首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to evaluate the effects of using soybean meal supplemented with or without methionine (M) and graded levels of phytase (P) to replace high‐level (60%) fish meal in the diets for juvenile Chinese sucker. Seven experimental diets (about 430 g kg?1 crude protein on dry matter basis) were formulated from practical ingredients. The control diet (FM) was formulated to contain 400 g kg?1 white fish meal (FM), whereas in the other six diets (diets 2–7), soybean meal (SBM) was used to replace 60% fish meal with or without methionine (3 g kg ?1) and 0,500, 1000, 1500 and 2000 U kg?1 phytase (designated as SBM, SM, SMP500, SMP1000, SMP1500 and SMP2000, respectively). Results from the feeding trial indicated that SBM without any methionine or phytase supplement replacing about 60% FM significantly affected the growth of fish (< 0.05). Weight gain of fish fed diet SM was significantly higher than the fish fed diet SBM, but still much lower than fish fed the control diet (< 0.05). SBM with methionine and phytase supplement significantly improved the growth of fish and apparent digestibility coefficients of phosphorus compared with the groups which fed diet SBM and diet SM (< 0.05). Weight gain of fish fed SMP1000, SMP1500 and SMP2000 had no significant difference than fish fed control diet. Furthermore, fish fed SMP1500 showed optimum weight gain and ADC of phosphorus between these three groups. This suggested that soybean meal with 3 g kg?1 methionine and 1500 U kg?1 phytase supplement could successfully replace 60% fish meal in the diet for juvenile Chinese sucker without affecting growth and enhanced the apparent digestibility coefficient of phosphorus.  相似文献   

2.
Mature winged bean Psophocarpus tetragonolobus seeds were quick-cooked and the full-fat meal derived was used to completely replace menhaden fish meal as a dietary protein source for the African catfish Clarias gariepinus . Five dry practical diets (400 g crude protein kg−1 and 17.5 kJ gross energy g−1 dry diet) containing menhaden fish meal (diet 1) or winged bean meal with or without graded levels of supplemental L -methionine (diets 2, 3, 4 and 5; 0, 5, 10 and 15 g kg−1, respectively) were fed to catfish fingerlings (5.8  +  1.2 g) for 70 days. Weight gain, growth rate, feed conversion and protein utilization by catfish fed a winged bean meal diet without L -methionine supplementation (diet 2) was inferior ( P  > 0.05) to that in catfish fed the other diets, where performance differed nonsignificantly. Carcass protein of catfish was lower ( P  < 0.05) while liver protein was higher ( P  < 0.05) in catfish fed the winged bean meal diet without methionine supplementation. Results suggest that winged bean meal cannot replace fish meal as a protein source in catfish diets except with a minimum supplementation with 5 g L -methionine kg−1 diet.  相似文献   

3.
An 8-week feeding trial was conducted in a static indoor rearing system to examine the effects of partial substitution of fish meal (FM) protein with sesame seed meal protein with and without supplemental amino acids in diets for rohu Labeo rohita fingerlings (average weight 3.82 ± 0.05 g). Before incorporation into diets, sesame Seasamum indicum seed meal was fermented with lactic acid bacteria Lactobacillus acidophilus in order to reduce/eliminate the antinutritional factors tannin and phytic acid present in it. Twelve experimental diets (diets D1 to D12) were formulated replacing the FM protein from a reference diet with sesame seed meal protein at different levels (four sets of diets, of which each set of three diets contained 30%, 40% and 50% replacement of FM protein by sesame seed meal protein respectively). Diets D1 to D3 were not supplemented with any amino acid. Lysine was supplemented to diets D4 to D6. Diets D7 to D9 were supplemented with methionine–cystine (together), and diets D10 to D12 contained lysine and methionine–cystine (together). Lysine and methionine–cystine were added to the diets at 5.7% and 3.1% of dietary protein respectively. The groups of fish fed diets without any supplemental amino acids had significantly lower percentage weight gain, specific growth rate (SGR) and higher feed : gain ratio (FGR) than the groups of fish fed on other experimental diets. The addition of lysine and methionine–cystine to the diet in which 50% of FM protein was replaced by sesame meal protein (diet D12) significantly improved fish weight gain and FGR. The percentage live weight gain and SGR values differed significantly (P < 0.01) from each other in the fish fed diets D10 to D12, which were supplemented with all three amino acids. The results of the present study suggest that rohu fingerlings can effectively utilize the supplemented amino acids and that sesame seed meal protein can replace up to 50% of FM protein in the diets for rohu if the sesame seed meal is properly processed (fermented) and supplemented with deficient amino acids.  相似文献   

4.
An 8‐week feeding trial was conducted to evaluate the effects of replacing fish meal (FM) with soybean meal (SBM) and peanut meal (PM) on growth, feed utilization, body composition and haemolymph indexes of juvenile white shrimp Litopenaeus vannamei, Boone. Five diets were formulated: a control diet (FM30) containing 30% fish meal and four other diets (FM20, FM15, FM10 and FM5) in which protein from fish meal was substituted by protein from SBM and PM. The dietary amino acids of diets FM20, FM15, FM10 and FM5 were equal to those of the diet FM30 by adding crystalline amino acids (lysine and methionine). Each diet was randomly assigned to triplicate groups of 30 shrimps (initial weight = 0.48 g), each three times daily. The results indicated that shrimp fed the diets FM15, FM10 and FM5 had poor growth performance and feed utilization compared with shrimp fed the control diet. No difference was observed in feed intake, survival and body composition among dietary treatments. The plasma total cholesterol level of shrimp and the digestibility of dry matter, protein and energy contained in the diets decreased significantly with increasing PM and SBM inclusion levels. Results of this study suggested that fish meal can be reduced from 300 to 200 g kg?1 when replaced by a mixture of SBM and PM.  相似文献   

5.
Two 8‐week feeding trials were conducted to evaluate soybean meal (SBM) as a fish meal substitute in diets for Japanese seabass, Lateolabrax japonicas. In trial I, a control diet (C) contained 400 g kg?1 fish meal, and 20%, 40%, 60% and 80% of the fish meal were replaced with SBM, supplied with 3 g kg?1 DL‐methionine and 2 g kg?1 L‐lysine (S20, S40, S60 and S80). In trial II, 60% and 80% of the fish meal in diet C were replaced with SBM, supplied with DL‐methionine at 3 g kg?1 (S60, S80) or 6 to 7 g kg?1 (RS60, RS80). The feed intake was lower in fish fed diet C than in fish fed diets S20, S40, S60 and S80 (trial I). No significant differences were found in the weight gain, nitrogen retention efficiency and body composition between fish fed diets C, S20, S40 and S60 (trial I), between fish fed diets S60 and RS60 or between fish fed diets S80 and RS80 (trial II). This study indicates that dietary fish meal level for Japanese seabass can be reduced to 160 g kg?1 by using SBM as a fish meal substitute.  相似文献   

6.
A 76‐day feeding trial was carried out to evaluate the effects of Lysine and Methionine supplementation on growth and digestive capacity of grass carp (Ctenopharyngodon idella) fed plant protein diets using high‐level canola meal (CM). Fish with initial average weight 103.9 ± 0.6 g were fed three extruded diets. Fish meal (FM) diet was formulated as the normal control with 40 g kg?1 FM and 300 g kg?1 CM; CM diet was prepared by replacing all FM with CM (total 340 g kg?1) without Lys or Met supplementation; CM supplement (CMS) diet was similar to CM diet but was supplemented with essential amino acids (EAA) to ensure the levels of Lys and Met similar to those in the FM diet. Feed intake, feed efficiency and specific growth rate of the grass carp fed CMS and FM diets were similar (> 0.05), but higher than those of the grass carp fed CM diet (< 0.05). The hepatosomatic index, relative gut length, intestosomatic index and intestinal folds height were significantly improved in fish fed FM and CMS diets as compared to CM diet (< 0.05). Lower activities of trypsin, lipase and amylase in hepatopancreas were observed in fish fed CM diet (< 0.05). Three hundred and forty gram per kilogram CM without Lys or Met supplementation significantly decreased trypsin, lipase and amylase mRNA levels in hepatopancreas (< 0.05). These results indicated that the high supply of CM (340 g kg?1) in plant protein (200 g kg?1 soybean meal and 100 g kg?1 cottonseed meal) diets decreased digestive ability through decreasing digestive enzyme activities and enzyme gene's expressions of grass carp, and these side effects can be reversed by supplementing Lys and Met. Therefore, CM could be high level used in a plant protein blend‐based extruded diet for grass carp as long as EAA were supplemented.  相似文献   

7.
A feeding trial was conducted on the effects of methionine hydroxy analog (MHA) and taurine supplementation in diets with high levels of soy protein concentrate (SPC) on the growth performance and amino acid composition of rainbow trout, Oncorhynchus mykiss (Walbaum) comparing with fish meal based diet. The control diet had 520 g kg?1 fish meal. In the methionine deficient diets (5.1 g kg?1), fish meal was replaced by 490 g kg?1 of the SPC in the SPC49 diet. The SPC49 diet was supplemented with either MHA (6 g kg?1) only or a combination of MHA and taurine (2 g kg?1). Fish were fed isoproteic (460 g kg?1) and isolipidic (130 g kg?1) diets for 12 weeks. Growth performance (i.e. weight, feed conversion ratio, and thermal‐unit growth coefficient) was inferior in fish fed the SPC49 diet. MHA supplementation improved growth performance (< 0.05). No difference was observed when taurine was added to the SPC49 and MHA diet (> 0.05). Whole‐body taurine contents increased with taurine supplementation, whereas plasma methionine increased with MHA supplementation (< 0.05). In conclusion, the substitution of fish meal with SPC supplemented with MHA did not negatively impact growth, and the addition of taurine did not improve growth performance in rainbow trout.  相似文献   

8.
This study evaluated the use of tuna by‐product meal (TBM), a locally produced feed ingredient, as a replacement for fish meal (FM) in diets for spotted rose snapper, Lutjanus guttatus. Six isonitrogenous compounds [480 kg?1 crude protein (CP) and isoenergetic diets (21 kJ g?1)] were formulated to replace 0 (D‐0%), 10 (D‐10%), 20 (D‐20%), 30 (D‐30%), 40 (D‐40% or 50% (D‐50%) of FM protein with TBM protein. Each diet was fed to four replicate groups of spotted rose snapper (initial weight 5.4 g ± 0.04 g) to apparent satiation three times a day. After 8 weeks of feeding, the fish gained 4–5 times their initial weight. Spotted rose snapper fed D‐30% had a significantly higher specific growth rate (2.7% day?1) than fish fed the other diets containing lower or higher amounts of TBM. Haematological parameters and whole‐body proximate composition were unaffected by diet (> 0.05). The ADC for protein and energy in D‐0%, D‐20% and D‐30% were significantly higher than those for the D‐40% and D‐50% groups. A broken line model indicated that 262 g kg?1 TBM in the diet would yield maximum growth of the spotted rose snapper. The results of this study demonstrate that TBM is an acceptable ingredient for replacing 25–30% of dietary protein from FM in spotted rose snapper diets but that higher replacement levels reduce fish performance.  相似文献   

9.
A feeding trial was conducted in a closed system with Nile tilapia, Oreochromis niloticus, juveniles (mean initial weight, 2.66 g) to examine total replacement of menhaden fish meal (FM) with distiller's dried grains with solubles (DDGS), which had been used as substrate for the production of black soldier fly larvae, Hermetia illucens, in combination with soybean meal (SBM) and poultry by‐product meal (PBM), with or without supplementation of the amino acids (AA) DL‐methionine (Met), L‐lysine (Lys) and a commercial non‐amylaceous polysaccharide enzyme (Enz) product. Fish were fed seven isoenergetic [available energy (AE) = 4.0 kcal g?1 of diet] and isonitrogenous (350 g kg?1 protein as‐fed basis) practical diets formulated with equivalent digestible protein levels. Diet 1 was formulated to be similar to a commercial, high‐quality, tilapia diet containing 200 g kg?1 FM. Diets 2–5 were formulated as a 2 × 2 factorial to replace FM with similar contributions from DDGS (45%), PBM (25%) and SBM (2.1–2.9%), but to differ in supplementation of AA and/or Enz preparation. Diets 6 and 7 were formulated to investigate the effects of a 2/3 and 1/3 reduction, respectively, in DDGS contribution to the replacement protein mix, with concomitant increases in SBM, with respect to diet 3, and were balanced with Lys and Met. After 6 weeks, growth responses were slightly attenuated (P ≤ 0.05) and average daily intake (ADI) and feed conversion ratio (FCR) were slightly higher in tilapia fed DDGS diets 2–5 compared to those of fish fed the FM control diet 1. Growth responses were not significantly affected by the presence or absence of AA or Enz (diets 2–5), or the level of DDGS (diets 3, 7 and 6). Whole‐body proximate composition was not different among treatments. Amino acid profiles of fish fed DDGS diets were not significantly different from those of fish fed the FM control. Evidence of interaction between AA and Enz supplementation was detected in whole‐body amino acid concentrations such that AA content was higher with AA or Enz addition alone, but lower when both were added to the diet. Results suggest that DDGS replacement of FM in tilapia diets can be substantial when diets are formulated on a digestible protein basis and DDGS is combined with highly digestible animal (PBM) and plant proteins (SBM).  相似文献   

10.
The study was to evaluate the effects of dietary fish meal (FM) partially replaced by housefly maggot meal (HMM) on growth, fillet composition and physiological responses of juvenile barramundi, Lates calcarifera. HMM at 100, 150, 200 and 300 g kg?1 was supplemented in the basal diet to replace dietary FM protein. Basal diet without HMM supplementation was used as control. Total of five experimental diets were fed to triplicate groups of juvenile barramundi (initial weight: 9.66 ± 0.22 g) in a flow‐through rearing system for 8 weeks. Fish fed all experimental diets showed no effects (> 0.05) on weight gain and whole body protein, lipid and moisture content. Fish fed control diet and 100 g kg?1 HMM diet had the highest (< 0.05) hepatic superoxide dismutase (SOD) activity, followed by 150 g kg?1 HMM group, the lowest in 200 and 200 g kg?1 HMM groups. Hepatic thiobarbituric acid reactive substance (TBARS) value was the highest in fish fed 150–300 g kg?1 HMM diets, followed by 100 g kg?1 HMM group and the lowest in fish fed the control diet. Fish fed the 300 g kg?1 HMM diet had lower plasma lysozyme activity than fish fed other diets. The results indicated that up to 300 g kg?1 HMM can be used to substitute dietary FM protein without negative effect on growth. Although physiological responses were also considered, up to 100 g kg?1 HMM in barramundi diet was recommended.  相似文献   

11.
Formulation of nutritionally complete and cost efficient diets for yellow perch (Perca flavescens) is a prerequisite for successful intensive culture of this species. One of the objectives of this study was to determine the optimum diet for the grow‐out phase of juvenile yellow perch. Fish at the size of 12.9 ± 4 g were individually marked with passive integrated transponders (PIT)‐tags and randomly distributed into six 400 L tanks, 45 fish per tank. This experiment included lysine‐deficient [(?) Lys] and lysine‐supplemented [(+) Lys] wheat‐gluten‐based diets in triplicate groups. Our experiment showed that the mean weight of fish fed (+) Lys diet (83.9 ± 1.5 g) was significantly larger than fish fed (?) Lys diet (68.6 ± 5.2 g) (< 0.05). This experiment also showed that the blood plasma concentration of free lysine in (+) Lys group was significantly higher than in (?) Lys group (< 0.05) and the same trend appeared also in methionine concentrations. The concentration of Lys in deficient group of fish, 3 h after a meal was lower compared with levels of Lys 24 h post‐feeding (< 0.05). Lysine deficiency in diet resulted in significantly higher level of serine, and a similar trend occurred in small and large fish.  相似文献   

12.
A 16‐week feeding trial was conducted to assess the effects of replacing fish meal (FM) with cottonseed meal (CM) on the growth performance, feed utilization, plasma biochemical composition and target of rapamycin (TOR) pathway gene expression of juvenile blunt snout bream (Megalobrama amblycephala). Five isonitrogenous (36% crude protein) and isoenergetic (16 MJ kg?1) diets with graded replacing levels of CM (replacing 0, 25, 50, 75 and 100% FM with CM) and similar lysine and methionine concentrations were fed to triplicate groups of fish. Results revealed that specific growth rate (SGR), feed intake and protein efficiency ratio (PER) of group fed with diets replacing FM with CM up to 50% were significantly higher than others (< 0.05). However, final body weight and feed conversion ratio (FCR) remained similar up to 25% and thereafter significantly decreased and increased, respectively, as the replacement level increased (< 0.05). Replacement levels significantly decreased hepatosomatic index and viscerosomatic index (< 0.05), but did not significantly affect condition factor and whole body compositions. Free gossypol mainly accumulated in liver and significantly increased in diets CM75 and CM100 than CM0 (< 0.05). Replacement significantly influenced plasma urea contents (< 0.05). Meanwhile, increasing replacement of FM with CM in diets increased insulin‐like growth factor I (IGF‐1) gene expression in liver of blunt snout bream. Target of rapamycin (TOR) gene expression in diet CM100 was significantly lower than that in diets CM0 and CM75, while the eukaryotic translation initiation factor 4E‐binding protein 2 (4E‐BP2) gene expression was not affected by the replacement level of CM in diets. Therefore, based on final body weight and FCR, it suggested that up to 25% of FM (150 g kg?1 in basal diet) could be replaced by CM in diets, which was 112.5 g kg?1 FM and 192.9 g kg?1 CM, for juvenile blunt snout bream.  相似文献   

13.
A nutrition trial with striped catfish (Pangasianodon hypophthalmus) juveniles was undertaken to evaluate the effect of replacing dietary fishmeal (FM) protein with corn gluten meal (CGM). A diet with FM as the main protein source was used as the control diet (FM). Five experimental diets (approximately 320 g kg?1 crude protein) were formulated to progressively replace 20% (CGM20), 40% (CGM40), 60% (CGM60), 80% (CGM80) and 100% (CGM100) of FM protein. Fifteen fish per tank (initial weight 11.2 ± 0.6 g) were randomly distributed into 18 80‐litre fibreglass tanks connected to a closed recirculation system (temperature 30.3 ± 1.0 °C). The diets were tested in triplicate for 12 weeks. The final weight and specific growth rate (SGR) of fish fed diets CGM20, CGM40 and CGM60 were not significantly different compared to fish fed the FM diet. Feed intake (FI) tended to decrease with increasing dietary CGM level. Striped catfish fed FM, CGM20 and CGM40 had significantly lower feed conversion ratio (FCR) compared with fish fed CGM80 and CGM100 (< 0.05). The protein efficiency ratio (PER) of fish fed the CGM80 and CGM100 diets was significantly lower than those of all other treatments (< 0.05). Total ammonia‐nitrogen (TAN) excretion increased with elevated dietary CGM inclusion. The viscerosomatic index (VSI) of fish fed the CGM80 and CGM100 diets were significantly higher (< 0.05) than those of fish fed the other treatments. The crude lipid content in the final body composition of the striped catfish was elevated significantly with increasing dietary CGM levels. Fish fed the CGM80 and CGM100 diets displayed haematocrit levels significantly lower (< 0.05) than those fed the other diets. The haemoglobin content in fish was significantly higher in fish fed CGM20 and lower at CGM100 compared to fish fed the FM diet. The results of the present trial indicated that the optimum level of FM protein replacement with CGM determined by quadratic regression analysis was 25.1% on the basis of maximum SGR.  相似文献   

14.
A feeding trial was conducted to evaluate the effect of replacing fish meal protein with fermented soybean meal (FSM) on the growth performance, feed utilization, amino acid profile, body composition, morphological parameters, activity of antioxidant and digestive enzymes of black sea bream (Acanthopagrus schlegeli) juvenile. Five isonitrogenic and isolipidic diets were prepared with levels of 0 (control), 80, 160, 240 and 320 g kg?1 FSM. Triplicate groups (40 fish per tank) of juvenile black sea bream with initial weight of 1.17 ± 0.04 g were hand‐fed to visual satiation at three meals per day for 8 weeks. The fish fed diets containing different levels of FSM had no significant differences regarding survival and specific growth rate compared with control group. Feed and protein efficiency ratios of fish fed diet containing 320 g kg?1 FSM were significantly lower than those of control group. Daily feed intake and daily protein intake of fish fed diet containing 240–320 g kg?1 were significantly higher than those of control group. Hepatosomatic index and condition factor of fish were not affected by different dietary FSM level. Fish fed diets containing 240–320 g kg?1 FSM had significantly higher visceral somatic index than control group. Whole body proximate and amino acid compositions of fish were not affected by dietary FSM level. The activity of digestive enzymes in the intestine was not affected by dietary FSM level. The activity of glutathione peroxidase in liver was significantly higher for fish fed the diet containing 160 g kg?1 FSM compared with control group. This study showed that up to 40% fish meal in the diets of juvenile black sea bream could be replaced by fermented soybean meal with supplementation of methionine, lysine and taurine.  相似文献   

15.
A 12‐week feeding trial was conducted to examine the replacement of fish meal with pet‐grade poultry by‐product meal (PBM‐PG) in the spotted rose snapper Lutjanus guttatus diet. Five experimental diets were formulated to contain graded levels of PBM‐PG at proportion of 250, 500, 75 or 900 g kg?1. The control diet contained sardine fish meal as the main protein source. Four groups of 15 randomly assigned L. guttatus juveniles were fed to satiation 3 times day?1. Except for the fish fed the PBM‐PG90 diet, the growth performance, survival and feed utilization efficiency of the experimental fish were not significantly lower than those of the control fish. The dietary level of PBM‐PG did significantly affect the haematological characteristics (< 0.05). The dietary dry matter and protein apparent digestibility coefficients (ADCs) decreased with increasing dietary PBM‐PG. High values for lipid ADCs were observed in all diets, with significant differences among the dietary treatments. The fish whole‐body protein, moisture, lipid and ash contents were not affected by the inclusion of dietary PBM. These results indicate that high‐quality terrestrial PBM can successfully replace more than half of the marine fish meal protein in the L. guttatus diet.  相似文献   

16.
The aim of this study was to evaluate different replacement levels of fish meal (FM) by poultry by‐product meal (PBM) on survival, growth performance and body composition of juvenile tench (Tinca tinca). A 90‐day experiment was conducted with 5 month‐old juveniles (31.95 mm total length, 0.396 g weight). Eight practical diets (50% crude protein) differing in the level of replacement of FM protein by PMB protein were tested: 0% (control), 25%, 31%, 37%, 43%, 49%, 55% and 61% corresponding to 0, 184.8, 229.2, 273.5, 317.8, 362.1, 406.5 or 450.8 g PBM kg?1 diet respectively. Significant differences were not found (> 0.05) between 25% replacement of FM protein by PBM protein (184.8 g kg?1 PBM in diet) and control diet. At higher replacement levels, fish had significantly lower growth, higher feed conversion ratio and lower protein productive value (< 0.05). Fish with externally visible deformities ranged from 1.1% to 3.3%. The relation among amino acid profiles of the diets, body composition, growth performance of juveniles and amino acid requirements of other fish species is discussed. Up to 184.8 g PBM kg?1 diet can be included in diets for juvenile tench without impairing growth performance.  相似文献   

17.
A 60‐day study was conducted to determine the response of juvenile bluegill Lepomis macrochirus to seven experimental diets, formulated using a blend of alternative protein sources as a replacement for fish meal. Adequate levels (digestible basis) of energy, protein and amino acids were maintained in diets 1–6, whereas slightly lower protein and energy levels were provided in diet 7. Feed cost per tonne ranged from $ 798.9 (diet 1, 550 g Kg?1 fish meal) to $ 515.8 (diet 6, 0 g kg?1 fish meal), or to $ 507.2 (diet 7, 0 g Kg?1 fish meal). Three commercial diets were included in the study as reference diets: a high‐energy and a low‐energy trout diet, as well as a catfish diet. Quintuplicate bluegill groups (~22 g, n = 10 fish group?1) were fed the experimental diets twice daily to apparent satiation. No major differences in feed consumption, feed efficiency and growth rates were detected among the bluegill groups fed the experimental diets. Trout diets generally produced higher fish fat deposition, whereas the catfish diet produced a poorer fish growth rate relative to the experimental diets. Under the reported conditions, results indicate diet 6, comprising predominantly soybean meal and porcine meat and bone meal, to be the most economical diet for juvenile bluegill.  相似文献   

18.
A 63‐day growth trial was undertaken to estimate the effects of supplemented lysine and methionine with different dietary protein levels on growth performance and feed utilization in Grass Carp (Ctenopharyngodon idella). Six plant‐based practical diets were prepared, and 32CP, 30CP and 28CP diets were formulated to contain 320 g kg?1, 300 g kg?1 and 280 g kg?1 crude protein without lysine and methionine supplementation. In the supplementary group, lysine and methionine were added to formulate 32AA, 30AA and 28AA diets with 320 g kg?1, 300 g kg?1 and 280 g kg?1 dietary crude protein, respectively, according to the whole body amino acid composition of Grass Carp. In the groups without lysine and methionine supplementation, weight gain (WG, %) and specific growth rate (SGR, % day?1) of the fish fed 32CP diet were significantly higher than that of fish fed 30CP and 28CP diets, but no significant differences were found between 30CP‐ and 28CP‐diet treatments. WG and SGR of the fish fed 32AA and 30AA diets were significantly higher than that of fish fed 28AA diets, and the performance of grass carp was also significantly improved when fed diets with lysine and methionine supplementation (P < 0.05), and the interaction between dietary protein level and amino acid supplementation was noted between WG and SGR (P < 0.05). Feed intake (FI) was significantly increased with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05), but feed conversion ratio (FCR) showed a significant decreasing trend (P < 0.05). Two days after total ammonia nitrogen (TAN) concentration test, the values of TAN discharged by the fish 8 h after feeding were 207.1, 187.5, 170.6, 157.3, 141.3 and 128.9 mg kg?1 body weight for fish fed 32CP, 32AA, 30CP, 30AA, 28CP and 28AA diets, respectively. TAN excretion by grass carp was reduced in plant‐based practical diets with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05). The results indicated that lysine and methionine supplementation to the plant protein sources‐based practical diets can improve growth performance and feed utilization of grass carp, and the dietary crude protein can be reduced from 320 g kg?1 to 300 g kg?1 through balancing amino acids profile. The positive effect was not observed at 280 g kg?1 crude protein level.  相似文献   

19.
Fish meal, vitamin C and fish oil are known to play essential roles in reproduction and immunity in animals. To investigate how the diet affect reproduction under the condition of reducing costs, we designed an experimental diet that decreased the ratio of fish meal with soybean meal from 1:1 to 1:1.5, and supplemented with 0.06% vitamin C and 3.8% fish oil for the crayfish, Procambarus clarkii. After a 100‐day feeding experiment, female crayfish fed the test diet had significantly greater gonadosomatic index (GSI) compared with those fed the basal diet (< 0.05). At the middle stage of ovarian development, the test diet gave significantly higher trypsin‐specific activity (340.94 ± 57.32 U mg?1 protein) in hepatopancreas of the crayfish than the basal diet (89.48 ± 10.01 U mg?1 protein) (< 0.05). However, hepatosomatic index (HSI) was remarkably decreased for those females fed test diet (< 0.05). In addition, the experimental diet resulted in markedly lower superoxide dismutase (SOD) activity and malonaldehyde (MDA) levels, especially in the ovaries (< 0.01). These results suggest that dietary reduction of fish meal, supplementation of appropriate amounts of vitamin C and fish oil may promote ovary development probably by increasing digestibility, as well as by promoting transferring of nutrients from hepatopancreas to ovary and raising immunity of P. clarkii.  相似文献   

20.
This study evaluated the potential of using poultry by‐product meal (PBM) to replace fish meal in diets for Japanese sea bass, Lateolabrax japonicus. Fish (initial body weight 8.5 g fish?1) were fed six isoproteic and isoenergetic diets in which fish meal level was reduced from 400 g kg?1 (diet C) to 320 (diet PM1), 240 (diet PM2), 160 (diet PM3), 80 (diet PM4) or 0 g kg?1 (diet PM5), using PBM as the fish meal substitute. The weight gain (WG), specific growth rate, nitrogen retention efficiency, energy retention efficiency and retention efficiency of indispensable amino acids were higher in fish fed PM1, PM2, PM3 and PM4 diets than in fish fed diets C or PM5. The phosphorus retention efficiency was lower in fish fed PM3, PM4 and PM5 diets than in fish fed C, PM1 or PM2 diets. Fish fed diet PM5 had the highest feed conversion ratio, total nitrogen waste output (TNW) and total phosphorus waste output (TPW) among the treatments. No significant differences were found in the hepatosomatic index or body contents of moisture, lipid and ash among the treatments. Fish fed diet C had lower condition factor and viscerosomatic index than those of fish fed PM1, PM3, PM4 and PM5 diets. The results of this study indicate that using fish meal and PBM in combination as the dietary protein source produced more benefits in the growth and feed utilization of Japanese sea bass than did using fish meal or PBM alone as the dietary protein source. The dietary fish meal level for Japanese sea bass can be reduced to 80 g kg?1 if PBM is used as a fish meal substitute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号