首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 200 毫秒
1.
针对玉米种质资源遗传多样性丰富导致雄穗大小、形态结构及颜色呈现较大差异,无人机搭载可见光传感器相比地面采集图像分辨率低,以及图像中部分雄穗过小、与背景相似度高、被遮挡、相互交错等情况带来的雄穗检测精度低的问题,提出了一种改进YOLO v7-tiny模型的玉米种质资源雄穗检测方法。该方法通过在YOLO v7-tiny中引入SPD-Conv模块和VanillaBlock模块,以及添加ECA-Net模块的方式,增强模型对雄穗特征的提取能力。利用自建的玉米种质资源雄穗数据集,训练并测试改进模型。结果表明,改进YOLO v7-tiny的平均精度均值为94.6%,相比YOLO v7-tiny提升1.5个百分点,相比同等规模的轻量级模型YOLO v5s、YOLO v8s分别提升1.0、3.1个百分点,显著降低了图像中雄穗漏检及背景误检为雄穗的发生,有效减少了单穗误检为多穗和交错状态下雄穗个数误判的情况。改进YOLO v7-tiny模型内存占用量为17.8MB,推理速度为231f/s。本文方法在保证模型轻量化的前提下提升了雄穗检测精度,为玉米种质资源雄穗实时、精准检测提供了技术支撑。  相似文献   

2.
为实时准确地检测到自然环境下背景复杂的荔枝病虫害,本研究构建荔枝病虫害图像数据集并提出荔枝病虫害检测模型以提供诊断防治。以YOLO v4为基础,使用更轻、更快的轻量化网络GhostNet作为主干网络提取特征,并结合GhostNet中的核心设计引入更低成本的卷积Ghost Module代替颈部结构中的传统卷积,得到轻量化后的YOLO v4-G模型。在此基础上使用新特征融合方法和注意力机制CBAM对YOLO v4-G进行改进,在不失检测速度和模型轻量化程度的情况下提高检测精度,提出YOLO v4-GCF荔枝病虫害检测模型。构建的数据集包含荔枝病虫害图像3725幅,其中病害种类包括煤烟病、炭疽病和藻斑病3种,虫害种类包括毛毡病和叶瘿蚊2种。试验结果表明,基于YOLO v4-GCF的荔枝病虫害检测模型,对于5种病虫害目标在训练集、验证集和测试集上的平均精度分别为95.31%、90.42%和89.76%,单幅图像检测用时0.1671s,模型内存占用量为39.574MB,相比改进前的YOLO v4模型缩小84%,检测速度提升38%,在测试集中检测平均精度提升4.13个百分点,同时平均精度比常用模型YOLO v4-tiny、EfficientDet-d2和Faster R-CNN分别高17.67、12.78、25.94个百分点。所提出的YOLO v4-GCF荔枝病虫害检测模型能够有效抑制复杂背景的干扰,准确且快速检测图像中荔枝病虫害目标,可为自然环境下复杂、非结构背景的农作物病虫害实时检测研究提供参考。  相似文献   

3.
芽眼检测是马铃薯种薯智能切块首先要解决的问题,为实现种薯芽眼精准高效检测,提出了一种基于改进YOLO v5s的马铃薯种薯芽眼检测方法。首先通过加入CBAM注意力机制,加强对马铃薯种薯芽眼图像的特征学习和特征提取,同时弱化与芽眼相似的马铃薯种薯表面背景对检测结果的影响。其次引入加权双向特征金字塔BiFPN增加经骨干网络提取的种薯芽眼原始信息,为不同尺度特征图赋予不同权重,使得多尺度特征融合更加合理。最后替换为改进的高效解耦头Decoupled Head区分回归和分类,加快模型收敛速度,进一步提升马铃薯种薯芽眼检测性能。试验结果表明,改进YOLO v5s模型准确率、召回率和平均精度均值分别为93.3%、93.4%和95.2%;相比原始YOLO v5s模型,平均精度均值提高3.2个百分点,准确率、召回率分别提高0.9、1.7个百分点;不同模型对比分析表明,改进YOLO v5s模型与Faster R-CNN、YOLO v3、YOLO v6、YOLOX和YOLO v7等模型相比有着较大优势,平均精度均值分别提高8.4、3.1、9.0、12.9、4.4个百分点。在种薯自动切块芽眼检测试验中,改进Y...  相似文献   

4.
基于改进YOLO v5的夜间温室番茄果实快速识别   总被引:2,自引:0,他引:2  
为实现日光温室夜间环境下采摘机器人正常工作以及番茄快速识别,提出一种基于改进YOLO v5的夜间番茄果实的识别方法。采集夜间环境下番茄图像2 000幅作为训练样本,通过建立一种基于交并比的CIOU目标位置损失函数,对原损失函数进行改进,根据计算函数anchor生成自适应锚定框,确定最佳锚定框尺寸,构建改进型YOLO v5网络模型。试验结果表明,改进YOLO v5网络模型对夜间环境下番茄绿色果实识别精度、红色果实识别精度、综合平均识别精度分别为96.2%、97.6%和96.8%,对比CNN卷积网络模型及YOLO v5模型,提高了被遮挡特征物与暗光下特征物的识别精度,改善了模型鲁棒性。将改进YOLO v5网络模型通过编译将训练结果写入安卓系统制作快速检测应用软件,验证了模型对夜间环境下番茄果实识别的可靠性与准确性,可为番茄实时检测系统的相关研究提供参考。  相似文献   

5.
日常行为是家畜健康状况的重要体现,在传统的行为识别方法中,通常需要人工或者依赖工具对家畜进行观察。为解决以上问题,基于YOLO v5n模型,提出了一种高效的绵羊行为识别方法,利用目标识别算法从羊圈斜上方的视频序列中识别舍养绵羊的进食、躺卧以及站立行为。首先用摄像头采集养殖场中羊群的日常行为图像,构建绵羊行为数据集;其次在YOLO v5n的主干特征提取网络中引入SE注意力机制,增强全局信息交互能力和表达能力,提高检测性能;采用GIoU损失函数,减少训练模型时的计算开销并提升模型收敛速度;最后,在Backbone主干网络中引入GhostConv卷积,有效地减少了模型计算量和参数量。实验结果表明,本研究提出的GS-YOLO v5n目标检测方法参数量仅为1.52×106,相较于原始模型YOLO v5n减少15%;浮点运算量为3.3×109,相较于原始模型减少30%;且平均精度均值达到95.8%,相比于原始模型提高4.6个百分点。改进后模型与当前主流的YOLO系列目标检测模型相比,在大幅减少模型计算量和参数量的同时,检测精度均有较高提升。在边缘设备上进行部署,达到了实时检测要求,可准确快速地对绵羊进行定位并检测。  相似文献   

6.
针对two-stage网络模型训练成本高,无人机搭载的边缘计算设备检测速度低等问题,提出一种基于改进YOLO v4模型的受灾树木实时检测方法,以提高对落叶松毛虫虫害树木的识别精度与检测速度。以黑龙江省大兴安岭地区呼玛县白银纳乡受落叶松毛虫侵害的落叶松无人机图像为数据,利用LabelImg软件标注75~100 m的无人机图像,构建落叶松毛虫虫害树木图像数据集。将CSPNet应用于YOLO v4模型的Neck架构,重新设计Backbone的特征提取网络——CSPDarknet53模型结构,并在CSPNet进行优化计算前的卷积中加入SENet以增加感受野信息,使其改变网络的深度、宽度、分辨率及网络结构,实现模型缩放,提高检测精度。同时,在PANet中使用CSPConvs卷积代替原有卷积Conv×5,最后经过YOLO Head检测输出预测结果。将YOLO v4-CSP网络模型部署至GPU进行训练,训练过程的内存降低至改进前的82.7%。再搭载至工作站进行测试,结果表明:改进的YOLO v4-CSP网络模型在测试阶段对虫害树木检测的正确率为97.50%,相比于YOLO v4的平均正确率提高3.4...  相似文献   

7.
研究了羊骨架图像生成技术与基于ICNet的羊骨架图像实时语义分割方法。通过DCGAN、SinGAN、BigGAN 3种生成对抗网络生成图像效果对比,优选BigGAN作为羊骨架图像生成网络,扩充了羊骨架图像数据量。在此基础上,将生成图像与原始图像建立组合数据集,引入迁移学习训练ICNet,并保存最优模型,获取该模型对羊骨架脊椎、肋部、颈部的分割精度、MIoU以及单幅图像平均处理时间,并以此作为羊骨架图像语义分割效果的评判标准。结果表明,最优模型对羊骨架3部位分割精度和MIoU分别为93.68%、96.37%、89.77%和85.85%、90.64%、75.77%,单幅图像平均处理时间为87 ms。通过模拟不同光照条件下羊骨架图像来判断ICNet的泛化能力,通过与常用的U Net、DeepLabV3、PSPNet、Fast SCNN 4种图像语义分割模型进行对比来验证ICNet综合分割能力,通过对比中分辨率下不同分支权重的网络分割精度来寻求最优权值。结果表明,ICNet与前3种模型的分割精度、MIoU相差不大,但处理时间分别缩短了72.98%、40.82%、88.86%;虽然Fast SCNN单幅图像处理时间较ICNet缩短了43.68%,但MIoU降低了4.5个百分点,且当中分辨率分支权重为0.42时,ICNet分割精度达到最高。研究表明本文方法具有较高的分割精度、良好的实时性和一定的泛化能力,综合分割能力较优。  相似文献   

8.
奶牛体况评分是评价奶牛产能与体态健康的重要指标。目前,随着现代化牧场的发展,智能检测技术已被应用于奶牛精准养殖中。针对目前检测算法的参数量多、计算量大等问题,以YOLO v5s为基础,提出了一种改进的轻量级奶牛体况评分模型(YOLO-MCE)。首先,通过2D摄像机在奶牛挤奶通道处采集奶牛尾部图像并构建奶牛BCS数据集。其次,在MobileNetV3网络中融入坐标注意力机制(Coordinate attention, CA)构建M3CA网络。将YOLO v5s的主干网络替换为M3CA网络,在降低模型复杂度的同时,使得网络特征提取时更关注于牛尾区域的位置和空间信息,从而提高了运动模糊场景下的检测精度。YOLO v5s预测层采用EIoU Loss损失函数,优化了目标边界框回归收敛速度,生成定位精准的预测边界框,进而提高了模型检测精度。试验结果表明,改进的YOLO v5s模型的检测精度为93.4%,召回率为85.5%,mAP@0.5为91.4%,计算量为2.0×109,模型内存占用量仅为2.28 MB。相较原始YOLO v5s模型,其计算量降低87.3%,模型内存占用量减...  相似文献   

9.
黄瓜霜霉病由古巴假霜霉病菌孢子通过侵染引起,严重影响了黄瓜的品质和产量;病菌孢子数量与病情严重度相关,因此建立快速、简便和高效的病菌孢子定量检测方法,实现黄瓜霜霉病防治关口前移。基于YOLO v5模型提出了一种基于Faster-NAM-YOLO的黄瓜霜霉病菌孢子定量检测模型,该模型首先提出了一种特征提取模块C3_Faster,使用C3_Faster替换YOLO v5中的C3模块,有效降低了模型参数计算量和模型深度,提升了对黄瓜霜霉病菌孢子检测速度和精度;其次在主干网络中加入了NAM注意力模块,通过应用权重稀疏性惩罚抑制不显著权重,进而提高模型的特征提取能力和计算效率;最后实现了对黄瓜霜霉病菌孢子的定量检测。实验结果表明,Faster-NAM-YOLO模型在测试集上mAP@0.5和mAP@0.5:0.95分别达到95.80%和60.90%,对比原始YOLO v5模型分别提升1.80、1.20个百分点,较原始YOLO v5模型内存占用量和每秒浮点运算次数分别减少5.27 MB和1.49×1010;通过与YOLO v3、THP-YOLO v5、YOLO v7、YOLO ...  相似文献   

10.
为准确高效地实现无接触式奶山羊个体识别,以圈养环境下奶山羊面部图像为研究对象,提出一种基于改进YOLO v5s的奶山羊个体识别方法。首先,从网络上随机采集350幅羊脸图像构成羊脸面部检测数据集,使用迁移学习思想预训练YOLO v5s模型,使其能够检测羊脸位置。其次,构建包含31头奶山羊3 844幅不同生长期的面部图像数据集,基于预训练的YOLO v5s,在特征提取层中引入SimAM注意力模块,增强模型的学习能力,并在特征融合层引入CARAFE上采样模块以更好地恢复面部细节,提升模型对奶山羊个体面部的识别精度。实验结果表明,改进YOLO v5s模型平均精度均值为97.41%,比Faster R-CNN、SSD、YOLO v4模型分别提高6.33、8.22、15.95个百分点,比YOLO v5s模型高2.21个百分点,改进模型检测速度为56.00 f/s,模型内存占用量为14.45 MB。本文方法能够准确识别具有相似面部特征的奶山羊个体,为智慧养殖中的家畜个体识别提供了一种方法支持。  相似文献   

11.
针对苹果采摘机器人识别算法包含复杂的网络结构和庞大的参数体量,严重限制检测模型的响应速度问题,本文基于嵌入式平台,以YOLO v4作为基础框架提出一种轻量化苹果实时检测方法(YOLO v4-CA)。该方法使用MobileNet v3作为特征提取网络,并在特征融合网络中引入深度可分离卷积,降低网络计算复杂度;同时,为弥补模型简化带来的精度损失,在网络关键位置引入坐标注意力机制,强化目标关注以提高密集目标检测以及抗背景干扰能力。在此基础上,针对苹果数据集样本量小的问题,提出一种跨域迁移与域内迁移相结合的学习策略,提高模型泛化能力。试验结果表明,改进后模型的平均检测精度为92.23%,在嵌入式平台上的检测速度为15.11f/s,约为改进前模型的3倍。相较于SSD300与Faster R-CNN,平均检测精度分别提高0.91、2.02个百分点,在嵌入式平台上的检测速度分别约为SSD300和Faster R-CNN的1.75倍和12倍;相较于两种轻量级目标检测算法DY3TNet与YOLO v5s,平均检测精度分别提高7.33、7.73个百分点。因此,改进后的模型能够高效实时地对复杂果园环境中的苹果进行检测,适宜在嵌入式系统上部署,可以为苹果采摘机器人的识别系统提供解决思路。  相似文献   

12.
为在有限的嵌入式设备资源下达到实时检测要求,提出一种基于改进YOLO v5的百香果轻量化检测模型(MbECA-v5)。首先,使用MobileNetV3替换主干特征提取网络,利用深度可分离卷积代替传统卷积减少模型的参数量。其次,嵌入有效通道注意力网络(ECANet)关注百香果整体,引入逐点卷积连接特征提取网络和特征融合网络,提高网络对百香果图像的特征提取能力和拟合能力。最后,运用跨域与域内多轮训练相结合的迁移学习策略提高网络检测精度。试验结果表明,改进后模型的精确率和召回率为95.3%和88.1%;平均精度均值为88.3%,较改进前提高0.2个百分点。模型计算量为6.6 GFLOPs,体积仅为6.41MB,约为改进前模型的1/2,在嵌入式设备实时检测速度为10.92f/s,约为SSD、Faster RCNN、YOLO v5s模型的14倍、39倍、1.7倍。因此,基于改进YOLO v5的轻量化模型提高了检测精度和大幅降低了计算量和模型体积,在嵌入式设备上能够高效实时地对复杂果园环境中的百香果进行检测。  相似文献   

13.
针对玉米种子在外观品质检测中需要快速识别与定位的需求,提出了一种基于改进YOLO v4的目标检测模型,同时结合四通道(RGB+NIR)多光谱图像,对玉米种子外观品质进行了识别与分类。为了减少改进后模型的参数量,本文将主干特征提取网络替换为轻量级网络MobileNet V1。为了进一步提升模型的性能,通过试验研究了空间金字塔池化(Spatial pyramid pooling, SPP)结构在不同位置上对模型性能的影响,最终选取改进YOLO v4-MobileNet V1模型对玉米种子外观品质进行检测。试验结果表明,模型的综合评价指标平均F1值和mAP达到93.09%和98.02%,平均每检测1幅图像耗时1.85 s,平均每检测1粒玉米种子耗时0.088 s,模型参数量压缩为原始模型的20%。四通道多光谱图像的光谱波段可扩展到可见光范围之外,并能够提取出更具有代表性的特征信息,并且改进后的模型具有鲁棒性强、实时性好、轻量化的优点,为实现种子的高通量质量检测和优选分级提供了参考。  相似文献   

14.
针对养殖池塘内单环刺螠自动采捕和产量预测应用需求,提出一种基于深度学习的单环刺螠洞口识别方法,以适用于自动采捕船的嵌入式设备。该方法通过将YOLO v4的主干网络CSPDarkNet53替换为轻量型网络Mobilenet v2,降低网络参数量,提升检测速度,并在此基础上使用深度可分离卷积块代替原网络中Neck和Detection Head部分的普通卷积块,进一步降低模型参数量;选取带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法进行图像增强;利用K-means++算法对数据集进行重新聚类,对获得的新锚点框尺寸进行线性缩放优化,以提高目标检测效果。在嵌入式设备Jetson AGX Xavier上部署训练好的模型,对水下单环刺螠洞口检测的平均精度均值(Mean average precision,mAP)可达92.26%,检测速度为36f/s,模型内存占用量仅为22.2MB。实验结果表明,该方法实现了检测速度和精度的平衡,可满足实际应用场景下模型部署在单环刺螠采捕船嵌入式设备的需求。  相似文献   

15.
为实现收获后含杂马铃薯中土块石块的快速检测和剔除,提出了一种基于改进YOLO v4模型的马铃薯中土块石块检测方法。YOLO v4模型以CSPDarknet53为主干特征提取网络,在保证检测准确率的前提下,利用通道剪枝算法对模型进行剪枝处理,以简化模型结构、降低运算量。采用Mosaic数据增强方法扩充图像数据集(8621幅图像),对模型进行微调,实现了马铃薯中土块石块的检测。测试表明,剪枝后模型总参数量减少了94.37%,模型存储空间下降了187.35 MB,前向运算时间缩短了0.02 s,平均精度均值(Mean average precision, mAP)下降了2.1个百分点,说明剪枝处理可提升模型性能。为验证模型的有效性,将本文模型与5种深度学习算法进行比较,结果表明,本文算法mAP为96.42%,比Faster R-CNN、Tiny-YOLO v2、YOLO v3、SSD分别提高了11.2、11.5、5.65、10.78个百分点,比YOLO v4算法降低了0.04个百分点,模型存储空间为20.75 MB,检测速度为78.49 f/s,满足实际生产需要。  相似文献   

16.
针对深层神经网络模型部署到番茄串采摘机器人,存在运行速度慢,对目标识别率低,定位不准确等问题,本文提出并验证了一种高效的番茄串检测模型。模型由目标检测与语义分割两部分组成。目标检测负责提取番茄串所在的矩形区域,利用语义分割算法在感兴趣区域内获取番茄茎位置。在番茄检测模块,设计了一种基于深度卷积结构的主干网络,在实现模型参数稀疏性的同时提高目标的识别精度,采用K-means++聚类算法获得先验框,并改进了DIoU距离计算公式,进而获得更为紧凑的轻量级检测模型(DC-YOLO v4)。在番茄茎语义分割模块(ICNet)中以MobileNetv2为主干网络,减少参数计算量,提高模型运算速度。将采摘模型部署在番茄串采摘机器人上进行验证。采用自制番茄数据集进行测试,结果表明,DC-YOLO v4对番茄及番茄串的平均检测精度为99.31%,比YOLO v4提高2.04个百分点。语义分割模块的mIoU为81.63%,mPA为91.87%,比传统ICNet的mIoU提高2.19个百分点,mPA提高1.47个百分点。对番茄串的准确采摘率为84.8%,完成一次采摘作业耗时约6s。  相似文献   

17.
山羊的脸部检测对羊场的智能化管理有着重要的意义。针对实际饲养环境中,羊群存在多角度、分布随机、灵活多变、羊脸检测难度大的问题,以YOLO v5s为基础目标检测网络,提出了一种结合坐标信息的山羊脸部检测模型。首先,通过移动设备获取舍内、舍外、单头以及多头山羊的图像并构建数据集。其次,在YOLO v5s的主干网络融入坐标注意力机制,以充分利用目标的位置信息,提高遮挡区域、小目标、多视角样本的检测精度。试验结果表明,改进YOLO v5s模型的检测精确率为95.6%,召回率为83.0%,mAP0.5为90.2%,帧速率为69 f/s,模型内存占用量为13.2 MB;与YOLO v5s模型相比,检测精度提高1.3个百分点,模型所占内存空间减少1.2 MB;且模型的整体性能远优于Faster R-CNN、YOLO v4、YOLO v5s模型。此外,本文构建了不同光照和相机抖动的数据集,来进一步验证本文方法的可行性。改进后的模型可快速有效地对复杂场景下山羊的脸部进行精准检测及定位,为动物精细化养殖时目标检测识别提供了检测思路和技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号