共查询到19条相似文献,搜索用时 93 毫秒
1.
通过GGE双标图法分析了7个玉米新品种在5个试点的产量及籽粒相关性状,为玉米新品种鉴定、各优良品种的区域布局,及玉米育种实践提供参考。通过GGE双标图法分析了7个玉米新品种在5个试点的产量及籽粒相关性状,分析各品种各个性状的适应性、表现及稳定性;同时分析相应试点的分辨力及代表性。ZP122为百粒重高且较稳定品种;盛农4号为产量最高且稳定性相对较好的品种;盛农4号和水玉108为穗长表现优异品种,前者穗长最长,稳定性稍差,后者穗长稍差,稳定性最好;盛农4号为穗粗最为理想品种;水玉108为行粒数最多且稳定性较好的品种。威宁县卯家村、盘县沙坡村和赫章县桃园村3试点百粒重代表性和分辨力较强;大方县关井村为产量分辨力最高试点,赫章县桃园村为代表性最好试点,但分辨力稍差;盘县沙坡村和水城县小河村2试点穗长代表性和分辨力均最为理想;大方县关井村和水城县小河村2试点穗粗代表性和分辨力都很高;盘县沙坡村和赫章县桃园村2试点穗行数分辨力和代表性均最好,但二者可能存在试点重复设置的问题。各品种不同性状间适应性及稳定性都存在一定的差异,显示出了较高水平的基因多样性。不同试点之间代表性和分辨力存在一定的差异,GGE双标图在玉米产量及籽粒相关性状分析方面比较直观而且有效。 相似文献
2.
3.
4.
5.
区域试验玉米品种(系)产量稳定性和适应性的GGE双标图分析 总被引:3,自引:0,他引:3
为准确评价区域试验玉米品种(系)产量稳定性和适应性,研究采用GGE-biplot软件对2012年恩施州玉米品种区域试验11个参试玉米品种(系)和8个试点的试验数据进行分析。结果表明,在主要农艺性状中,产量与穗长、穗粗、百粒重、秃尖长和穗行数呈正相关。在参试玉米品种(系)中,恩玉单8号、G1004和HS10375具有较高产量和较好稳定性。在各区域试验点中,来凤、鹤峰区试点具有较强的品种鉴别能力和生态代表性。GGE双标图能够直观、简洁地显示玉米品种高产性、稳产性和区试点鉴别力、代表性,可为玉米品种鉴定和推广提供参考依据。 相似文献
6.
7.
为研究山西大豆区域试验中参试品种的高产稳定性及适应性,2019-2020年在山西高平、介休、汾阳、文水、清徐、长治6个试点种植中部复播区的7个大豆品种,收获后测产。采用联合方差分析和GGE双标图模型对产量性状适应性、高产性、稳定性及试点鉴别力和代表性等进行分析。结果表明,参试大豆品种的产量性状在基因型、环境及基因型与环境互作效应均达到显著水平,基因型、基因型与环境互作效应、环境对大豆产量的影响逐渐增强。GGE双标图分析表明:高平、介休、文水和长治4个试点适应性最强的品种是品豆25;汾阳适应性最强的品种是汾豆98;清徐适应性最强的品种是同豆8181,因此要根据品种的特性选择适宜的种植环境,最大限度地发挥地域优势与品种生产潜力。同豆8181既高产又稳产,同时更有区域适应性优势,适宜在山西省中部复播区种植,是一个比较理想的品种。试点间相关性结果显示:高平、介休、文水、长治之间存在着密切正相关关系,说明在试点的选择存在着重复设置问题。试点鉴别力和代表性结果显示,介休试点对7个大豆品种最具鉴别力和代表性,是较为理想的环境。GGE双标图能够直观清晰地显示大豆多点多年品种试验结果和品种的代表性。研究... 相似文献
8.
用GGE双标图分析苦荞品种的产量稳定性及试验地点相似性 总被引:1,自引:0,他引:1
【目的】更准确有效地分析苦荞品种适应性,筛选优良苦荞品种和评价试验地点,为苦荞品种推广应用和区域试验试点的科学布局提供参考。【方法】采用变异分析和GGE双标图对国家区域试验中第8轮苦麦区域试验的生育期、株高、主茎分枝数、主茎节数、千粒质量及产量进行分析。【结果】(1)参试品种(系)在生育期、株高、主茎分枝数、主茎节数4个性状上的平均值表现为北方高于南方,而千粒质量和产量的平均值表现为南方高于北方。参试品种(系)间各个性状的变异小,稳定性较好,但类型不丰富。(2)南、北方各有其适宜的高产稳定品种。云荞67、昭苦2号、西苦7-3为适宜于南方的高产稳产品种;西农9940、凉苦-4和威苦02-286为适宜于北方的高产稳产品种。【结论】利用GGE双标图可以对试验地点分组,但对于试验点的评价和取舍要结合地理环境条件进行客观分析。 相似文献
9.
10.
11.
12.
以2007-2008年甘肃省马铃薯区域试验的9个品种在7个试点的块茎产量为材料,利用基于Genstat的GGE双标图分析评价参试品种(系)的丰产性、稳定性、适应性以及各试点的代表性和区分力。结果表明,参试品种(系)‘陇薯9号’‘L0227-18’‘天薯10号’‘陇薯8号’的丰产性和稳产性较好;7个试点被划分为2个类型区域,在2个类型区域中表现最好的品种分别为‘陇薯9号’和‘陇薯6号’,安定、会川和临夏是比较理想的试点,具有较强的区分力和代表性。 相似文献
13.
The Application of GGE Biplot Analysis for Evaluating Test Locations and Mega-Environment Investigation of Cotton Regional Trials 总被引:1,自引:0,他引:1
In the process to the marketing of cultivars, identification of superior test locations within multi-environment variety trial schemes is of critical relevance. It is relevant to breeding organizations as well as to governmental organizations in charge of cultivar registration. Where competition among breeding companies exists, effective and fair multi-environment variety trials are of utmost importance to motivate investment in breeding. The objective of this study was to use genotype main effect plus genotype by environment interaction(GGE) biplot analysis to evaluate test locations in terms of discrimination ability, representativeness and desirability, and to investigate the presence of multiple mega-environments in cotton production in the Yangtze River Valley(YaRV), China. Four traits(cotton lint yield, fiber length, lint breaking tenacity, micronaire) and two composite selection indices were considered. It was found that the assumption of a single mega-environment in the YaRV for cotton production does not hold. The YaRV consists of three cotton mega-environments: a main one represented by 11 locations and two minor ones represented by two test locations each. This demands that the strategy of cotton variety registration or recommendation must be adjusted. GGE biplot analysis has also led to the identification of test location superior for cotton variety evaluation. Although test location desirable for selecting different traits varied greatly, Jinzhou, Hubei Province, China, was found to be desirable for selecting for all traits considered while Jianyang, Sichuan Province, China, was found to be desirable for none. 相似文献
14.
The Application of GGE Biplot Analysis for Evaluat ng Test Locations and Mega-Environment Investigation of Cotton Regional Trials 下载免费PDF全文
In the process to the marketing of cultivars, identification of superior test locations within multi-environment variety trial schemes is of critical relevance. It is relevant to breeding organizations as well as to governmental organizations in charge of cultivar registration. Where competition among breeding companies exists, effective and fair multi-environment variety trials are of utmost importance to motivate investment in breeding. The objective of this study was to use genotype main effect plus genotype by environment interaction (GGE) biplot analysis to evaluate test locations in terms of discrimination ability, representativeness and desirability, and to investigate the presence of multiple mega-environments in cotton production in the Yangtze River Valley (YaRV), China. Four traits (cotton lint yield, fiber length, lint breaking tenacity, micronaire) and two composite selection indices were considered. It was found that the assumption of a single mega-environment in the YaRV for cotton production does not hold. The YaRV consists of three cotton mega-environments: a main one represented by 11 locations and two minor ones represented by two test locations each. This demands that the strategy of cotton variety registration or recommendation must be adjusted. GGE biplot analysis has also led to the identification of test location superior for cotton variety evaluation. Although test location desirable for selecting different traits varied greatly, Jinzhou, Hubei Province, China, was found to be desirable for selecting for all traits considered while Jianyang, Sichuan Province, China, was found to be desirable for none. 相似文献
15.
为筛选出能应用于谷子生产使用的除草剂,我们分别对四种除草剂混合后各按照1倍,1.5倍和2倍浓度进行喷施。试验结果表明谷草青和拿捕净混合处理的药害最高,二甲四氯钠拿捕净处理和2-4D拿捕净药害最低,且药害随浓度提升而明显提高。综合各项数据,可以得出施用1倍剂量2-4D拿捕净处理、1.5倍剂量2-4D拿捕净处理和1倍、1.5倍二甲四氯钠拿捕净处理对作物的各项影响最小,对田间杂草也可以进行有效控制。 相似文献
16.
JianLI NaiyinXU 《农业科学与技术》2014,(8):1277-1280
[Objective] This study was to evaluate the high yielding and stability of candidate cultivars, depict the adaptive planting region, analyze trial location discrimination ability and representativeness, as well as identify the ideal cultivar and trial location, with the aim to provide theory background for cultivar selection and reasonable scheme of test location in Jiangsu Province. [Method] The GGE biplot method was used to analyze the lint cotton yield of 12 experimental genotypes in the 6 test locations(three replicates in each) of the cotton regional trial in Jiangsu Province in 2013. [Result] The effects of genotype(G), environment(E), and genotype by environment interaction(G×E) on lint cotton yield were all highly significant(P0.01), which made it necessary to further explore the specific pattern of genotype by environment interaction. Jinmian118(G4) and SF3303(G5) were the best ideal genotypes screened by the "ideal cultivar" and "ideal location" view of GGE biplot, and the ordination of test sites based on the ideal index were in the order of Dafeng(DF), Yanliang(YL), Liuhe(LH), Dongtai(DT), Yancheng(YC), and Nantong(NT), among which NT was relatively weak in representing of the whole target cotton planting region in Jiangsu Province. The "similarity among locations" view of GGE biplot clustered all trial locations into one group, showing that the test sites in the cotton planting region in Jiangsu Province were in the same mega-environment.The "which-won-where" view of GGE biplot indicated that cotton cultivar Jinmian118(G4) was the most appropriate cultivar in the homogeneous cotton planting region in Jiangsu Province. [Conclusion] Among the candidate cultivars, Jinmian118 and SF3303 were identified as the most ideal cultivars in this set of conventional cotton regional trial in Jiangsu Province; the test site of Dafeng ranked the first out of all locations in terms of discrimination and representativeness, and all test locations were clustered into the same mega-environmet, which indicated the high efficiency of cultivar selection in the cotton regional trial in Jiangsu Province. 相似文献
17.
[目的]探索周单8号适宜的种植密度。[方法]试验设置了7个密度处理,3次重复,研究不同种植密度对周单8号产量及农艺性状的影响。[结果]随种植密度的增加,周单8号玉米产量呈先增后减的趋势,种植密度在6.00万株/hm2时,产量最高为9148.15kg/hm2,回归方程为Y=3392.18476+1881.396667X-159.3183069X2。随着周单8号种植密度的增加,其穗位高、株高、空秆率上升,双穗率和茎粗下降,倒折倒伏率不变。[结论]周单8号最佳种植密度为5.85万株/hm2,最高理论产量为8946.08kg/hm2。 相似文献
18.
氮肥施用量对不同苜蓿品种的产量性状的影响 总被引:1,自引:1,他引:1
[目的]为苜蓿新品种的推广和氮肥的合理施用提供理论依据。[方法]以氮肥施用量(4水平)为主处理,品种(8个)为副处理,采用3次重复的裂区设计进行田间试验。[结果]苜蓿鲜草产量在不同施肥量间差异显著,在不同品种间差异极显著。小区平均产量在阿尔岗金与王冠苜蓿、金皇后、FD2、顶点、苜蓿王L、北极星之间,劳博苜蓿、王冠苜蓿与金皇后、FD2、顶点、苜蓿王L、北极星之间,FD2、顶点与苜蓿王L、北极星之间均存在极显著差异,劳博苜蓿与王冠苜蓿间存在显著差异,阿尔岗金与劳博苜蓿、FD2与顶点、苜蓿王L与北极星之间不存在显著差异。氮肥施用量以100 g/4m2为最好。在该试验条件下,与无N区相比,每千克N素增产苜蓿2.67~22.67 kg。[结论]氮肥施用量100 g/4m2与劳博苜蓿的组合为最优组合。 相似文献