首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-seven of 53 diarrhoeic calves hospitalised for intravenous fluid therapy were classified as very severely acidotic (total carbon dioxide less than 8 mmol/litre) by using a Harleco apparatus. All the calves were given intravenously 10 to 20 litres of electrolyte solution which contained 144 mmol/litre sodium, 4 mmol/litre potassium, 113 mmol/litre chloride and 35 mmol/litre bicarbonate, and in addition the 37 very severely acidotic calves received 400 ml of 1M sodium bicarbonate in the first 5 litres of fluid administered. Sixteen of the 37 very severely acidotic calves had a distended right flank, suggesting the presence of a dilated fluid-filled viscus. Neither their history nor other clinical signs were useful predictors of the distension. The distended calves had significantly higher plasma concentrations of sodium and chloride, and significantly lower plasma creatinine concentrations than the calves which were not distended. Treatment was successful in all the 21 non-distended calves but four of the distended calves died despite treatment. The resolution of the distension in the successfully treated calves, coincided with a significant increase in plasma bicarbonate concentration and the passage of large amounts of malodorous mucoid faeces.  相似文献   

2.
Eighty-four calves with diarrhoea were treated with fluids and 13 apparently healthy calves of similar ages were sampled as controls. Their total blood carbon dioxide (TCO2) was measured with a Harleco apparatus and 31 of the calves were treated with oral fluids and 53 with parenteral fluids. The oral fluid contained 118 mmol/litre Na+, 25 mmol/litre K+, 110 mmol/litre glucose, 108 mmol/litre bicarbonate (HCO3- as citrate), 43 mmol/litre Cl-, 4 mmol/litre Ca++, 4 mmol/litre Mg++ and 20 mmol/litre glycine, and the parenteral fluid contained 144 mmol/litre Na+, 4 mmol/litre K+, 35 mmol/litre HCO3- and 113 mmol/litre Cl-. Both treatments resulted in significant improvements in acid-base status as demonstrated by an increase in TCO2, and the treatment was successful in 27 of the 31 calves receiving oral fluids and in 45 of the 53 calves receiving parenteral fluids. Thirty-seven of the calves treated parenterally were very severely acidotic (TCO2 <8 mmol/litre) initially and they received an additional 400 mmol HCO3- added to the first 5 litres of infusion. Treatment was successful in 33 of these calves. The decision to administer additional bicarbonate was made on the basis of their acid-base status as measured with a Harleco apparatus. The strong ion difference (Na++K+-Cl-) (SID) of the calves was calculated retrospectively. There was a significant correlation between the SID and TCO2 of the calves treated with oral fluids but not among the control calves or the calves treated parenterally. Furthermore, measurements of the change in SID during therapy gave little indication of the change in acid-base status as measured by the Harleco apparatus, with the SID decreasing (suggesting a worsening of acid-base status) in 16 calves in which the TCO2 increased (suggesting an improvement in acid-base status). There was a significant correlation between the change in SID and the change in TCO2 during treatment in the calves receiving oral fluids but not in the calves treated parenterally.  相似文献   

3.
The aim of this study was to monitor renal function in diarrhoeic calves and to determine the effectiveness of an applied fluid therapy. A total of 28 diarrhoeic (n = 18) and healthy (n = 10) Holstein-Friesian calves of different sexes, between 1 and 30 days of age, were used. Blood and urine samples were obtained from diarrhoeic calves before the treatment and then three more times at 24-h intervals during the treatment. From healthy calves, samples were taken only once. Therapy was started by the intravenous administration of 8.4% sodium bicarbonate and 0.9% sodium chloride solutions for the first 24 h, followed by the oral application of a commercial electrolyte solution (sodium chloride 3.5 g, trisodium citrate 2.9 g, potassium chloride 1.5 g and glucose anhydrous 20 g in 1 litre H2O) up to the 48th h of therapy. Before the therapy, the average levels of pH (7.10 +/- 0.12), bicarbonate (HCO3-) (16.48 +/- 3.80 mmol/l), base deficit (-12.65 +/- 5.97 mmo/l) and fractional excretion (FE) of sodium (0.16 +/- 0.11%) and potassium (15.07 +/- 8.56%) were significantly lower while serum urea (17.48 +/- 10.32 mmol/l) and creatinine (Cr) concentrations (169.72 +/- 98.12 micromol/l), haematocrit levels (45.13 +/- 13.60%) and urinary gamma glutamyl transferase (GGT)/Cr ratio (8.6 +/- 4.3 x 1/10(3) U/micromol) were significantly higher in diarrhoeic calves than in healthy calves. Alterations in parameters indicating the presence of renal dysfunction were normalised in the diarrhoeic calves that survived (83.3%). Three calves with severe metabolic acidosis and azotaemia died at the beginning of therapy. It was concluded that the FE of Na and K (FENa, FEK) and urine GGT/Cr ratio may have an important role in assessing renal function in diarrhoeic calves and in evaluating the effectiveness of an applied fluid therapy.  相似文献   

4.
A prospective study of the severity of dehydration and acidosis was carried out in 42 calves under 35 days of age presented for treatment of neonatal diarrhea. Clinically the mean level of dehydration was 8 to 10%. The plasma volume was 65% of that in the hydrated calf but the calves only gained 6.5% in weight during therapy.

Calves under eight days of age often had a lactic acidosis. Blood pH was 7.118±0.026 (mean ± 1 standard error), bicarbonate concentration 18.8±1.3 mmol/L, base deficit 11.4±1.7 mmol/L and lactate of 3.6± 0.06 mmol/L. Calves over eight days usually had a nonlactic acidosis. Blood pH was 7.042±0.021, bicarbonate 10.8±1.0 mmol/L, base deficit 19.5±1.2 mmol/L and lactate 1.2±0.3 mmol/L. These values were all significantly different from those in younger calves.

Over all calves there was a poor correlation between the severity of acidosis and dehydration(r=0.05). The severity of lactic acidosis was related to the severity of dehydration. Mean bicarbonate requirements to correct acidosis were calculated to be 200 mmol(17 g of sodium bicarbonate)and 450 mmol(37 g of sodium bicarbonate)in calves under and over eight days of age respectively. Both groups of calves required a mean volume of 4L of fluid to correct dehydration.

  相似文献   

5.
OBJECTIVE: To determine concentrations of electrolytes, total bilirubin, urea, creatinine, and hemoglobin; activities of some enzymes; and Hct and number of leukocytes and erythrocytes of newborn calves in relation to the degree of acidosis and treatment with a hypertonic sodium bicarbonate (NaHCO(3)) solution. ANIMALS: 20 acidotic newborn calves with a blood pH < 7.2 and 22 newborn control calves with a blood pH > or = 7.2. PROCEDURES: Approximately 10 minutes after birth, acidotic calves were treated by IV administration of 5% NaHCO(3) solution. The amount of hypertonic solution infused was dependent on the severity of the acidosis. RESULTS: Treatment resulted in a significant increase in the mean +/- SEM base excess from -8.4 +/- 1.2 mmol/L immediately after birth to 0.3 +/- 1.1 mmol/L 120 minutes later. During the same period, sodium concentration significantly increased from 145.3 +/- 0.8 mmol/L to 147.8 +/- 0.7 mmol/L. Mean chloride concentration before NaHCO(3) administration was significantly lower in the acidotic calves (99.6 +/- 1.1 mmol/L) than in the control calves (104.1 +/- 0.9 mmol/L). Calcium concentration in acidotic calves decreased significantly from before to after treatment. Concentrations of potassium, magnesium, and inorganic phosphorus were not affected by treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of hypertonic NaHCO(3) solution to acidotic neonatal calves did not have any adverse effects on plasma concentrations of several commonly measured electrolytes or enzyme activities. The treatment volume used was smaller, compared with that for an isotonic solution, which makes it more practical for use in field settings.  相似文献   

6.
Twelve diarrhoeic calves were treated intravenously with an isotonic solution containing sodium bicarbonate, and their oxygen equilibrium curves (OECS) were calculated under standard conditions and compared with those of a group of healthy calves. The relationships between the OECS for arterial and venous blood and the oxygen extraction ratio were investigated. In the diarrhoeic calves, the affinity of haemoglobin for oxygen, measured under standard conditions, was increased compared with the healthy animals. During the infusion, the standard partial oxygen pressure at 50 per cent saturation of haemoglobin (P50) values stayed below the values recorded in the healthy animals. At the end of the infusion the mean standard P50 of the diarrhoeic calves was lower than before the infusion. The combined effects of all the regulating factors on blood oxygen binding resulted in the OECS of the arterial and jugular venous blood of the diarrhoeic calves remaining unchanged compared with the healthy calves. However, the administration of the infusion decreased the P50 of both the arterial and venous blood to below the value recorded in the healthy calves. Oxygen extraction by the tissues was impaired in the diarrhoeic calves throughout the infusion, and they remained dehydrated and depressed until 120 minutes after the infusion began.  相似文献   

7.
The contents of volatile fatty acids in the rumen fluid were studied in calves at an early (seven weeks of age) and traditional weaning term (nine weeks of age). Weaning at the age of seven weeks enabled to save 16.2 kg of milk replacer per calf; there was also a lower content of concentrates in the starter feed with a supplement of Amylastim. The health condition of the calves was good in both groups. The average daily weight gains for the period from the second to the ninth week of age were 0.550 kg in the early weaned calves and 0.690 kg in the calves weaned at a normal time. Early weaning had a positive influence on the development of rumen metabolism. Calves weaned at the age of seven weeks, compared with those weaned at the age of nine weeks, had much higher concentrations of VFA (p less than 0.05) in rumen fluid (at the age of seven weeks: 130.49 mmol per litre vs. 111.53 mmol per litre; at the age of eight weeks: 119.74 mmol per litre vs. 96.98 mmol per litre). Early weaned calves had the statistically significantly (p less than 0.05) higher proportions of propionic acid, butyric acid, i-butyric acid, and valeric acid. Later-weaned calves had the significantly higher (p less than 0.05) contents of acetic acid and i-valeric acid.  相似文献   

8.
Carbicarb (an equimolar mixture of sodium bicarbonate and sodium carbonate) was compared with sodium bicarbonate alone for the treatment of acidosis in newborn calves: 25 of 49 calves with a blood pH at birth of less than 7-2 and a base deficit of less than -3 mmol/litre were treated intravenously with sodium bicarbonate and 24 were treated with carbicarb. The doses were calculated on the basis of the base deficit in a blood sample taken 10 minutes after birth, and further blood samples were taken immediately after the treatment and 30 and 60 minutes after the treatment for the determination of acid-base status, blood gases and haematological and biochemical variables. Both treatments resulted in a significant increase in blood pH, but there was no difference between them. The mean (sd) blood pH before treatment was 7.09 (0.02) and after treatment it was 7.28 (0.01). There was no increase in the partial pressure of carbon dioxide after treatment with either sodium bicarbonate or carbicarb. Both treatments were associated with an increase in sodium concentration and decreases in the total erythrocyte count, haematocrit and haemoglobin concentration.  相似文献   

9.
In a crossover study, 5 calves were made acidotic by intermittent intravenous infusion of isotonic hydrochloric acid (HCl) over approximately 24 h. This was followed by rapid (4 h) or slow (24 h) correction of blood pH with isotonic sodium bicarbonate (NaHCO(3)) to determine if rapid correction of acidemia produced paradoxical cerebrospinal fluid (CSF) acidosis. Infusion of HCl produced a marked metabolic acidosis with respiratory compensation. Venous blood pH (mean ± S(x)) was 7.362 ± 0.021 and 7.116 ± 0.032, partial pressure of carbon dioxide (Pco(2), torr) 48.8 ± 1.3 and 34.8 ± 1.4, and bicarbonate (mmol/L), 27.2 ± 1.27 and 11 ± 0.96; CSF pH was 7.344 ± 0.031 and 7.240 ± 0.039, Pco(2) 42.8 ± 2.9 and 34.5 ± 1.4, and bicarbonate 23.5 ± 0.91 and 14.2 ± 1.09 for the period before the infusion of hydrochloric acid and immediately before the start of sodium bicarbonate correction, respectively. In calves treated with rapid infusion of sodium bicarbonate, correction of venous acidemia was significantly more rapid and increases in Pco(2) and bicarbonate in CSF were also more rapid. However, there was no significant difference in CSF pH. After 4 h of correction, CSF pH was 7.238 ± 0.040 and 7.256 ± 0.050, Pco(2) 44.4 ± 2.2 and 34.2 ± 2.1, and bicarbonate 17.8 ± 1.02 and 14.6 ± 1.4 for rapid and slow correction, respectively. Under the conditions of this experiment, rapid correction of acidemia did not provoke paradoxical CSF acidosis.  相似文献   

10.
Evaluation of acid-base disturbances in calf diarrhoea   总被引:1,自引:0,他引:1  
The severity of acid-base disturbances in diarrhoeic calves was investigated and a simple, inexpensive method of monitoring them was evaluated. The Harleco apparatus measures the 'total carbon dioxide' in a blood sample, mostly generated from the bicarbonate present, and any abnormalities are mainly due to metabolic acidosis or alkalosis. Its performance was tested against a standard blood gas analyser by comparing the results obtained by both methods with nearly 2000 blood samples from healthy or diarrhoeic calves. After technical modifications, the technique gave excellent precision and accuracy for the clinical evaluation of acid-base balance, using venous whole blood. The samples were very stable, especially at 0 degrees C, but also at room temperature. The normal range (mean +/- 1.96 sd) for total carbon dioxide in whole blood from calves was 21 to 28 mmol/litre. For samples corresponding to mild, moderate or severe acidosis, 79 per cent were correctly classified by the Harleco apparatus and only 0.1 per cent were beyond the adjacent degree of severity. After four days of diarrhoea, the calves which later died had twice the deficit in plasma bicarbonate of those which survived. As death approached, the deficit was almost three times that in surviving calves and the blood pH shortly before death was as low as 6.79 +/- 0.08. The Harleco apparatus was less successful with alkalotic samples, but metabolic alkalosis is less common and usually less severe.  相似文献   

11.
The effects of treatment with small volume hypertonic (2400 mOsm/litre) and isotonic (300 mOsm/litre) saline on serum electrolyte and biochemical concentrations, haemograms and blood gases were evaluated in 12 horses using a haemorrhagic shock model. Intravascular catheters were placed surgically for sample collection prior to anaesthesia. Controlled haemorrhage was initiated and continued until mean systemic pressure reached 50 to 60 mmHg. Hypertonic or isotonic saline (2 litres) was administered by intravenous infusion and data collected for 2 h. Following haemorrhage, packed cell volume (PCV), haemoglobin, blood glucose concentrations and erythrocyte numbers increased whereas plasma total protein and albumin concentrations decreased. Infusion of hypertonic saline resulted in a further decrease in total protein and albumin concentrations. Glucose concentrations and other haematological variables were unaffected. Isotonic saline administration did not affect electrolyte, total protein or albumin concentrations. Concentrations of sodium and chloride were unaffected by hypotension but increased significantly following hypertonic saline treatment, exceeding normal values during the immediate post treatment period. Serum osmolality increased concurrently. No significant changes in arterial and venous blood gas values were observed with haemorrhage or isotonic saline treatment. A transient decrease in arterial and venous blood pH and a sustained decrease in venous bicarbonate and base excess concentrations occurred following hypertonic saline administration. No significant increases in any serum biochemical concentrations occurred during hypotension or following infusion of either isotonic or hypertonic saline. These results demonstrate that small volume hypertonic saline can be administered safely to horses without producing extreme changes in electrolyte concentrations, blood gases or haematological parameters.  相似文献   

12.
Our objectives were to 1) establish ionised calcium (ICa), C-terminal PTH and biologically active PTH (intact molecule) concentrations in blood from normal horses, 2) examine the stability of ionised calcium and acid-base values in stored equine heparinised blood and serum and 3) check the applicability of the formulas based on these parameters in certain disease states. Mean +/- s.d. % ionised calcium in heparinised blood of normal Warmbloods was 51 +/- 2.7 (n = 20) of total calcium, range 1.45-1.75 mmol/l (n = 15) at Michigan State University and 1.43-1.69 mmol/l (n = 20) at Utrecht University. Mean +/- s.d. EDTA plasma concentration for intact +/PTH in normal horses measured 0.6 +/- 0.3 pmol/l (n = 11). Both mean serum and the heparinised blood ionised calcium concentrations changed (not significantly) after 102 h storage at room temperature. Six cycles of freezing and thawing did not affect serum ionised calcium concentration significantly. Ionised calcium concentration and pH in heparinised blood of 20 normal Warmbloods were used to calculate the regression equation for the prediction of the adjusted ionised calcium concentration to a pH of 7.4. The linear regression equation found was: adjusted plasma ICa at pH 7.4 mmol/l = -6.4570 + 0.8739 x (measured pH) + 0.9944 x (measured ICa mmol/l). By means of this formula, mean adjusted ionised calcium concentration in heparinised blood calculated was 100% of the actual value given by the analyser in the normal horses. When using this formula in horses with colic or diarrhoea, mean adjusted ionised calcium concentration was underestimated by 0.2 and 0.3%, respectively. Furthermore, to adjust the measured ionised calcium concentration in heparinised blood to a pH of 7.4 in healthy as well as in 2 groups of diseased horses 2 formulas with a good prediction are now available.  相似文献   

13.
Three hundred bucket-fed diarrhoeic calves up to the age of 21 days were used to investigate the degree in which D-lactic acid contributes to metabolic acidosis in bucket-fed calves with naturally acquired neonatal diarrhoea. Fifty-five percent of all diarrhoeic calves had serum D-lactate concentrations higher than 3 mmol/l. Mean (+/-SD) D-lactate values were 5.7 mmol/l (+/-5.3, median: 4.1 mmol/l). D-lactate values were distributed over the entire range of detected values from 0 to 17.8 mmol/l in calves with base excess of -10 to -25 mmol/l. Serum D-lactate concentration was higher in patients with ruminal acidosis (6.6 +/- 5.2 mmol/l; median: 5.9 mmol/l) than in those with physiological rumen pH (5.3 +/- 5.4 mmol/l; median: 3.7 mmol/l). There was no evidence of a correlation (r = 0.051) between the serum levels of D-lactate and creatinine (as an indicator of dehydration). D-lactate was correlated significantly with both base excess (r = -0.685) and anion gap (r = 0.647). The proportion of cured patients was not significantly different between the groups with elevated (>3 mmol/l) and normal serum D-lactate concentrations. This study shows that hyper-D-lactataemia occurs frequently in diarrhoeic calves, has no impact on prognosis but may contribute to the clinical picture associated with metabolic acidosis in these animals.  相似文献   

14.
The objective of this prospective study was to elucidate whether amounts of bicarbonate needed for correction of acidosis and normalization of clinical signs are influenced by blood D-lactate concentrations in calves with diarrhoea. In 73 calves up to 3 weeks old with acute diarrhoea and base excess values below -10 mmol/l correction of acidosis was carried out within 3.5-h by intravenous administration of an amount of sodium bicarbonate which was calculated using the formula: HCO (mmol) = body mass (kg) x base deficit (mmol/l) x 0.6 (l/kg). Clinical signs, venous base excess, and plasma D-lactate concentrations were monitored immediately following admission, following correction of acidosis at 4 h and 24 h after admission. The base excess and plasma D-lactate concentrations throughout the study were -17.8 +/- 4.0, -0.4 +/- 0.4, -3.0 +/- 5.5 mmol/l (base excess), and 10.0 +/- 4.9, 9.8 +/- 4.8, 5.4 +/- 3.4 mmol/l (D-lactate) for the three times of examination. Metabolic acidosis was not corrected in more than half of the calves (n = 43) by the calculated amount of bicarbonate, whereas the risk of failure to correct acidosis increases with D-lactate concentrations. The study shows that calves with elevated D-lactate concentrations do not need additional specific therapy, as D-lactate concentrations regularly fall following correction of acidosis and restitution of body fluid volume, for reasons that remain unclear. However, calves with distinct changes in posture and demeanour need higher doses of bicarbonate than calculated with the factor of 0.6 in the formula mentioned above probably because of D-hyperlactataemia.  相似文献   

15.
Serum samples from 142 calves and their dams were analyzed for gammaglobulins (gammaG, calves) and selenium concentrations (Se, calves and dams). A questionnaire provided information about birth and colostrum management. The calves and their dams were distributed into two groups according the calves' gammaG concentration (< 10 and >= 10 g/L), Se concentrations were compared between groups. The correlation between gammaG and Se concentrations in the calves and their dams was analyzed. Risk factors for failure of passive transfer and Se deficiency were assessed based on the questionnaire. The gammaG concentration of 42.9 % of the calves was < 10 g/L (median: 10.9). Calves showed significantly higher gammaG values after optimized colostrum administration than calves with suboptimal colostrum administration (p < 0.004). The median Se concentration was 26.8 and 36.5 μg/L for the calves and dams, respectively. A high correlation was observed between the Se concentration of the dam and her calf (r = 0.72, p < 0.001). The calves' Se and gammaG concentrations were not significantly correlated. These results demonstrate that further efforts toward better information of farmers regarding colostrum management and Se supply are warranted.  相似文献   

16.
The alkalinizing effect of citrate, acetate, propionate, gluconate, L and DL-lactate were compared in healthy neonatal calves. The calves were infused for a 3.5 hour period with 150 mmol/L solutions of the sodium salts of the various bases. Blood pH, base excess, and metabolite concentrations were measured and the responses compared with sodium bicarbonate and sodium chloride infusion. D-gluconate and D-lactate had poor alkalinizing abilities and accumulated in blood during infusion suggesting that they are poorly metabolized by the calf. Acetate, L-lactate and propionate had alkalinizing effects similar to bicarbonate, although those of acetate had a slightly better alkalinizing effect than L-lactate. Acetate was more effectively metabolized because blood acetate concentrations were lower than L-lactate concentrations. There was a tendency for a small improvement in metabolism of acetate and lactate with age. Sodium citrate infusion produced signs of hypocalcemia, presumably because it removed ionized calcium from the circulation. D-gluconate, D-lactate and citrate are unsuitable for use as alkalinizing agents in intravenous fluids. Propionate, acetate and L-lactate are all good alkalinizing agents in healthy calves but will not be as effective in situations where tissue metabolism is impaired.  相似文献   

17.
The inhibitory effect of salicylates on intestinal secretion in 1- to 5-day-old calves given Escherichia coli heat-stable enterotoxin (ST)-induced intestinal fluid response was investigated. Purified ST was diluted in isotonic saline solution to obtain 1:10, 1:25, 1:50, 1:75, and 1:100 dilutions. Each dilution (1 ml) was inoculated into ligated loops in the distal part of the jejunum of each calf. Acetylsalicylic acid (aspirin) given orally (100 mg/kg) at 4 hours before ST was inoculated did not substantially alter the intestinal fluid response to ST. Sodium salicylate (IV) infusion, begun simultaneously when, or at 1 hour after, ST was inoculated, significantly (P less than 0.05) decreased fluid accumulation in those loops inoculated with ST dilutions of 1:25 or greater. The sodium and potassium concentrations of the accumulated fluid did not differ significantly between or within treatment groups. These results indicate that sodium salicylate infusion may be beneficial in treating enterotoxic colibacillosis in calves. Aspirin given orally at the dose used in the present study, would not have any beneficial effect.  相似文献   

18.
Thirty-six dehydrated diarrheic neonatal calves were used to study the effects of various alkalinizing compounds on acid-base status, the changes in central venous pressure (CVP) in response to rapid IV infusion of large volumes of fluid, and the correlation of acid-base (base deficit) status, using a depression scoring system with physical determinants related to cardiovascular and neurologic function. Calves were allotted randomly to 4 groups (9 calves/group). Over a 4-hour period, each calf was given two 3.6-L volumes (the first 3.6 L given in the first hour) of a polyionic fluid alone (control group) or were given the polyionic fluid with sodium bicarbonate, sodium L-lactate, or sodium acetate added (50 mmol/L). Acid-base status, hematologic examination, and biochemical evaluations were made immediately before infusion of each fluid (at entry) and after 3.6, 4.8, and 7.2 L of fluid had been given. Compared with control values, bicarbonate, lactate, and acetate had significantly greater alkalinizing effects on pH (P less than 0.01) and base deficit (P less than 0.01) after 3.6, 4.8, and 7.2 L of fluid were given. Bicarbonate had the most rapid alkalinizing effect and induced greater changes in base deficit (P less than 0.01) than did acetate or lactate at each of the 3 administered fluid volumes evaluated. Acetate and lactate had similar alkalinizing effects on blood. Rehydration alone did not improve acid-base status. The CVP was elevated in 10 (28%) of the 36 calves after 1 hour of fluid (3.6 L) administration, but significant differences in body weight, PCV, and clinical condition or depression score at entry were not found between calves with elevated CVP and those with normal CVP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The origin of D-lactate, the most important acid contributing to metabolic acidosis in the diarrheic calf, is unknown. We hypothesized that because D-lactate is produced only by microbes, gastrointestinal fermentation is the source. The objective of this study was to determine whether D-lactate production occurs in the rumen, colon, or both, and to measure D- and L-lactate concentrations in urine. Fecal, rumen, blood, and urine samples were obtained from 16 diarrheic and 11 healthy calves. Serum electrolyte concentrations were measured in both groups, and blood gas analyses were performed for diarrheic calves. All samples were analyzed for D- and L-lactate by high performance liquid chromatography (HPLC). Diarrheic calves were generally hyperkalemic with high serum anion gap, depressed serum bicarbonate, and low blood pH. L-lactate was markedly higher in rumen contents (22.7 mmol/ L [median]) and feces (8.6 mmol/L) of diarrheic calves than healthy calves (0.5 mmol/L and 5.1 mmol/L, respectively), but not different in serum or urine. Rumen, fecal, serum, and urine D-lactate concentrations were all significantly higher (P < .05) in diarrheic calves (17.0, 25.4, 13.9, and 19.2 mmol/L, respectively) than in healthy calves (0.5, 9.1, 1.4, and 0.5 mmol/L, respectively). Higher D-lactate concentrations in the rumen and feces of diarrheic calves suggests these sites as the source of D-lactate in blood and urine.  相似文献   

20.
A detailed clinical examination was conducted and blood samples were collected from a total of 151 normal calves as soon as possible after birth and at two to three day intervals until the calves were ten days old.

The mean venous pH values for calves from birth to ten days of age was 7.38 ± 0.05.

The mean serum sodium, potassium, magnesium, inorganic phosphate, calcium and chloride ion concentrations in normal calves from birth to ten days of age were 148 ± 13, 5.4 ± 0.8, 2.1 ± 0.4, 4.3 ± 0.8, 5.6 ± 0.5, 95 ±5, mEq/litre respectively. The mean serum osmolality in normal calves from birth to ten days of age was 280 ± 12 mOsm/litre.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号