首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 64 毫秒
1.
【目的】通过分析影响山核桃短期内干腐病发病程度的因素,对比不同机器学习算法,得到发病程度预测效果较好的模型,为科学、绿色防治工作提供思路。【方法】采用机器学习算法XGBoost、逻辑回归和BP神经网络作为构建预测模型的基础,以五折交叉验证方法验证模型。【结果】对山核桃干腐病发病程度的影响因素排名,由高到低分别是候平均温度、候平均湿度、病斑数目、候降水量;集成机器学习算法XGBoost构建的预测模型各评价指标都高于逻辑回归和BP神经网络;集成机器学习算法XGBoost在山核桃干腐病发病程度多分类预测问题上得到的效果优于传统机器学习算法。  相似文献   

2.
作物遥感精细识别与自动制图研究进展与展望   总被引:5,自引:0,他引:5       下载免费PDF全文
作物识别与制图产品数据是作物长势、风险胁迫、产量等生产参量监测预测,种植结构调整与供需决策分析,以及耕地资源安全与生态效应评估等工作的基础数据,遥感数据成为作物类型识别与制图的最主要数据源,新兴数字技术则为遥感作物识别与制图提供了新的方法手段。本文通过综述近年基于遥感的作物识别与制图相关研究成果,探究当前技术趋势、关键问题,以及需求差距。分别从小尺度作物精细识别、大尺度作物自动化制图,以及作物识别与制图模式变化3个视角总结归纳面临的主要问题和主要研究工作。作物识别与制图产品在小尺度上需要更加精细、近实时和更高的识别精度,主要使用超高空间分辨率(如米级、亚米级)的影像数据,在提高作物识别精度(95%以上)进而提取满足应用需求的高精度作物表型等信息方面依旧面临巨大挑战。而在大尺度上需要更加自动化、满足可靠识别精度(90%左右),主要使用高时空分辨率(2~5d,10~30m)的影像数据,面临着如何处理海量数据的存储管理、分析计算,发展大范围上具有鲁棒性的分类识别方法,寻找科学高效的地面样本获取途径的难题。同时,作物识别与制图的模式也将从确认监测向提前预判和特定作物探测转变。最后从加强科学研究与加快应用落地2个角度提出展望,为发展满足智慧农业与国土监管不同需求的遥感作物识别与制图产品提供参考与借鉴。  相似文献   

3.
为综合利用光谱、冠层结构、纹理特征等信息对棉花进行无人机(Unmanned aerial vehicle, UAV)遥感产量估算并系统地分析光谱、冠层结构、纹理特征等信息对估产的贡献程度,本文在构建基于多源UAV数据棉花估产机器学习模型的基础上,进一步确定了估产的最佳生育时期,并对比了多源传感器数据在棉花产量估算中的效果,最后量化了各类输入特征的贡献度。采集棉花冠层RGB(Red green blue)、多光谱(Multispectral, MS)和激光雷达(Light detection and ranging, LiDAR)3种传感器数据,通过对棉花光谱植被指数与产量进行相关性分析,确定了棉花产量估算最佳生育时期,进而构建了基于偏最小二乘法回归(Partial least squares regression, PLSR)、随机森林回归(Random forest regression, RFR)、极致梯度提升(Extreme gradient boost, XGBoost)3种机器学习模型的棉花产量估算方法,并评估了基于2种最常用的传感器(RGB和MS相机)的性能。最终确定了光谱特征、冠层结构、纹理特征这3类特征信息在产量估算中的贡献度。研究结果表明,盛花期是棉花估产的最佳生育时期;基于盛花期的UAV数据,XGBoost模型取得了最高的产量估算精度(R2为0.70,RMSE为611.31 kg/hm2,rRMSE为10.60%),在对比基于RGB和MS图像数据提取的特征时,基于MS图像数据提取的特征建模结果更好,同时将RGB和MS相机2种传感器数据提取的特征作为输入时,模型结果高于单一传感器;使用夏普利加性解释(Shapley additive explanations, SHAP)算法分析了机器学习模型中各个输入特征对于估产的贡献度,发现基于3种传感器的3种特征信息在产量估算方面都具有重要意义,其中,纹理特征与冠层结构在产量估算中展现出了较好的潜力。本研究可为棉花智慧化管理中高通量棉花产量估算提供理论和技术支持。  相似文献   

4.
为建立针对城市河流水质参数稳定且准确的无人机遥感反演模型,以邯郸市境内滏阳河5个河段为研究样区,基于三期无人机多光谱影像和水体氨氮浓度实测数据,构建了4种数学统计模型与XGBoost模型,并在模型验证和评价的基础上选取最优模型对研究区氨氮浓度进行时空分布反演及分析。结果表明:①XGBoost模型反演效果优于数学统计模型,决定系数、均方根误差、平均绝对百分比误差整体优于数学统计模型,表现出较强的拟合能力和较高的预测精度;②无人机遥感反演技术适用于城市河流氨氮浓度反演,多光谱数据B1波段在建模中起关键作用;③邯郸市滏阳河流域各河段的整体氨氮浓度依次为2020年12月>2020年8月>2021年5月,呈现出一定的季节性差异特征。  相似文献   

5.
氮素是玉米生长发育过程中必不可少的关键性因素,能够直接影响到玉米作物的生长情况。过去传统的玉米种植信息采集工作大多由人工作业完成,在实际工作中具有费时费力的缺点,难以大范围快速开展,且人工采集的信息数据质量无法得到有效保障,还会对玉米田地造成一定程度的影响和破坏。随着现代化技术的快速发展,无人机和计算机等技术的普及应用促使农业监测方法日新月异。基于此,笔者以实际案例为例并进行深入分析,探究多源遥感技术在夏玉米冠层氮素监测中的应用情况。结果表明,多源遥感技术在实际应用中能够实现高效精准的空间数据监测,实现了多角度的信息采集分析。本研究具有良好的发展前景,能够为其他农业监测研究提供参考。  相似文献   

6.
本研究利用多源遥感数据的农业生态环境信息快速提取技术,开发基于多源遥感数据的黄岛区农业用水量动态监测系统,进行农作物的长势及灌溉需水量、用水量的动态监测,为黄岛区农业生产和区域用水总量监测工作提供及时准确的监测与评估信息,为落实最严格的水资源管理制度,提高黄岛区农业灌溉用水效率提供技术支持.  相似文献   

7.
基于多源遥感协同反演的区域性土壤盐渍化监测   总被引:4,自引:0,他引:4       下载免费PDF全文
为进一步推动多源遥感技术在农业生产与管理中的应用,以内蒙古河套灌区解放闸灌域为试验区,利用地面实测光谱和地表组合粗糙度数据,联合C波段微波雷达SAR四极化后向散射系数数据,分别利用主成分回归(PCR)、多元逐步回归(MSR)和偏最小二乘回归(PLSR)选取盐分特征波段,并建模评价土壤盐渍化分布。首先,对光谱反射率及其对数、一阶与二阶导数4种光谱数据进行相关性分析,发现相较于原始光谱和对数变换,光谱的一、二阶导数具有更好的相关性,二阶导数变换的618~622 nm、1 802~1 806 nm、2 169~2 173 nm、2 344~2 348 nm这4个特征波段的相关系数分别为0.37、0.28、0.39和0.27;PLSR筛选的波段相较MSR选取的波段延后,但其二阶导数变换模型拟合度小于MSR。其次,在对比二阶导数变换的PCR、MSR和PLSR土壤盐分模型基础上,最终确定了协同光谱特征波段中心反射率二阶导数和雷达后向散射特性、地表组合粗糙度的BP人工神经网络(BPANN)模型为最佳预测模型,其预测模型的R~2为0.890 8,稳定性和预测精度均优于前述经验回归模型。融合多源遥感数据的神经网络模型可快速精准监测土壤盐渍化分布,为灌区土壤退化防治提供基础信息指导。  相似文献   

8.
城镇是人类社会发展过程在空间上的重要表现形式,其空间格局与演变是城镇研究的热点问题。淮河流域是中国城镇体系的南北过渡地区,研究这一自然地理单元内城镇扩张过程,视角独特。为客观、快速、准确地重建不同时间序列上淮河流域城镇扩张过程,在DMSP/OLS数据、SPOT-VGT数据、Landsat ETM+数据等多源遥感数据的基础上,提出\"DMSP/OLS夜间灯光数据相互校正—NDVI数据重建—流域城镇信息提取—流域城镇扩张分析\"的研究思路,并运用该思路分析淮河流域从1998年至2013年16年间的城镇扩张过程。从城市面积、扩张强度、扩张动态度、扩张形态4方面分析了城市扩张规律。研究发现:淮河流域整体与各省扩张基本属于低速扩张型与中速扩张型;淮河流域城镇分布仍较为分散,未形成完整的城市群或城镇体系;这一时期城市扩张时空发展不均衡。  相似文献   

9.
针对土壤盐分遥感反演中众多盐分指示变量在反演效率与相互比较优势方面存在的不确定性和易混淆性问题,以内蒙古额济纳旗的居延泽为例,基于Sentinel-2、Radarsat-2、Landsat-8和SRTM DEM数据提取波段反射率、植被指数、盐分指数、极化雷达参数以及地表温度和地形因子共6类变量,采用变量优选策略筛选各类变量及其组合的最优变量,构建土壤盐分随机森林(Random forest, RF)与支持向量机(Support vector machine, SVM)预测模型,并选择最优模型实现居延泽地区土壤盐分预测,为干旱区土壤盐分监测提供参考。结果表明,短波红外波段(B11)、冠层盐度响应植被指数(CRSI)、扩展比值植被指数(ERVI)、红边盐分指数(S2re3)、单次散射(FOdd)、地表温度(LST)与汇水面积(CA)等变量对土壤盐分监测具有较强的普适性;单一变量模型的盐分预测精度从高到低依次为地形因子、极化雷达参数、地表温度、盐分指数、植被指数和波段反射率;多变量联合可有效提升模型精度与稳定性,随着环境变量的加入,当6类变量均参与...  相似文献   

10.
土壤墒情是影响农作物生长发育的主要因素和干旱监测的重要指标。为提高农作物覆盖下地表土壤墒情反演精度,基于Sentinel-1雷达数据和Sentinel-2光学数据,基于深度学习理论,采用全连接深度神经网络的监督学习模型反演研究区麦田的土壤墒情。结果表明:当隐含层层数为6,隐含层节点数为80,迭代次数为450时,获得模型的最优解。反演结果与实测数据的决定系数为0.925 2,均方误差为0.000 8,为利用多源遥感数据反演农田地表土壤水分提供了参考。  相似文献   

11.
针对当前快速准确获取叶面积指数(Leaf area index, LAI)时大部分遥感预测方法将光谱信息作为模型主要特征,忽略时序变化特征的问题,利用无人机搭载五通道多光谱相机获取研究区玉米不同生育期的影像数据,基于该数据计算玉米相应生育期植被指数,然后采用植被指数建立各生育期子模型,采用Shapley理论计算子模型均方根误差对全生育期模型均方根误差的贡献度,从而确定各子模型权重,根据权重组合形成具有LAI时序变化特征的估算模型,分别基于支持向量回归(SVR)、多层感知机(MLP)、随机森林(RF)和极限梯度提升树(XGBoost)算法构建组合估算模型。结果表明:采用Shapley理论构建的组合LAI估算模型估算效果优于直接构建的全生育期LAI估算模型。相较于SVR-Shapley、MLP-Shapley以及RF-Shapley模型,XGBoost-Shapley模型的估算效果最佳(R2为0.97,RMSE为0.021,RPD为6.9)。将最优模型XGBoost-Shapley应用于研究区LAI预测,预测结果符合不同生育期玉米长势。本研究为大田玉米长势遥感监测提供...  相似文献   

12.
基于遥感的沙壕渠控制区作物种植结构与空间分布研究   总被引:2,自引:0,他引:2  
河套灌区作物种植分类是在河套灌区进行灌溉农业研究的基础,但是仅利用遥感影像提取作物种植结构及种植面积时其精度远远不够,往往难以满足农业遥感在应用上的需求。通常多利用多元影像融合、多时相遥感影像以及遥感影像结合地面采样点来进行作物分类,以提高分类精度。本文以河套灌区内部的沙壕渠控制区为试验区,采用TM遥感影像,以实际地面采样点作为感兴趣区创建训练样本,利用最大似然法进行分类,成功提取了小麦、玉米、葵花及其他作物的种植结构及种植面积,分类总体精度达到了85.87%,Kappa系数为0.769 6。  相似文献   

13.
遥感凭借其快速、宏观、无损及客观等特点,在快速获取与解析作物类型、种植面积、产量等信息方面具有独特优势。遥感提取和解译的作物空间分布图、种植面积、产量信息可以服务于农业资源监管、农业信息普查、农业保险、农业投资、精准农业等方面。本文分别就农作物遥感识别与农作物单产遥感估算的研究现状、面临的问题、潜在研究方向进行了总结概述。首先总结了农作物遥感识别特征与分类模型的研究现状,针对遥感识别特征与作物类型缺乏知识关联的核心问题,提出利用深度学习方法协同学习作物生长过程中的“时-空-谱”特征,并构建面向农作物遥感识别的知识图谱,从而解决当前农作物遥感识别在识别精度和识别效率方面的问题。然后,分别从经验统计模型、遥感光合模型、作物生长模型方面对当前作物单产遥感估算进行分析总结,提出随着高空间分辨率、高光谱分辨率、高时间分辨率数据的普及和深度学习技术发展,未来应充分利用作物生长模型机理性强、深度学习对复杂问题建模能力强的特点,使用作物生长模型进行点位尺度模拟以驱动深度学习完成复杂场景下的建模学习,最终实现以机理做约束、以深度学习做空间外推的单产估算模式。  相似文献   

14.
基于遥感和蚁群算法的多目标种植结构优化   总被引:1,自引:0,他引:1  
针对农业种植结构与水资源不匹配的问题,以主要作物不同生育期需水特点和区域降水特点吻合性为基础,建立了考虑灌区节水效益、经济效益和生态效益的多目标种植结构优化模型,并以宝鸡峡五泉灌区为例,利用遥感快速获取灌区种植结构信息,并以不同口粮面积约束为条件建立2种优化方案,采用蚁群算法对模型在不同约束下的2种优化方案进行优化求解.结果表明:方案1,2的灌区需水总量为现状的85.4%和83.4%,纯收入比现状在平水年低5.4%和高7.1%,在干旱年低5.9%和高7.3%,降雨耦合度分别在平水年高12.6%和15.6%,干旱年高17.5%和28.6%,对2种不同约束方案优化结果比较得出,方案2为最优调整方案.该研究在未改变原有灌区种植面积的条件下,经种植结构优化调整后,既可保持灌区生态环境的可持续发展,又使灌区经济收入有很大的提高.这对农业节水规划具有较高的实用价值和理论意义.  相似文献   

15.
根据青海省农业生态区15个气象站2003年气象资料,应用FAO推荐的Penman-Monteith方程计算参考作物蒸散量(ET0),利用MODIS高程(DEM)、地表温度(LST)及法国SPOT卫星的归一化植被指数(NDVI)遥感影像资料,提取遥感数据并耦合到时间分辨率为旬,空间分辨率为1km,将其与计算所得ET0进行相关分析,运用MATLAB软件进行模型拟合,获得该地区的ET0遥感反演模型及其适用条件,使用Arcgis9.3对利用该模型反演的结果进行了空间分布规律分析。研究结果表明,2003年7—11月各旬遥感因子DEM、NDVI和LST与ET0的线性关系显著,其中DEM与ET0呈显著负相关关系,NDVI和LST与ET0呈极显著正相关关系;获得了该地区基于遥感数据的旬ET0三元线性遥感反演模型,该模型通过α=0.01的F和t显著性检验,模型效果极显著,适用期为7—10月;对2004年计算及反演结果表明,ET0空间分布从西北往东南方向递增,低海拔处往高海拔处递减;模型反演平均相对误差为-1.9%,有较好的反演结果。  相似文献   

16.
无人机遥感技术在精量灌溉中应用的研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
以提高农业用水效率为目标的精量灌溉是未来农业灌溉的主要模式,精量灌溉的前提条件是对作物缺水的精准诊断和科学的灌溉决策。用于作物缺水诊断和灌溉决策定量指标的信息获取技术主要基于田间定点监测、地面车载移动监测及卫星遥感。无人机从根本上解决了卫星遥感由于时空分辨率低而导致的瞬时拓延、空间尺度转换、遥感参数与模型参数定量对应等技术难题,也克服了地面监测效率低、成本高、影响田间作业等问题。近几年的研究结果表明,无人机遥感系统可以高通量地获取多个地块的高时空分辨率图像,使精准分析农业气象条件、土壤条件、作物表型等参数的空间变异性及其相互关系成为可能,为大面积农田范围内快速感知作物缺水空间变异性提供了新手段,在精量灌溉技术应用中具有明显的优势和广阔的前景。无人机遥感系统已经应用在作物覆盖度、株高、倒伏面积、生物量、叶面积指数、冠层温度等农情信息的监测方面,但在作物缺水诊断和灌溉决策定量指标监测方面的研究才刚刚起步,目前主要集中在作物水分胁迫指数(CWSI)、作物系数、冠层结构相关指数、土壤含水率、叶黄素相关指数(PRI)等参数估算的研究,有些指标已经成功应用于监测多种作物的水分胁迫状况,但对于大多数作物和指标,模型的普适性还有待进一步研究。给出了无人机遥感在精准灌溉技术中应用的技术体系,并指出,为满足不同尺度的高效率监测和实现农业用水精准动态管理的需求,今后无人机遥感需要结合卫星遥感和地面监测系统,其中天空地一体化农业水信息监测网络优化布局方法与智能组网技术、多源信息时空融合与同化技术、作物缺水多指标综合诊断模型、农业灌溉大数据等将是未来重点研究内容。  相似文献   

17.
Irrigation water management using high resolution airborne remote sensing   总被引:2,自引:0,他引:2  
This paper offers a historical retrospective on the remote sensing of crop coefficients for obtaining actual crop evapotranspiration. We present the canopy reflectance-based approach of crop coefficients and show the usefulness of high-resolution airborne imagery as a tool for monitoring the actual crop growth changes and characterizing in-field variability in an objective manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号