首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aimed to evaluate the effects of enriched Artemia by fish and soybean oils supplemented with vitamin E on growth performance, lipid peroxidation, lipase activity and fatty acid composition of Persian sturgeon (Acipenser persicus) larvae. For this purpose, five experimental diets including non‐enriched Artemia (control diet), Artemia enriched with soybean oil supplemented with 15% and 30% vitamin E (S15 and S30 diets) and fish oil supplemented with 15% and 30% vitamin E (F15 and F30 diets) were used. The larvae were fed to apparent satiation four times per day for 22 days. The results indicated that fish fed enriched Artemia had no significant differences compared with those fed non‐enriched Artemia in terms of growth and survival, but increase in vitamin E levels from 15 to 30% improved growth performance of larvae. Vitamin E content in fish fed S15 and S30 diets was significantly higher. Fish fed non‐enriched Artemia had significantly higher thiobarbituric acid and lower lipase activity. The highest HUFA and n‐3/n‐6 ratio were observed in fish fed F15 and F30 diets. Our results demonstrated that fish oil can completely replace with soybean oil in larval diets. Therefore, using S30 diet is recommended for feeding of Persian sturgeon larvae.  相似文献   

2.
This study was carried out to examine the effect of Artemia urmiana nauplii enriched with HUFA, and vitamins C and E on stress tolerance, hematocrit, and biochemical parameters of great sturgeon, Huso huso juveniles. Cod liver oil (EPA 18% and DHA 12%), ascorbyl-6-palmitate and α-tocopherol acetate were used as lipid, and vitamin C and E sources, respectively. Beluga juveniles at the stage of first feeding (69.7 ± 5.9 mg body weight) were randomly divided into five treatments and three tanks were assigned to each diet. All fish groups were fed non-enriched Artemia for the initial 5 days and then fed enriched Artemia for 7 days. Juveniles were fed with Artemia enriched with HUFA + 20% vitamin C (C group); HUFA + 20% vitamin E-enriched Artemia nauplii (E group); HUFA + 20% vitamin C + 20% vitamin E (C and E group); HUFA without vitamins (HUFA) and non-enriched Artemia (control). After the period of enrichment, Juveniles were fed with Daphnia sp. from the 13th to the 40th day. At day 40, the fish were transferred directly from fresh water (0.5 ppt) to brackish water (6 ppt for 4 days and 12 ppt for 2 days) and warm water (from 27 to 33°C) to evaluate juvenile resistance to salinity and thermal shocks. Moreover, all treatments were separately exposed to freshwater in tanks with the same capacity as used for osmotic and thermal tests (as fresh water control). The addition of vitamins C, E, and C + E to HUFA significantly increased fish resistance to 12 ppt salinity and temperature stress tests, whereas survival was not significantly different among challenges at 6 ppt. There was no significant difference in the hematocrit index under stress conditions. Enrichment had significant influence on plasma Na+ level in the C group on the 4th day at 6 ppt. Na+ and Ca2+ concentrations in C, E, and C and E groups on the 1st day at 12 ppt, and Ca2+ level in E group on the 2nd day at 12 ppt were lower than the other groups. The glucose level in the C and C and E groups was lower than the other treatments on the 1st day at 12 ppt and the 2nd day at 33°C. Regardless of Artemia enrichment, plasma ions (Na+, K+, Ca2+, and Mg2+) and glucose concentrations in fish exposed to salinity stress tests were higher than fish in fresh water. Glucose concentration in plasma also increased after 2 days at 33°C. Although most of our results were not significantly different, the use of vitamins C, E, and HUFA in Artemia enrichment can improve Juveniles tolerance under stress conditions, and regardless of enrichment, these data show that beluga juveniles are partly sensitive to high salinity and temperature.  相似文献   

3.
The present study evaluated the performance of two commercial diets: AgloNorse (AN) and BioKyowa (BK), and two experimental, formulated diets based on casein (C) or casein plus casein hydrolysates (CH) in rearing of pike‐perch larvae (Sander lucioperca L.). All fish were 5 day old and control group was fed live Artemia nauplii. Fish were sampled periodically for histological comparison of morphological changes in the digestive tracts. Survival of fish fed Artemia nauplii, BK and AN was similar: 54.4%, 50.8% and 52.4%, respectively, while the fish fed formulated diets C and CH showed considerably lower survival: 28.4% and 21.6% respectively. After 5 weeks of rearing, the average body mass of fish ranged from 212±32 mg in Artemia fed group to 53.8±6.8 mg in C diet fed group. A considerable vacuolization of supranuclear zone in enterocytes of posterior intestine was observed in the larvae fed commercial diets. No anomalies in liver development were found. Hepatocytes of fish fed BK diet showed larger glycogen storage areas, compared with those occupied by lipids. The highest zymogen accumulation of pancreatic cytoplasm was observed in fish fed Artemia. In fish fed C and CH diets, anomalies in digestive system development were indicated by lower and less numerous intestinal folds, smaller hepatocytes, retarded development of gastric glands, and in CH group – also local fatty degeneration of liver.  相似文献   

4.
Replacing dietary fish oil with DHA‐rich microalgae Schizochytrium sp. and EPA‐rich microalgae Nannochloropsis sp. for olive flounder (Paralichthys olivaceus) was examined. Three experimental isonitrogenous and isolipidic diets with lipid source provided by 50% fish oil (F50S50), 50% (M50F25S25) and 100% microalgae raw material (M100) respectively were compared with a soybean oil (S100) diet as control. Triplicate groups of olive flounder juveniles (16.5 ± 0.91 g) were fed the experimental diets, and a group was fed the control diets for 8 weeks in a recirculation system. Results showed feed efficiency and growth performance were not significantly changed when fish oil (FO) was totally substituted by soybean oil (SO) or microalgae raw material (MRM). The whole‐body composition, lipid content of liver and muscle, and lipid composition of plasma were not significantly influenced by the total substitution of FO by MRM. The polyunsaturated fatty acids (PUFA) content of muscle and liver declined in fish fed S100 diet, whereas it was not significantly reduced in fish fed M50F25S25 and M100 diets. The total substitution of FO by MRM not only maintained the levels of arachidonic acid, EPA or DHA but also increased n‐3/n‐6 ratio. In conclusion, MRM as the sole lipid source is sufficient to obtain good feed efficiency, growth performance and human health value in olive flounder juveniles.  相似文献   

5.
This study was undertaken to evaluate the effect of dietary lipid source [linseed oil (LO, rich in 18:3 n?3); corn oil (CO, rich in 18:2 n?6); olive oil (OO, rich in 18:1n?9); and fish oil (FO, rich in LC‐PUFA)] and level (9% L and 18% L) on growth, body composition and selected plasma biochemistry parameters in hybrid catfish (Pseudoplatystoma reticulatum × Leiarius marmoratus) juveniles. Moreover, liver histology (lipids, glycogen, cell vacuolization) and key metabolic enzyme activities were also evaluated. After 8 weeks of feeding, there were no differences in growth performance and whole‐body composition between groups. Plasma lipoprotein, muscle and liver composition, and G6PD and ME activity were affected by lipid level and source. No differences were observed between groups in hepatic ALT activity; however, AST activity was lower in fish fed the 9% L diets. Overall, liver and muscle fatty acid composition reflected that of diet FA composition, with increased n3/n6 ratio, high HUFA and low MUFA in fish fed FO compared with the VO diets. Higher liver glycogen content was observed in fish fed the 18% L than the 9% L diets, except for fish fed FO diet. Considering the experimental diets used, these results indicate that hybrid catfish can efficiently utilize VO supplementation as an energy source, without affecting growth performance and fillet composition.  相似文献   

6.
The limited success reported in the paralarval culture of merobenthic octopus is mainly attributed to nutritional problems. This study aimed to determine the effect of live diets on the paralarvae performance during the first 30 days after hatching (DAH). The paralarvae were grown under different treatments: starved (STV) as negative control or fed four diets: Artemia sp. enriched with microalgae (ANCH), Artemia enriched with a commercial enrichment (AOG), Artemia enriched with microalga + commercial enrichment (AMIX) and king crab zoea (ZKC). The paralarval growth and survival were affected by the dietary treatment, with significant higher growth in ANCH and AMIX. STV showed 100% mortality at day 27, whereas all diets resulted within a range from 20% to 33% survival. The endogenous protein and lipid reserves were utilized in all treatments. The 22:6n‐3/20:5n‐3 ratio increased up to 16% during the experimental period. Alkaline protease activity tended to increase in paralarvae fed ANCH, AOG and ZKC over the first 13 DAH; however, this effect was not observed in trypsin nor chymotrypsin activities. The leucine aminopeptidase activity (LAP) was not affected by the dietary treatment, while alkaline phosphatases increased only at 13 DAH in paralarvae fed ANCH. Indicators of the nutritional status of paralarvae are discussed.  相似文献   

7.
This study aimed at investigating the physiological responses of Piaractus mesopotamicus exposed to high stocking density and the potential protective role of supplemented diets. Fish were fed with basal, red seaweed (Pyropia columbina) or β‐carotene‐supplemented diets for 90 days. Then, fish were distributed at low (1.5 g/L) and high (22 g/L) stocking densities for 15 days. Fish exposed to the high density showed increased hepatosomatic index, haemoglobin content and mean corpuscular haemoglobin concentration (all diets); decreased haematocrit, mean corpuscular volume (basal and seaweed) and white blood cells count (all diets) were observed. High density‐exposed fish showed decreased plasmatic metabolites as well as the hepatic lipids content in basal and seaweed diets. Regarding oxidative stress, increased activity of glutathione S‐transferase in high density‐exposed fish muscle (all diets), and lower lipid peroxidation in liver (basal and β‐carotene) and intestine (basal and seaweed) were evidenced. Interactions between diet and stocking density were recorded regarding the triglycerides (decrease in fish exposed to high density fed with basal and seaweed) and hepatic lipids (decrease in fish exposed to high density fed with basal). The major changes occurred in haematologic and metabolic parameters as strategies to cope with overcrowding stress. Fish response to stocking density was not affected by diets.  相似文献   

8.
The performance of microbial flocs as food for Artemia, which were produced using waste from a recirculating aquaculture system stocking European eel (Anguilla anguilla), was investigated in an 18‐day feeding trial. Four dietary treatments were used: Chlorella only (diet 1), flocs only (diet 2), and both Chlorella and flocs offered as mixed diets in different proportions (diets 3 and 4). The survival rate of Artemia fed diets 1 and 4 were significantly higher than those fed diets 2 and 3. The survival rate of Artemia fed diet 4 was the highest among the four diets. Individual length (10.02 ± 2.44 mm) and biomass production of diet 3 (3.2 ± 0.40 g L–1) were the highest among the four diets. The crude protein contents for Artemia fed diets 2, 3 and 4 were 591.22 ± 30.15, 580.34 ± 22.42 and 533.27 ± 34.19 g kg–1, respectively, which were significantly higher than that of diet 1 (461.25 ± 10.33 g kg–1). The concentrations of free amino acids and the fatty acid compositions in the four diets were equal, except for the C24:0 content. The highly unsaturated fatty acid concentration of Artemia fed diet 2 was higher than those of the other three diets. It showed that microbial flocs produced from fish waste can be used for Artemia.  相似文献   

9.
Live prey used in aquaculture to feed marine larval fish – rotifer and Artemia nauplii – lack the necessary levels of n‐3 polyunsaturated fatty acids (n‐3 PUFA) which are considered essential for the development of fish larvae. Due to the high voracity, visual feeding in conditions of relatively high luminosity, and cannibalism observed in meagre larvae, a study of its nutritional requirements is needed. In this study, the effect of different enrichment products with different docosahexaenoic acid (DHA) concentrations used to enrich rotifers and Artemia metanauplii have been tested on growth, survival, and lipid composition of the larvae of meagre. The larvae fed live prey enriched with Algamac 3050 (AG) showed a significantly higher growth than the rest of the groups at the end of the larval rearing, while the larvae fed preys enriched with Multigain (MG) had a higher survival rate. DHA levels in larvae fed prey enriched with MG were significantly higher than in those fed AG‐enriched prey. High levels of DHA in Artemia metanauplii must be used to achieve optimal growth and survival of meagre larvae.  相似文献   

10.
Climate-induced shifts in plankton blooms may alter fish recruitment by affecting the fatty acid composition of early-life diets and corresponding performance. Early-life nutrition may immediately affect survival but may also have a lingering influence on size and growth via experiential legacies. We explored the short- and longer-term performance consequences of different concentrations of polyunsaturated fatty acids (PUFA) for juvenile Walleye (Sander vitreus, Mitchill 1818). For the first 10 days of feeding, juveniles were provided Artemia enriched with: oleic acid (low PUFA), high docosahexaenoic acid and high eicosapentaenoic acid (high PUFA), or high PUFA and a form of vitamin E (high PUFA + E). After 10 days, all fish were fed a high-quality diet and reared for an additional 27 days. Juveniles fed either high PUFA diet were 1.15-fold larger (PUFA mean ± SD = 20.0 ± 3.3 mg; PUFA + E = 19.8 ± 3.3 mg) than those fed the low PUFA (17.3 ± 2.8 mg) diet after 10 days of feeding. After 27 days, juveniles initially fed the high PUFA diet were still 1.10- to 1.20-fold larger (PUFA = 407.0 ± 61.6 mg; PUFA + E = 422.7 ± 58.7 mg) than those initially fed the low PUFA diet (356.5.0 ± 39.5 mg). Our findings demonstrate that fatty acid composition of juvenile Walleye diets has immediate and lingering size effects. As changes in climate continue to alter lower trophic levels, fish management and conservation may need to consider short- and long-term effects of temporal or spatial differences in early-life diet quality.  相似文献   

11.
This study investigated the effect of n‐3 to n‐6 fatty acid ratios in broodstock diets on reproduction performance, fatty acid composition of eggs and gonads of tongue sole Cynoglossus semilaevis. Broodstock were fed five isonitrogenous and isoenergetic diets for 60 days. The supplemented lipids were prepared by a combination of fish oil and soybean oil inclusion FO (fish oil); FSO1 (fish oil: soybean oil = 7:1); FSO2 (fish oil: soybean oil = 2.2:1); FSO3 (fish oil: soybean oil = 1:1); FSO4 (fish oil: soybean oil = 1:4.3) as lipid sources with different n‐3 to n‐6 fatty acid ratios 10.40, 5.21, 2.81, 1.71 and 0.87. Results showed that relative fecundity, fertilization rate and survival rate of larvae at 7 days posthatching were all higher in broodstock fed FSO1 and FSO2 diet and significantly (< 0.05) decreased in groups fed FSO3 and FSO4 diets. The best result in starvation tolerance test was obtained in FSO2 diet. The present study suggests that n‐3 and n‐6 PUFA ratio in broodstock diet has a considerable effect on spawning performance, egg and larval quality for C. semilaevis.  相似文献   

12.
An 8-week feeding experiment was conducted to investigate the effects of different dietary macronutrient level and feeding frequency on the growth, feed utilization, and body composition of juvenile rockfish. Triplicate groups of fish (body weight of 4.1 g) were fed the experimental diets containing either high levels of carbohydrate (HC, 35%), lipid (HL, 13%), or protein (HP, 55%) at different feeding frequencies (twice daily, once daily, and once every 2 days). Weight gain was affected by feeding frequency but not by dietary composition. Weight gain of fish fed the diets once every 2 days was significantly (P < 0.05) lower than that of other groups. Daily feed intake and energy intake were affected by both dietary composition and feeding frequency. Daily feed intake of fish fed the HC diet was significantly (P < 0.05) higher than that of fish fed the HL and HP diets at the same feeding frequency. Feed efficiency and protein efficiency ratio were affected by both dietary composition and feeding frequency and decreased with increasing feeding frequency in the same dietary composition. Feed efficiency and protein efficiency ratio of fish fed the HC diet were significantly (P < 0.05) lower than those of fish fed the HL diet at the same feeding frequency. Whole-body lipid content of fish fed the HL diet was significantly (P < 0.05) higher than that of fish fed the HC and HP diets at the same feeding frequency. These results indicate that an increase of dietary lipid level compared with dietary carbohydrate level may have the advantage of a protein-sparing effect at same feeding frequency, and a once-daily feeding regime is more effective than twice daily or one feeding every 2 days to improve growth performance of juvenile rockfish grown from 4 to 21 g.  相似文献   

13.
Broodstock maturation diets are an important component of shrimp hatchery management, since the nutritional status of spawners can impact on gonadal maturation, egg fecundity, embryo hatchability and overall larval quality. The ability to manipulate the biochemical composition of Artemia to deliver key nutrients to cultured animals has rendered their inclusion in broodstock feeds increasingly common. Lipid enrichment of Artemia to boost their highly unsaturated fatty acid (HUFA) content is a standard procedure. During this study, frozen, lipid-enriched adult Artemia were fed to Lysmata amboinensis broodstock to investigate the suitability of Artemia as maturation diet for the species and elucidate the role of essential fatty acids (EFAs) in the reproductive performance of the shrimp. Four lipid enrichment levels, un-enriched (“unenr”), 1/3 enriched (“1/3 enr”), 2/3 enriched (“2/3 enr”) and enriched (“enr”) Artemia, were fed to L. amboinensis over three reproductive cycles. Spawning and egg mass retention during the incubation period were high for all diets. Larval production varied, however, and was significantly greater (P < 0.001) for L. amboinensis broodstock fed the “enr” Artemia compared with the other treatments, with a mean 529 (±76.76) larvae, as opposed to 49 (±11.16) recorded for the “unenr”. The increased larval production was attributed to better embryo hatchability and related to an increased docosahexaenoic (DHA) dietary content of 11% (in total FAs) and a DHA/eicosapentaenoic (EPA) ratio of 3.6. The roles of other EFAs are also discussed.  相似文献   

14.
A meta-analysis of published results was used to quantify differences in mortality and growth of freshwater fish larvae when live feed was replaced by compound diets at first feeding. A mean relative risk of 2.4560 (95% confidence interval = 2.0879–2.8891), calculated with 75 observations from 47 studies conducted with 27 freshwater fish species according to a random effects model, indicated that larvae fed on compound diets have a 2.5 times higher chance to die than those fed on live feed. Compared to Artemia nauplii as sole live feed, compound diets were more effective (causing a lower mortality) when replacing zooplankton other than Artemia nauplii. A mean effect size (Hedges’ d) of −3.1813 (95% confidence interval = −3.8099 to −2.5527), calculated (random effects model) from 51 values determined in 33 studies with 21 fish species, represents the size of the negative effect that compound diets would have on growth of larvae. Numerical differences obtained in this study could be use to monitor future development of larval diets.  相似文献   

15.
The aim of this study was to determine the effects of replacing fish oil (FO) with laurel seed oil (LSO), as an alternative plant lipid source in diets on the growth and fatty acid composition of rainbow trout (Oncorhynchus mykiss; 111.47 ± 0.2 g mean individual weight). At the end of the feeding trial, survival was 100% in all treatments. No significant differences were seen in growth between the dietary groups (P > 0.05). The protein, lipid and ash contents were not significantly different among the groups (P > 0.05); however, there was a significant difference in protein and ash content between the treatment groups and the initial, and between the 50LSO group and the initial group, respectively (P < 0.05). The viscerosomatic index (VSI) and hepatosomatic index (HSI) values were not affected by increasing LSO percentages in the diets. The n‐6 polyunsaturated fatty acid (PUFA) concentration increased with increasing LSO levels in the diets. In contrast, the n‐3 PUFA levels decreased with increasing LSO levels in the diets. The liver and muscle were used for the analysis of fatty acids. The highest level of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) concentrations was recorded in fillet of fish fed the FO diet and the lowest in those fed the 50LSO diet. However, EPA and DHA ratios in the liver of fish fed the 75LSO diet were higher than those in fillet of fish fed the FO and 50LSO diets. No significant differences were seen in fatty acid composition between the dietary groups (P > 0.05). Based on the results of growth performance and fatty acid composition of the experimental fish in this study, it can be concluded that the 75% concentration of laurel seed oil performed best among the diets tested in the experiment.  相似文献   

16.
A study was conducted at Bunda Fish Farm to evaluate the effects of dietary lipid levels on reproductive performance of Oreochromis karongae. Fish were reared in 12 hapas for 86 days, with four experimental diets containing 8.28%, 10.17%, 12.09% and 14.05% levels of lipid, replicated three times. At the end of the experiment, O. karongae fed 10.17% and 12.09% lipid had the highest absolute fecundity (237.5 ± 6.50 and 271.3 ± 26.19, respectively) as compared with fish fed on 8.28% and 14.05% lipid levels (90.3 ± 46.3 and 143.7 ± 30.8 respectively). Higher number of spawns (5) were observed in fish fed on diets containing crude lipid of 10.17%. We can assume also that diets of 10.17% lipid are not costly as those of 12.09% or 14.05% lipid. It was found that the size of eggs depended on the number of eggs spawned by the female fish, as the number of eggs increased, the weight of eggs and mean egg diameter decreased. There were no significant differences (> 0.05) among treatments in terms of relative fecundity. Based on these findings, it is recommended that diets containing crude lipid of 10% should be fed to broodstock for optimum reproductive performance of O. karongae.  相似文献   

17.
The nematode Panagrolaimus sp. was tested as live feed to replace Artemia nauplii during first larval stages of whiteleg shrimp Litopenaeus vannamei. In Trial 1, shrimp larvae were fed one of four diets from Zoea 2 to Postlarva 1 (PL1): (A) Artemia nauplii, control treatment; (NC) nematodes enriched in docosahexaenoic acid (DHA) provided by the dinoflagellate Crypthecodinium cohnii; (N) non‐enriched nematodes; and (Algae) a mixture of microalgae supplemented in C. cohnii cells. In Trial 2, shrimp were fed (A), (NC) and a different treatment (NS) with nematodes enriched in polyunsaturated fatty acids (PUFAs) provided by the commercial product S.presso®, until Postlarva 6 (PL6). Mysis 1 larvae fed nematodes of the three dietary treatments were 300 μm longer (3.2 ± 0.3 mm) than control larvae. At PL1, control shrimp were 300 μm longer (4.5 ± 0.3 mm) than those fed DHA‐enriched or PUFAs‐enriched nematodes. No differences were observed in length and survival at PL6 between control larvae and those fed DHA‐enriched nematodes (5.1 ± 0.5 mm; 33.1%–44.4%). Shrimp fed microalgae showed a delay in development at PL1. This work is the first demonstration of Panagrolaimus sp. suitability as a complete substitute for Artemia in rearing shrimp from Zoea 2 to PL6.  相似文献   

18.
The objective of the present study was to evaluate the effects of the diets enriched with safflower and canola oil on growth, feed utilization, body composition, liver, and muscle fatty acid composition of rainbow trout (Oncorhynchus mykiss). Rainbow trout having approximate initial weight of 97.03 ± 0.10 g were fed the experimental diets containing only fish oil (Group 0SFO), safflower oil (50% safflower oil, Group 50SFO and 33% safflower oil, Group 33SFO), and vegetable oil blend (33% safflower and 33% canola oil, Group 66SFCO) for 45 days. Twenty-five fish were randomly assigned for triplicate treatments and offered the test diets two times daily to apparent satiation. At the end of the experiment, survival was 100% in all treatments. No significant differences in the weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio were found between fish fed with the different experimental diets. The highest hepatosomatic index (HIS) and viscerasomatic index (VSI) was obtained in 50SFO and 33SFO groups, respectively. The moisture, protein, lipid, and ash content in the body composition of the fish increased in all experimental groups. The lipid content was not significantly different among the groups (p > 0.05); however, there was a significant difference in ash content between the control and the other groups (p < 0.05). The experimental diets containing vegetable oil (50SFO and 33SFO groups) and vegetable oil blend (66SFCO group) had significantly higher concentrations of n-6 fatty acids, predominantly in the form of linoleic acid (LA). The n-3 fatty acids were present in significantly higher concentration in the control treatment (0SFO). The fatty acid composition of fish fillet and liver were reflective of the dietary lipid source. While the fillet and liver of fish fed the 50SFO diet was high in linoleic acid (18:2 n-6), fish fed the 66SFCO diet had high concentrations of oleic acid (OA; 18:1 n-9). The present study suggests that fish oil can be replaced by up to 50% with safflower oil and by up to 66% with safflower + canola oil blend in rainbow trout diets with no significant effect on growth.  相似文献   

19.
Considering the well‐known problems arising from the use of rotifers and Artemia as live prey in larval rearing in terms of fatty acid deficiencies, the aim of this study was to evaluate a partial or complete replacement of traditional live prey with preserved copepods during the larviculture of gilthead sea bream (Sparus aurata). Sea bream larvae were randomly divided into 4 experimental groups in triplicates: group A larvae (control) fed rotifers followed by Artemia nauplii; group B fed a combined diet (50%) of rotifers–Artemia and preserved copepods; group C fed rotifers followed by preserved copepods; and group D fed preserved copepods solely. Survival and biometric data were analysed together with major molecular biomarkers involved in growth, lipid metabolism and appetite. Moreover, fatty acid content of prey and larvae was also analysed. At the end of 40 days treatment, a stress test, on the remaining larvae, was performed to evaluate the effects of different diets on stress response. Data obtained evidenced a positive effect of cofeeding preserved copepods during sea bream larviculture. Higher survival and growth were achieved in group B (fed combined diet) larvae respect to control. In addition, preserved copepods cofeeding was able to positively modulate genes involved in fish growth, lipid metabolism, stress response and appetite regulation.  相似文献   

20.
Six isoproteic diets were designated to evaluate the effects of dietary lipid levels (from 70 to 270 g/kg) on the growth performance, feed utilization, digestive tract enzyme activity and lipid deposition of juvenile Brachymystax lenok (average initial weight 0.54 ± 0.04 g). Each diet was fed to triplicate tanks (30 fish per tank) in an indoor closed recirculating system for 9 weeks. Final body weight and weight gain were highest in fish fed 190 g/kg diet and lowest in fish fed the 70 g/kg diet. Specific growth rate of fish fed with 190 g/kg diet was significantly higher than those fed with 70 and 270 g/kg diets (< .05). Protein efficiency ratio of fish fed with 70 g/kg diet was significantly lower than the 110–230 g/kg treatments and was not significantly different from the 270 g/kg treatment. Fish fed with 270 g/kg diet had significantly higher hepatosomatic index and viscerosomatic index than those fed with 70–190 g/kg diets (< .05). Intraperitoneal fat ratio and the whole‐body lipid content had a trend to increase with increase in dietary lipid level. Muscle crude lipid content increased up to 190 g/kg with increase in dietary lipid level. Lipid retention decreased with increase in dietary lipid level, while no significant differences in protein intake and retention levels were observed in fish among all treatments. Lipase activity of the mixture of pyloric caeca and foregut in fish fed 190 and 230 g/kg diets was significantly higher than those fed 70 and 110 g/kg diets. Midgut and hindgut lipase activities of fish were significantly higher than those fed the 190 and 230 g/kg diets. In conclusion, based on the second‐order polynomial model of WG and FCR, this study suggested that 173.8–195.0 g/kg dietary lipid levels were appropriated for B. lenok.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号