 cover crop mulches on the germination and growth of weed species (Stellaria media (L.) Vill., Chenopodium album L. and Matricaria chamomilla L.) in laboratory, greenhouse and field experiments. In the laboratory, cover crop extracts were tested in germination bioassays at six concentrations (0–500 mg ml−1). The germination rate and root length (i) were measured 10 days after treatment (DAT). Pot experiments were carried out in the greenhouse to investigate the effects of cover crop mulch (ii) incorporated into the soil on weed germination and weed dry mass. Field trials measured the suppressive effects of cover crops and cover crop mixtures on weeds (iii). Correlations were determined between the experiments to quantify the competition and the biochemical effects of cover crops separately. Cover crop extracts at a concentration of 125 mg ml−1 (i) significantly reduced the weed germination rate by 47% and the root length by 32% on average. M. chamomilla showed a lower susceptibility to the extracts of S. alba, R. sativus var. niger and H. annuus compared to C. album and S. media. The mulch-soil mixtures (ii) significantly reduced the germination rate by 50% and the dry mass by 47% on average across all three weed species, while M. chamomilla showed the highest tolerance to the mulches of V. sativa and A. strigosa. The correlation analysis revealed a strong positive correlation between extract toxicity and field weed suppression and, thus, indicated a high impact of the biochemical effects of the tested cover crops on weed suppression, especially for S. media and M. chamomilla.  相似文献   

12.
Field experiments were conducted to study the efficacy of 12 herbicide treatments for volunteer rice control with, or without, winter-flooding in Stuttgart and Rohwer, Arkansas, USA over two years (2012–13 and 2013–14). Herbicides were applied either in the fall or at 35 d prior to planting rice in the spring. Commercially harvested Clearfield™ long-grain inbred rice 'CL152' was used as volunteer rice seed, broadcasted and lightly incorporated in October, 2012 and 2013. 'Jupiter' (medium-grain inbred, conventional rice) was planted in May as the rice crop. Winter-flood was initiated soon after the fall herbicide treatments were applied and terminated in February. Winter-flood reduced volunteer rice germination by 34% in 2013 and by 40% in 2014. Some fall herbicide treatments, without winter flood, generally caused more injury to the rice crop planted in the spring than the winter-flooded treatments. Fall application of pyroxasulfone (0.12 kg ha−1), flumioxazin (0.14 kg ha−1), and sulfentrazone (0.34 kg ha−1) as well as pre-plant application of pyroxasulfone (0.12 kg ha−1) and 2,4-D (2.24 kg ha−1), resulted in lower volunteer rice infestation, averaged over flood treatments. Pre-plant application of 2,4-D (2.24 kg ha−1), sulfentrazone in the fall (0.34 kg ha−1) and pyroxasulfone pre-plant (0.12 kg ha−1) injured the rice crop by 20%, 23%, and 47%, respectively. Fall application of pyroxasulfone (0.12 kg ha−1) followed by a lower rate of 2,4-D (1.12 kg ha−1) 35 d pre-plant caused minimal (6%) crop injury and did not reduce yield. This treatment provided better volunteer rice control (73%) than pyroxasulfone alone at 0.12 kg ha−1 applied in the fall (64%). To evaluate the overwintering potential of hybrid and non-hybrid volunteer seeds, these seed types were planted at three depths (0, 7.5, 15 cm) in flooded and non-flooded conditions in a buried-pot experiment at Stuttgart and Rohwer over 2 years. Winter-flood reduced rice germination by 50% in 2013–14 and 40% in 2014–15 (averaged over seed type and burial depth), after 160 d and 130 d of burial, respectively. After the winter, the viability of hybrid seed (germinable + dormant) was higher (13 and 53%) than that of non-hybrid seed (8 and 27%) in both years.  相似文献   

13.
Experiments at two sites during two years evaluated the selectivity of preemergence fomesafen in cucurbit crops of winter and summer squash, zucchini, cantaloupe, cucumber, and pumpkin. Cucumbers were the most sensitive of the cucurbit crops to fomesafen and produced little or no fruit in two out of three experiments when applied at 0.28 kg ai ha−1. Fomesafen also reduced cantaloupe yield. Visual damage was noted on the other crops tested, but crop yield was not impacted by fomesafen at 0.28–0.35 kg ai ha−1. With the exception of cucumbers, injury caused by fomesafen to cucurbit crops was transitory even when fomesafen-treated soil splashed onto the leaves of emerging cucurbits during a powerful thunderstorm at one of the test sites. Control of redroot pigweed (Amaranthus retroflexus), Powell amaranth (Amaranthus powellii) and other Amaranthus spp., lambsquarters (Chenopodium album), hairy nightshade (Solanum physafolium), common purslane (Portulaca oleraceae), and velvetleaf (Abutilon theophrastii) ranged from 92 to 100% with fomesafen applied at 0.28 kg ai ha−1. The excellent efficacy on these difficult to control weed species suggests that lower rates of fomesafen may be appropriate and improve crop tolerance, particularly if fomesafen is tankmix-applied with other preemergence herbicides such as s-metolachlor or dimethenamid-p. Weed control with these combinations was excellent for all weed species in these experiments.  相似文献   

14.
Echinochloa crus-galli, a C4 grass, is one of the world’s most serious weeds. Weed management decisions for this species can be derived from knowledge of its seed biology. Studies were conducted to determine the effects of light on germination; seed burial depth and rice residue on emergence and growth; and flooding time and depth on emergence, survival and growth of this species. Light stimulated seed germination but it was not an absolute requirement for germination. The proportion of seeds germinating was greatest for seeds placed on the soil surface (92%), and emergence declined with increasing burial depth in soil; no seedlings emerged from the depth of 8 cm. A burial depth of only 0.4 cm reduced seedling emergence by 50%. Seedling emergence and seedling biomass were reduced by the addition of high level (6 ton ha−1) of rice residue to the soil surface. Early and deep flooding significantly suppressed growth of E. crus-galli seedlings. In flooded conditions, with increased water depth the weed allocated more biomass to shoots at the expense of roots. The information gained from this study could contribute to improve weed control approaches. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence, use of crop residue as mulch and early flooding of the crop could serve as important tools for managing E. crus-galli and other weed species with similar germination requirements. These management options, however, would need to be compatible with other crop management requirements.  相似文献   

15.
A cohort-based population model was developed to simulate the population dynamics and management of Bromus diandrus. Model parameters were derived from our experiments and from published sources. Individual and integrated management strategies were simulated. More than 85% of B. diandrus seeds emerged within the first cohort. In the absence of any control the seed-bank population grew until reaching an equilibrium at density of 17,324 seeds m−2. Results pointed to the difficulty in controlling this weed with individual control tactics. All integrated programmes simulated resulted in long-term reductions in the seed bank. Simulations showed that the combination of pre-emergence and post-emergence herbicides or combination of autumn shallow cultivation and post-emergence herbicides are the best techniques to employ in integrated weed management (IWM) programmes in cereal. A sensitivity analysis indicated that B. diandrus is particularly vulnerable to small changes in the fecundity of the first cohort. Consequently, it is important to find strategies which can reduce the effect of the first cohort, because this is a clue to the control of this weed.  相似文献   

16.
Development of cross resistance or multiple cross resistance in Phalaris minor in wheat will continue to increase, as the weed develops mechanisms of resistance against new herbicides. This weed is a major threat to wheat productivity in north-western India, and as such needs to be addressed with integrated weed management approaches, including crop and herbicide rotations, herbicide combinations along with cultural and mechanical methods. Three field experiments were conducted during 2008–09 to 2012–13 along with large plot adaptive trials during 2012–13 with the objective to evaluate the efficacy of sequential applications of pendimethalin applied pre-emergent followed by clodinafop, sulfosulfuron, or pinoxaden applied post-emergent and tank-mix applications of metribuzin with these post-emergence herbicides for the management of herbicide-resistant P. minor in wheat. Clodinafop 60 g ha−1 or sulfosulfuron 25 g ha−1 at 35 days after sowing (DAS) and pendimethalin 1000 g ha−1 as pre-emergence did not provide consistently effective control of P. minor in wheat. An increase in the dose of clodinafop from 60 to 75 g ha−1 and of sulfosulfuron from 25 to 30 g ha−1 also did not improve their efficacy to a satisfactory level. However, pinoxaden 50 g ha−1 provided effective control (97–100%) of P. minor but not of broadleaf weeds. The tank-mix application of metribuzin with clodinafop 60 g ha−1 or sulfosulfuron 25 g ha−1 at 35 DAS and the sequential application of pendimethalin 1000 g ha−1 or trifluralin 1000 g ha−1 just after sowing followed by clodinafop 60 g ha−1 or sulfosulfuron 25 g ha−1 at 35 DAS provided 90–100% control of P. minor along with broadleaf weeds in wheat, thus resulting in improved grain yields (4.72–5.75 t ha−1) when compared to clodinafop 60 g ha−1 (3.85–5.60 t ha−1) or sulfosulfuron 25 g ha−1 alone (3.95–5.10 t ha−1). The efficacy of mesosulfuron + iodosulfuron (a commercial mixture) 14.4 g ha−1 against P. minor was not consistent across the experiments and over the years. The ready-mix combination of fenoxaprop + metribuzin (100 + 175 g ha−1) at 35 DAS provided effective control of weeds but its varietal sensitivity needs to be determined before its use in field conditions. The tank-mix or sequential application of herbicides would be a better option than their applications alone to manage the serious problem of herbicide-resistant P. minor in wheat.  相似文献   

17.
Dry-seeded rice has been introduced as an alternative to puddled hand-transplanted rice in the north Indian states of Punjab and Haryana. In dry-seeded rice, weed flora tends to be more diverse and weeds emerge in several flushes during the crop growth cycle and substantial yield reductions due to weed competition are quite common. The efficacy and compatibility of tank mixtures of different herbicides for the control of diverse weed flora in dry-seeded rice was evaluated in field experiments during the summer seasons of 2012 and 2013. The tank mixture of fenoxaprop with ethoxysulfuron improved the control of Echinochloa crus-galli and Echinochloa colona by 43–69% as compared to fenoxaprop alone while the tank-mix of azimsulfuron with fenoxaprop was antagonistic and reduced the control of Leptochloa chinensis by 86% as compared to fenoxaprop alone. Addition of azimsulfuron or ethoxysulfuron to bispyribac did not improve the control of grass weeds as compared to bispyribac alone. Weed control with the mixture of bispyribac and fenoxaprop varied over the two years. In 2012, bispyribac and fenoxaprop mixture was antagonistic for the control of Dactyloctenum aegyptium, Acrachne racemose, and L. chinensis but in 2013, there was no apparent antagonism and the addition of bispyribac to fenoxaprop reduced grass weed biomass as compared to fenoxaprop alone. In 2013, there was a strong negative correlation (r = −0.95, P < 0.001) between weed dry matter at 45 days after sowing and rice grain yield. According to the linear regression, rice crop is likely to produce no grain yield when weed dry matter exceeds 400 g m−2. Over the two seasons, fenoxaprop-ethoxysulfuron tank-mix produced similar grain yields (5.6–6.2 t ha−1) to the weed-free check (5.6–7.1 t ha−1). At the farmer fields, rice grain yield in the plots treated with pendimethalin followed by post-emergence bispyribac or a tank-mix of fenoxaprop + ethoxysulfuron ranged from 6.2 to 7.7 t ha−1 as compared to 5.3–5.6 t ha−1 in the plots treated with pendimethalin alone. The tank mixture of fenoxaprop with bispyribac needs further evaluation as this mixture has the potential to effectively control aerobic and aquatic grasses in dry-seeded rice. Single hand weeding prevented crop yield loss from weeds that escaped herbicide treatments only when it was performed within six weeks of sowing.  相似文献   

18.
Replicated field trials were conducted to determine the effect of 1,3-dichloropropene (1,3-D) as a potential alternative for methyl bromide (MeBr) in tomato–cucumber rotations in two successive cropping seasons in China. Fumigation with MeBr (400 kg ha−1), three 1,3-D doses (180, 120 and 90 l ha−1), an avermectin dose (187.5 g ha−1) and an untreated control were compared. Tomato data revealed that MeBr was generally superior to the treatments involving 1,3-D and avermectin, which in turn were superior to the control, for improving tomato crop yield and inhibiting Meloidogyne incognita, weeds and mortality caused by plant disease. In a successive cucumber crop, all fumigants tested except avermectin, showed significant continual influence in the same plots. In most cases, the highest 1,3-D dose was comparable to MeBr. Overall, in both growth seasons, 1,3-D at the dose of 180 l ha−1 was as effective as MeBr in increasing plant height, yield and in reducing the incidence of soil borne disease, especially in maintaining excellent M. incognita control, but it provided only moderate control of weeds. On the basis of these results, combining 1,3-D with other alternatives to MeBr, is recommended for satisfactory control of soil pests in tomato–cucumber rotations in China.  相似文献   

19.
HW02, a pyruvate dehydrogenase inhibitor, is a newly developed herbicide for broadleaf weed control in wheat, maize and turf in China. Greenhouse and field experiments were conducted to evaluate its efficacy against weeds and safety to winter wheat. In the greenhouse experiment, this herbicide had higher activities than 2,4-D against Descurainia sophia (L.) Schur., Amaranthus retroflexus L., Capsella bursa-pastoris (L.) Medic., and Malachium aquaticum (L.) Fries.. When it was applied at late tillering stage of winter wheat in spring, the herbicide provided weed biomass reduction of 98%–100% at the rates 225–525 g a.i. ha−1 and was safe to the crop at the rate of up to 900 g a.i. ha−1. These results showed HW02 could be an alternative herbicide for resistant weed management because its mode of action is different from herbicides presently used.  相似文献   

20.
Weeds are a major constraint for organic crop production. Previous research has found that cover crops in reduced tillage systems can provide weed interference, subsequently reducing inputs and improving crop yield. However, questions remain about effects of cover crop species identity and cover crop biomass on weed suppression and crop yield. This four-year study investigated how winter cover crops grown alone or in mixture influenced weed presence and crop yield in a reduced tillage organic vegetable system. Treatments were barley (Hordeum vulgare L.), crimson clover (Trifolium incarnatum L.), mixed barley + crimson clover, and a no-cover crop control. Plots were flail-mowed and strip-tilled prior to planting main crops (2011 and 2012: broccoli Brassica oleracea L.; 2013 and 2014: crookneck squash Cucurbita pepo L.). We measured density, diversity, and community composition of weeds and viable weed seeds, changes in weed percent cover within growing seasons, and crop yield. We found that the presence of barley, crimson clover, or barley + crimson clover reduced weed density by 50% relative to the control. Cover crop biomass negatively influenced weed density and weed seed diversity, and positively influenced squash yield. Weed percent cover within growing seasons did not respond differentially to cover crop treatment. Cover crop treatment and cover crop biomass had no influence on weed or weed seed community composition. These results suggest that reduced tillage winter cover crops in mixture or monoculture can similarly suppress weeds and improve yield, primarily due to biomass effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号