共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen peroxide (H2O2) treatment is an alternative for disinfection in aquaculture, which may be advantageous as it dissociates and disinfects while increasing water oxygen concentration. Yet, accurate dosing remains undeveloped in Recirculating Aquaculture Systems (RAS). Dosage requirements can depend on organic burden, stocking density, feeding frequency, salinity, temperature and biofilter performance. The present case study investigated the dual effect of H2O2 application for oxygen enrichment and disinfection when continuously applied to a RAS rearing European seabass. H2O2 addition equivalent to 2.4 and 15.8 H2O2 mg L−1 were applied for 4 h per day in three 5-days experiments. H2O2 was injected at the inlet of protein skimmer and/or the rearing tanks in or without combination with traditional disinfection methods. Water microbial load and oxygen saturation were determined, along with stress markers glucose and cortisol in blood plasma of fish. Doses of 15.8 mg L−1 H2O2 steadily increased oxygen levels in holding tank water from ∼50 % to over 100 % saturation while reducing microbial load (from 604.4 CFU ml−1 in the rearing tanks before dosing to 159.8 CFU ml−1 after application), achieving suitable conditions for commercial fish densities in RAS. The doses used had negligible impact on biofilter performance and did not affect the fish in terms of stress. Overall results indicate H2O2 is effective for disinfection and oxygenation of RAS systems when applied at appropriate dosage and we recommend the protein skimmer as the safest position in order to protect the bacterial community of the biofilters and the reared fish. 相似文献
2.
Stringent environmental legislation in Europe, especially in the Baltic Sea area, limits the discharge of nutrients to natural water bodies, limiting the aquaculture production in the region. Therefore, cost-efficient end-of-pipe treatment technologies to reduce nitrogen (N) discharge are required for the sustainable growth of marine land-based RAS. The following study examined the potential of fed batch reactors (FBR) in treating saline RAS effluents, aiming to define optimal operational conditions and evaluate the activated sludge denitrification capacity using external (acetate, propionate and ethanol) and internal carbon sources (RAS fish organic waste (FOW) and RAS fermented fish organic waste (FFOW)). The results show that between the evaluated operation cycle times (2, 4, and 6 h), the highest nitrate/nitrite removal rate was achieved at an operation cycle time of 2 h (corresponding to a hydraulic retention time of 2.5 h) when acetate was used as a carbon source. The specific denitrification rates were 98.7 ± 3.4 mg NO3−-N/(h g biomass) and 93.2 ± 13.6 mg NOx−-N/(h g biomass), with a resulting volumetric denitrification capacity of 1.20 kg NO3−-N/(m3 reactor d). The usage of external and internal carbon sources at an operation cycle time of 4 h demonstrated that acetate had the highest nitrate removal rate (57.6 ± 6.6 mg N/(h g biomass)), followed by propionate (37.5 ± 6.3 mg NO3−-N/(h g biomass)), ethanol (25.5 ± 6.0 mg NO3−-N/(h g biomass)) and internal carbon sources (7.7 ± 1.6–14.1 ± 2.2 mg NO3−-N/(h g biomass)). No TAN (Total Ammonia Nitrogen) or PO43- accumulation was observed in the effluent when using the external carbon sources, while 0.9 ± 0.5 mg TAN/L and 3.9 ± 1.5 mg PO43--P/L was found in the effluent when using the FOW, and 8.1±0.7 mg TAN/L and 7.3 ± 0.9 mg PO43--P/L when using FFOW. Average sulfide concentrations varied between 0.002 and 0.008 mg S2-/L when using the acetate, propionate and FOW, while using ethanol resulted in the accumulation of sulfide (0.26 ± 0.17 mg S2-/L). Altogether, it was demonstrated that FBR has a great potential for end-of-pipe denitrification in marine land-based RAS, with a reliable operation and a reduced reactor volume as compared to the other available technologies. Using acetate, the required reactor volume is less than half of what is needed for other evaluated carbon sources, due to the higher denitrification rate achieved. Additionally, combined use of both internal and external carbon sources would further reduce the operational carbon cost. 相似文献
3.
膜法SBR(sequence batch reactor)是将SBR法与接触氧化法相结合的一种新型生物膜法处理工艺。此研究以总氨氮(TAN)及总氮(TN)的去除反应速度作为考察指标,分析生物膜法SBR(biofilm sequence batch reactor,BSBR)处理水产循环养殖系统水体中影响TAN及TN去除效果的主要因素。其中,pH和碱度对硝化反应有很大的影响,pH控制在6.3以上时TAN处理效果较好。溶解氧(DO)对反硝化反应也有较大的影响,同时考虑到水生生物的生长需求,在此试验系统中进入反应器的水体DO最好能控制在4.5~6.5mg·L^-1。水温保持在20%左右,可以保证有一个较好的脱氮效果。 相似文献
4.
Pham Thi Anh Ngoc Miranda P. M. Meuwissen Le Cong Tru Roel H. Bosma Johan Verreth Alfons Oude Lansink 《Aquaculture Economics & Management (Blackwell Science)》2016,20(2):185-200
This study aims to analyze the economic feasibility of recirculating aquaculture systems (RAS) in pangasius farming in Vietnam. The study uses a capital budgeting approach and accounts for uncertainty in key parameters. Stochastic simulation is used to simulate the economic performance of medium and large farms operating with a traditional system or RAS. Data are obtained through structured surveys and a workshop in the Mekong River Delta. Results show that for large farms, net present value increases from an average of 589,000 USD/ha to 916,000 USD/ha after implementing RAS. Overall, the probability that RAS is a profitable investment is found to be 99% for both farm sizes. With RAS, the crucial parameters determining profitability are price, yield, costs of fingerling, feed, and initial investment. Findings on the robustness of the economic performance of RAS are useful to support public and private decision making towards increasing the sustainability of pangasius production. 相似文献
5.
Denitrification in recirculating systems: Theory and applications 总被引:20,自引:0,他引:20
Profitability of recirculating systems depends in part on the ability to manage nutrient wastes. Nitrogenous wastes in these systems can be eliminated through nitrifying and denitrifying biofilters. While nitrifying filters are incorporated in most recirculating systems according to well-established protocols, denitrifying filters are still under development. By means of denitrification, oxidized inorganic nitrogen compounds, such as nitrite and nitrate are reduced to elemental nitrogen (N2). The process is conducted by facultative anaerobic microorganisms with electron donors derived from either organic (heterotrophic denitrification) or inorganic sources (autotrophic denitrification). In recirculating systems and traditional wastewater treatment plants, heterotrophic denitrification often is applied using external electron and carbon donors (e.g. carbohydrates, organic alcohols) or endogenous organic donors originating from the waste. In addition to nitrate removal, denitrifying organisms are associated with other processes relevant to water quality control in aquaculture systems. Denitrification raises the alkalinity and, hence, replenishes some of the inorganic carbon lost through nitrification. Organic carbon discharge from recirculating systems is reduced when endogenous carbon sources originating from the fish waste are used to fuel denitrification. In addition to the carbon cycle, denitrifiers also are associated with sulfur and phosphorus cycles in recirculating systems. Orthophosphate uptake by some denitrifiers takes place in excess of their metabolic requirements and may result in a considerable reduction of orthophosphate from the culture water. Finally, autotrophic denitrifiers may prevent the accumulation of toxic sulfide resulting from sulfate reduction in marine recirculating systems. Information on nitrate removal in recirculating systems is limited to studies with small-scale experimental systems. Packed bed reactors supplemented with external carbon sources are used most widely for nitrate removal in these systems. Although studies on the application of denitrification in freshwater and marine recirculating systems were initiated some thirty years ago, a unifying concept for the design and operation of denitrifying biofilters in recirculating systems is lacking. 相似文献
6.
7.
为了调节循环水系统中养殖水体的pH,根据气体交换原理,设计一种脱二氧化碳(CO_2)装置。采用该装置去除养殖水体中的CO_2,并对由于CO_2含量累积造成的pH下降进行调节,使养殖鱼类处在一个适宜的pH环境中。试验时水温控制在(25±0.5)℃,每1 h取水样测1次pH,每4 h测1次碱度。水样取自养鱼桶内的水,检测前先对水样用40μm孔径针头过滤器进行过滤处理,实验周期24 h。结果显示,循环水系统加装脱二氧化碳装置能有效去除CO_2,使水体稳定在一个适宜的pH范围(7.39~7.42);CO_2质量浓度呈降低趋势,24 h后由开始的13.16 mg/L降低到7~8 mg/L,降低近50%,而不加装脱二氧化碳装置的循环水系统CO_2质量浓度持续上升,24 h后增加到37 mg/L左右,pH持续降低,最终降低到6.72~6.81。研究表明,脱二氧化碳装置能够有效去除水体中的CO_2,使水体pH维持在一个适宜鱼类生长的范围。 相似文献
8.
Refreshment (make-up) water is used in recirculating aquaculture systems (RAS) mainly to purge off-flavors, to add alkalinity and sometimes for temperature control. Alternatively, alkalinity may be added by means of a chemical base and heat may be supplied by a heating system. The objective of this study is to show how the optimal (minimizing cost) mix of the three controls: water, base and heat, can be found for given temperatures and water prices.The optimal solution varies over the temperature space and also depends on the price of water. For conditions at Eilat, Israel (on the Red Sea), using supplementary heating to maintain a constant temperature may become prohibitively expensive. If heating is given up, the remaining choice is between the supply of alkalinity via the refreshment water and adding a base. The supply of alkalinity with the water requires 2.0 m3[water]/kg[feed], much more than the minimum refreshment rate required to purge off-flavors, which is thought to be 0.3 m3[water]/kg[feed]. If the price of water is more than 0.03 USD/m3, the use of sodium bicarbonate for alkalinity control is justified. 相似文献
9.
A novel approach to denitrification processes in a zero-discharge recirculating system for small-scale urban aquaculture 总被引:3,自引:0,他引:3
Alon Singer Shmuel Parnes Amit Gross Amir Sagi Asher Brenner 《Aquacultural Engineering》2008,39(2-3):72-77
This paper presents an innovative process to solve the nitrate build-up problem in recirculating aquaculture systems (RAS). The novel aspects of the process lie in a denitrification bioreactor system that uses solid cotton wool as the primary carbon source and a unique degassing chamber. In the latter, the water is physically stripped of dissolved gaseous O2 (by means of a Venturi vacuum tube), and the subsequent denitrification becomes more efficient due to elimination of the problems of oxygen inhibition of denitrification and aerobic consumption of cotton wool. The cotton wool medium also serves as a physical barrier that traps organic particles, which, in turn, act as an additional carbon source for denitrification. Operation in the proposed system gives an extremely low C/N ratio of 0.82 g of cotton wool/g of nitrate N, which contributes to a significant reduction of biofilter volume. The additional advantage of using solid cotton wool as the carbon source is that it does not release organic residuals into the liquid to be recycled. Operation of the system over a long period consistently produced effluents with low nitrate levels (below 10 mg N/l), and there was only a very small need to replace system water. The overall treatment scheme, also incorporating an aerobic nitrification biofilter and a granular filtration device, produced water of excellent quality, i.e., with near-zero levels of nitrite and ammonia, a sufficiently high pH for aquaculture, and low turbidity. The proposed system thus provides a solution for sustainable small-scale, urban aquaculture operation with a very high recovery of water (over 99%) and minimal waste disposal. 相似文献
10.
Data on operation and performance of cost-effective solutions for end-of-pipe removal of nitrate from land-based saltwater recirculating aquaculture systems (RAS) are scarce but increasingly requested by the aquaculture industry. This study investigated the performance of a (semi)commercial-scale fixed-bed denitrification unit using single sludge for treating effluent from a commercial, saltwater RAS used for production of Atlantic salmon (Salmo salar). A fixed-bed denitrification reactor was fed continuously with 3-days hydrolyzed sludge from the commercial RAS, and was operated at different hydraulic retention times (HRTs; 1.82, 3.64, 5.46, or 7.28 h) or influent C/N ratios (3, 5, 7, or 10). Twenty-four h pooled samples were collected from the inflowing RAS water and the hydrolyzed sludge as well as from the denitrification reactor outlet, and samples were analyzed for nutrients and organic matter content.Nitrate removal rates increased consistently with decreasing HRT (from 64.3 ± 5.2–162.7 ± 22.0 g NO3-N/m3/d within the HRTs tested) at non-limiting C/N ratios, while nitrate removal efficiencies decreased (from 99.6 ± 0.3–58.2 ± 8.9 %). With increasing influent C/N ratios at constant HRT (3.64 h), nitrate removal rates increased until the removal efficiency was close to 100 % and nitrate concentration in the denitrification reactor became rate-limiting. A maximum nitrate removal rate of 162.7 ± 2.0 g NO3-N/m3/d was achieved at a HRT of 1.82 h and an influent C/N of 6.6 ± 0.5, while the most efficient use of hydrolyzed sludge (0.19 ± 0.02 g NO3-N removed/g sCOD supplied) was obtained with a HRT of 3.64 h and a C/N ratio of 2.9. Removal rates of organic matter significantly and consistently increased with decreasing HRT and increasing C/N ratio. In addition, reducing HRT and increasing C/N ratios significantly improved removal of total phosphorus (TP) and PO4-P.In conclusion, optimal management of the operating parameters (HRT and C/N ratio) in a single-sludge denitrification process can significantly reduce the discharge of nitrogen, organic matter, and phosphorous from land-based saltwater RAS and thus contribute to increased sustainability. 相似文献
11.
Accumulation of fine suspended solids and colloids in a recirculating aquaculture system (RAS) can be avoided by integrating a membrane filtration unit into the system, where the inclusion of a membrane bioreactor (MBR) may be an alternative. The main purpose of the study was to identify how the feeding regime affected membrane performance and fouling phenomena caused by dissolved and submicron colloidal particles in the system, and how the membrane impacted general water quality and particle characterization. To be able to evaluate membrane performance and fouling behavior, transmembrane pressure (TMP) was monitored and assessed in relation to changes in rearing conditions and different water quality parameters observed. From this study the positive influence on the chosen water quality parameters was apparent, where an improved water quality was observed when including a membrane filtration in RAS. Selected water quality parameters and TMP changed during the experimental period in response to the feeding regime, where algae paste, decaying rotifers and dry feed seemed to contribute the most to membrane fouling. Analysis of the concentration of submicron particles and particle size distribution (PSD) (particles < 1 μm) showed both a higher concentration and a more spread distribution in the rotifer/algae paste and dry feed period compared to the Artemia period, which might explain the observed increase in fouling. This study also showed that adapted procedures for concentrate removal are important to prevent hydrolysis of retained particles in the concentrate and leakage of nutrients and organic matter back to the system. 相似文献
12.
There is a need to develop practical methods to reduce nitrate–nitrogen loads from recirculating aquaculture systems to facilitate increased food protein production simultaneously with attainment of water quality goals. The most common wastewater denitrification treatment systems utilize methanol-fueled heterotrophs, but sulfur-based autotrophic denitrification may allow a shift away from potentially expensive carbon sources. The objective of this work was to assess the nitrate-reduction potential of fluidized sulfur-based biofilters for treatment of aquaculture wastewater. Three fluidized biofilters (height 3.9 m, diameter 0.31 m; operational volume 0.206 m3) were filled with sulfur particles (0.30 mm effective particle size; static bed depth approximately 0.9 m) and operated in triplicate mode (Phase I: 37–39% expansion; 3.2–3.3 min hydraulic retention time; 860–888 L/(m2 min) hydraulic loading rate) and independently to achieve a range of hydraulic retention times (Phase II: 42–13% expansion; 3.2–4.8 min hydraulic retention time). During Phase I, despite only removing 1.57 ± 0.15 and 1.82 ± 0.32 mg NO3–N/L each pass through the biofilter, removal rates were the highest reported for sulfur-based denitrification systems (0.71 ± 0.07 and 0.80 ± 0.15 g N removed/(L bioreactor-d)). Lower than expected sulfate production and alkalinity consumption indicated some of the nitrate removal was due to heterotrophic denitrification, and thus denitrification was mixotrophic. Microbial analysis indicated the presence of Thiobacillus denitrificans, a widely known autotrophic denitrifier, in addition to several heterotrophic denitrifiers. Phase II showed that longer retention times tended to result in more nitrate removal and sulfate production, but increasing the retention time through flow rate manipulation may create fluidization challenges for these sulfur particles. 相似文献
13.
Francia A. Sanchez Valerie R. Vivian‐Rogers Hidetoshi Urakawa 《Aquaculture Research》2019,50(8):2054-2065
A recirculating aquaculture system with farmed tilapia is the most popular combination in aquaponics, an integration of aquaculture and hydroponics. Despite nutrient‐rich fish‐rearing water being regarded as a valuable resource for aquaponics, the quality and value of inhabitant microorganisms are certainly understudied. Our present research illustrates the feasibility of the tilapia‐rearing water as a valuable source of beneficial microorganisms called plant growth promoting bacteria (PGPB). Microbial communities were examined with a combination of culture‐independent high‐throughput 16S rRNA gene sequencing and cultivation methods. Microbial communities determined using high‐throughput sequencing indicated the usefulness of Bacteroidetes and Alphaproteobacteria as beneficial microbial indicators to assess the health condition of recirculating aquaculture systems. Siderophore production, ammonia production and phosphate solubilization assays were used for screening and 41% of isolates were identified as plant growth promoting bacteria. These bacteria were classified as Actinobacteria (eight strains [32% in total], Dietzia, Gordonia, Microbacterium, Mycobacterium and Rhodococcus), Bacilli (six strains [24%], Bacillus and Paenibacillus), Flavobacteriia (one strain [4%], Myroides), Betaproteobacteria (two strains [8%], Acidovorax and Chromobacterium) and Gammaproteobacteria (eight strains [32%], Aeromonas, Plesiomonas and Pseudomonas). We found that the tilapia‐rearing water naturally contained various lineages of PGPB and could be esteemed as a worthy seed bank of PGPB. Because aquaponics is a difficult system to use pesticides and herbicides, the role of PGPB to prevent plant pathogens and maintain healthy root system may be more important than traditional agricultural settings. 相似文献
14.
牙鲆养殖循环系统中固体废物的粒径分布与沉降特征 总被引:3,自引:1,他引:3
沉淀槽是收集系统中固体废物的最简单装置,其设计参数与其沉淀的颗粒物特性有关。通过研究牙鲆(Paralichthys olivaceus)养殖循环系统产生固体废物的粒径分布和沉降特征,得到了牙鲆养殖固体废物去除的沉淀槽设计参数——溢流率与颗粒物去除效率间的关系,可作为设计沉淀槽时参考。结果表明:系统产生固体废物量为0.13-0.27 kg TSS/kg饲料,平均为(0.22±0.06)kg TSS/kg饲料。沉淀槽中固体废物主要为粒径〈200μm的颗粒,占51.5%,其粒径分布符合双曲线型分布。在给定溢流率的情况下,沉淀槽的固体废物理论去除效率可采用颗粒物的沉降曲线估算。溢流率为1/16 m3/(m2.s)时计算的颗粒物理论去除效率为81%。 相似文献
15.
Recirculating aquaculture systems (RAS) are operated as outdoor or indoor systems. Due to the intensive mode of fish production in many of these systems, waste treatment within the recirculating loop as well as in the effluents of these systems is of primary concern. In outdoor RAS, such treatment is often achieved within the recirculating loop. In these systems, extractive organisms, such as phototrophic organisms and detritivores, are cultured in relatively large treatment compartments whereby a considerable part of the waste produced by the primary organisms is converted in biomass. In indoor systems, capture of solid waste and conversion of ammonia to nitrate by nitrification are usually the main treatment steps within the recirculating loop. Waste reduction (as opposed to capture and conversion) is accomplished in some freshwater and marine indoor RAS by incorporation of denitrification and sludge digestion. In many RAS, whether operated as indoor or outdoor systems, effluent is treated before final discharge. Such effluent treatment may comprise devices for sludge thickening, sludge digestion as well as those for inorganic phosphate and nitrogen removal. Whereas waste disposed from freshwater RAS may be treated in regional waste treatment facilities or may be used for agricultural purposes in the form of fertilizer or compost, treatment options for waste disposed from marine RAS are more limited. In the present review, estimations of waste production as well as methods for waste reduction in the recirculating loop and effluents of freshwater and marine RAS are presented. Emphasis is placed on those processes leading to waste reduction rather than those used for waste capture and conversion. 相似文献
16.
池塘封闭循环水养殖废水脱氮的试验研究 总被引:2,自引:1,他引:2
确定封闭循环水养殖池塘系统对养殖水体的脱氮能力.循环净水系统主要有生物合成固氮、污泥吸附分离脱氮、光化学脱氮、微生物脱氮、物理脱氮等环节,采用海洋监测国家标准方法对系统中的南美白对虾(Penaeus vannamei)养殖水体进行跟踪监测.结果表明:系统对养殖水体中硝酸盐氮、亚硝酸盐氮和氨氮的去除率分别为10.37%~27.35%、22.45%~44.74%和22.00%~79.53%,脱氮解毒效果较好. 相似文献
17.
The paper addresses two potential applications for electrochemical ammonia oxidation within the operation of recirculating aquaculture systems, in which nearly complete removal of N species is required. In one described application, a physical–chemical ammonia oxidation method is suggested to entirely replace conventional biological treatment methods (i.e. nitrification/denitrification). The second described method is suggested as a final polishing step for removing ammonia from effluents of denitrification reactors supplied with intrinsic organic matter, prior to the discharge of the water. Empirical results and cost assessment are reported for the second alternative, while the first, which was recently published, is discussed with respect to improvements, operational conditions and field tests required to induce its commercial application. The polishing alternative was shown capable of efficiently removing TAN in the effluents of RAS denitrification reactors fed with intrinsic organic solids. The cost for treating denitrification reactor effluents with TAN concentration of 10 mgN/L was estimated at 6.67 cent/m3 of discharged water. Since the chloride ion concentration in seawater and in most brackish waters is high, combining the intrinsic organic carbon denitrification process with subsequent ammonia polishing by electrochemically produced active chlorine may be a competitive approach for the removal of nitrogen species from seawater and brackish water RAS. 相似文献
18.
Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture 总被引:2,自引:0,他引:2
H.J. Hamlin J.T. Michaels C.M. Beaulaton W.F. Graham W. Dutt P. Steinbach T.M. Losordo K.K. Schrader K.L. Main 《Aquacultural Engineering》2008,38(2):79-92
Aerobic biological filtration systems employing nitrifying bacteria to remediate excess ammonia and nitrite concentrations are common components of recirculating aquaculture systems (RAS). However, significant water exchange may still be necessary to reduce nitrate concentrations to acceptable levels unless denitrification systems are included in the RAS design. This study evaluated the design of a full scale denitrification reactor in a commercial culture RAS application. Four carbon sources were evaluated including methanol, acetic acid, molasses and Cerelose™, a hydrolyzed starch, to determine their applicability under commercial culture conditions and to determine if any of these carbon sources encouraged the production of two common “off-flavor” compounds, 2-methyisoborneol (MIB) or geosmin. The denitrification design consisted of a 1.89 m3 covered conical bottom polyethylene tank containing 1.0 m3 media through which water up-flowed at a rate of 10 lpm. A commercial aquaculture system housing 6 metric tonnes of Siberian sturgeon was used to generate nitrate through nitrification in a moving bed biological filter. All four carbon sources were able to effectively reduce nitrate to near zero concentrations from influent concentrations ranging from 11 to 57 mg/l NO3–N, and the maximum daily denitrification rate was 670–680 g nitrogen removed/m3 media/day, regardless of the carbon source. Although nitrite production was not a problem once the reactors achieved a constant effluent nitrate, ammonia production was a significant problem for units fed molasses and to a less extent Cerelose™. Maximum measured ammonia concentrations in the reactor effluents for methanol, vinegar, Cerelose™ and molasses were 1.62 ± 0.10, 2.83 ± 0.17, 4.55 ± 0.45 and 5.25 ± 1.26 mg/l NH3–N, respectively. Turbidity production was significantly increased in reactors fed molasses and to a less extent Cerelose™. Concentrations of geosmin and MIB were not significantly increased in any of the denitrification reactors, regardless of carbon source. Because of its very low cost compared to the other sources tested, molasses may be an attractive carbon source for denitrification if issues of ammonia production, turbidity and foaming can be resolved. 相似文献
19.
循环水养殖系统的关键技术是养殖废水的处理和再利用。作为循环水养殖系统水处理的核心单元,生物膜对于养殖水体中污染物的去除起着至关重要的作用。水温、盐度、pH和溶氧等环境因子都会影响生物膜的功能,环境因子的突然变化会引起生物膜脱落、影响循环水养殖系统生物膜的形成过程及运行效果。控制好水温、盐度、pH和溶氧,生物膜净化效率就能达到较为理想的状态,养殖废水的处理效果就会更好。因此,有必要研究各个环境因子变量条件下的养殖废水去除动力学特征,以期为循环水养殖系统优化设计与运行管理提供理论依据。 相似文献
20.
In marine recirculating aquaculture systems (RAS) ozone is often used in combination with biofiltration for the improvement of process water quality. Especially for disinfection purposes ozone residuals are required, that lead to a fast formation of secondary oxidants in seawater, summed up as ozone-produced oxidants (OPO). We studied the impact of OPO on nitrifying biofilter bacteria in a series of laboratory batch experiments by exposing (i) cell suspensions of the ammonia-oxidizing bacteria (AOB) Nitrosomonas marina strain 22 and the nitrite-oxidizing bacteria (NOB) Nitrospira strain Ecomares 2.1, (ii) a pure culture of the NOB Nitrospira strain immobilized on biocarriers, as well as (iii) a heterogeneous biofilm culture settled on biocarriers from a marine RAS for 1 h to different OPO concentrations up to 0.6 mg/l chlorine equivalent. Subsequent activity tests detected a negative linear correlation between OPO concentration and nitrifying activity of suspended pure cultures. Immobilization on biocarriers increased the tolerance of AOB and NOB dramatically, suggesting the biofilm matrix to be highly protective against OPO. Furthermore, we investigated the chronic effect of moderate ozonation at OPO concentrations of 0, 0.05, 0.10 and 0.15 mg/l chlorine equivalent on biofilter performance in a 21 d exposure experiment using 12 experimental RAS, stocked with tilapia (Oreochromis niloticus). Chronic exposure experiments could not reveal any harmful impact on biofilter performance for OPO concentrations up to 0.15 mg/l, even at continuous exposure. Surprisingly, nitrifying activity was enhanced at all OPO concentrations compared to the control without ozonation, suggesting moderate ozonation to promote biological nitrification. It can be concluded that rather health, welfare and performance of most cultivated fish species are the limiting factors for ozone dosage than nitrification performance of biofilters. The results may further have practical implications in relation to design and operational strategy of water treatment processes in RAS and might thus contribute to the optimization of an effective and safe treatment combination of biofiltration and ozonation. 相似文献