首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacokinetics of dexamethasone and prednisolone were studied in 6 horses given dexamethasone alcohol (IV or IM) or dexamethasone 21-isonicotinate as a solution IV or IM (50 micrograms/kg of body weight), prednisolone 21-sodium succinate IV or IM (0.6 mg/kg of body weight), or prednisolone acetate IM (0.6 mg/kg of body weight). Plasma concentrations were determined using a high-performance liquid chromatographic method. After dexamethasone alcohol (IV) or dexamethasone 21-isonicotinate (IV), the half-life of elimination was similar (53 minutes) for both formulations. After dexamethasone (alcohol and isonicotinate, IM), concentrations were low or nondetected. After prednisolone 21-sodium succinate (IV), the half-life of elimination (99.5 minutes) was significantly (P less than 0.01) longer than that for dexamethasone. After prednisolone 21-sodium succinate (IM), absorption was rapid and bioavailability was high. After prednisolone acetate (IM), absorption was slow and prednisolone was present in plasma for about 7 days. Due to the nonlinearity of prednisolone kinetics, a bioavailability higher than 100% was obtained. The basal plasma hydrocortisone concentration was approximately 70 ng/ml. After dexamethasone (IV or IM), plasma hydrocortisone values decreased after a 2-hour delay and returned to base line after a 3 to 4 day delay. After prednisolone 21-sodium succinate (IV or IM), plasma hydrocortisone decreased immediately (IV) or rapidly (IM) and returned to base line after a 24-hour delay. After prednisolone acetate (IM), plasma hydrocortisone decreased for up to 21 days.  相似文献   

2.
The pharmacokinetics and bioavailability of enrofloxacin were determined after IV and IM administration of 5 mg/kg of body weight to 6 healthy adult rabbits. Using nonlinear least-squares regression methods, data obtained were best described by a 2-compartment open model. After IV administration, a rapid distribution phase was followed by a slower elimination phase, with a half-life of 131.5 +/- 17.6 minutes. The mean body clearance rate was 22.8 +/- 6.8 ml/min/kg, and the mean volume of distribution was 3.4 +/- 0.9 L/kg. This large volume of distribution and the K12/K21 ratio close to 1, indicated that enrofloxacin was widely distributed in the body, but not retained in tissues. After a brief lag period (6.2 +/- 2.86 min), IM absorption was rapid (4.1 +/- 1.3 min) and almost complete. The mean extent of IM absorption was 92 +/- 11%, and maximal plasma concentration of 3.04 +/- 0.34 micrograms/ml was detected approximately 10 minutes after administration.  相似文献   

3.
Pharmacokinetics of cefotaxime in the domestic cat   总被引:1,自引:0,他引:1  
Cefotaxime was administered as single IV or IM dose for the purpose of examining its pharmacokinetics in healthy cats. The mean predicted plasma concentration of cefotaxime in 6 cats at 0 time after a single IV dosage of 10 mg/kg of body weight was 88.9 micrograms/ml. The mean plasma concentrations decreased to 10.8 micrograms/ml at 2 hours, 3.7 micrograms/ml at 3 hours, and 0.5 microgram/ml at 6 hours. The half-life was 0.98 +/- 0.25 hour (mean +/- SD), and the total body clearance was determined to be 2.76 +/- 1.25 ml/min/kg. After a single IM injection of 10 mg/kg of body weight, the mean maximum observed plasma concentration was 36.2 micrograms/ml at 0.75 hour. The mean absorption half-life was 0.24 hour. In 2 animals, the bioavailability of an IM injection was 98.2% and 93.0%.  相似文献   

4.
Pharmacokinetics of oxytetracycline hydrochloride in rabbits   总被引:1,自引:0,他引:1  
Pharmacokinetics of oxytetracycline HCl (OTC) was studied in rabbits. After 10 mg of OTC/kg of body weight was administered IV, the distribution half-life was 0.06 hour, terminal half-life was 1.32 hours, volume of distribution area was 0.861 L/kg, and total body clearance was 0.434 L/kg/h. After 10 mg of OTC/kg was given IM, the absorption half-life was 2.09 hours, extent of absorption was 71.4%, and total body clearance of the absorbed fraction was 0.576 L/kg/h. Based on these kinetic data, a dosage of 15 mg of OTC/kg, every 8 hours was developed. This dose given IM for 7 consecutive days resulted in observed steady-state maximum and minimum concentrations (mean +/- SD) of 4.7 +/- 0.3 micrograms/ml and 3.2 +/- 0.6 micrograms/ml, respectively. Twice this dose (30 mg of OTC/kg, every 8 hours) given IM caused anorexia and diarrhea.  相似文献   

5.
The plasma disposition of ciprofloxacin was studied in carp, African catfish and trout after intravenous (IV) and intramuscular (IM) administration at a dose rate of 15 mg/kg. Pharmacokinetic analysis of IV data showed that ciprofloxacin was well distributed (distribution volume Vd(area): 3.08-5.59 litre/kg) and exhibited a similar elimination half-life of about 14 h in these 3 fish species. After IM administration to carp and trout a rapid absorption was noticed; the maximum ciprofloxacin plasma concentrations (mean: 3.49 and 2.37 micrograms/ml, respectively), were achieved within 1 h after injection. At the dose level applied, ciprofloxacin has potential therapeutic value for 2-5 days especially against gram-negative bacterial fish pathogens.  相似文献   

6.
Healthy mature roosters (n = 10) were given gentamicin (5 mg/kg of body weight, IV) and, 30 days later, another dose IM. Serum concentrations of gentamicin were determined over 60 hours after each drug dosing, using a radioimmunoassay. Using nonlinear least-square regression methods, the combined data of IV and IM treatments were best fitted by a 2-compartment open model. The mean distribution phase half-life was 0.203 +/- 0.075 hours (mean +/- SD) and the terminal half-life was 3.38 +/- 0.62 hours. The volume of the central compartment was 0.0993 +/- 0.0097 L/kg, volume of distribution at steady state was 0.209 +/- 0.013 L/kg, and the total body clearance was 46.5 +/- 7.9 ml/h/kg. Intramuscular absorption was rapid, with a half-life for absorption of 0.281 +/- 0.081 hours. The extent of IM absorption was 95 +/- 18%. Maximal serum concentration of 20.68 +/- 2.10 micrograms/ml was detected at 0.62 +/- 0.18 hours after the dose. Kinetic calculations predicted that IM injection of gentamicin at a dosage of 4 mg/kg, q 12 h, and 1.5 mg/kg, q 8 h, would provide average steady-state serum concentrations of 6.82 and 3.83 micrograms/ml, with minimal steady-state serum concentrations of 1.54 and 1.50 micrograms/ml and maximal steady-state serum concentrations of 18.34 and 7.70 micrograms/ml, respectively.  相似文献   

7.
The pharmacokinetics and estimated bioavailability of amoxicillin were determined after IV, intragastric, and IM administration to healthy mares. After IV administration of sodium amoxicillin (10 mg/kg of body weight), the disposition of the drug was best described by a 2-compartment open model. A rapid distribution phase was followed by a rapid elimination phase, with a mean +/- SD half-life of 39.4 +/- 3.57 minutes. The mean volume of distribution was 325 +/- 68.2 ml/kg, and the mean body clearance was 5.68 +/- 0.80 ml/min.kg. It was concluded that frequent IV administration of sodium amoxicillin would be required to maintain therapeutic plasma concentrations of amoxicillin, and thus, the use of this dosage form should be limited to the initiation of treatment or to intensive care situations. After intragastric administration of amoxicillin trihydrate (20 mg/kg), 5% cherry-flavored suspension, the drug was rapidly, but incompletely, absorbed and rapidly eliminated (mean half-life of the decline phase of the plasma amoxicillin concentration-time curve, 51 minutes). The mean estimated bioavailability (fractional absorption) of the administered dose was 10.4%, and the mean peak plasma amoxicillin concentration was 2.73 micrograms/ml at 1.5 hours after dosing. In one horse with clinical signs of abdominal discomfort and diarrhea, the absorption of amoxicillin from the gastrointestinal tract was delayed and the fraction absorbed was increased. It was concluded that this oral dosage form could be recommended only for the treatment of infections caused by bacteria that are highly susceptible to amoxicillin, that frequent dosing would be necessary, and that absorption may be inconsistent in horses with gastrointestinal disease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Healthy mature pony mares (n = 6) were given a single dose of gentamicin (5 mg/kg of body weight) IV or IM 8 days apart. Venous blood samples were collected at 0, 5, 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, 30, 36, 40, and 48 hours after IV injection of gentamicin, and at 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, and 30 hours after IM injection of gentamicin. Gentamicin serum concentration was determined by a liquid-phase radioimmunoassay. The combined data of IV and IM treatments were analyzed by a nonlinear least-square regression analysis program. The kinetic data were best fitted by a 2-compartment open model, as indicated by residual trends and improvements in the correlation of determination. The distribution phase half-life was 0.12 +/- 0.02 hour and postdistribution phase half-life was 1.82 +/- 0.22 hour. The volume of the central compartment was 115.8 +/- 6.0 ml/kg, volume of distribution at steady state was 188 +/- 9.9 ml/kg, and the total body clearance was 1.27 +/- 0.18 ml/min/kg. Intramuscular absorption was rapid with a half-life for absorption of 0.64 +/- 0.14 hour. The extent of absorption was 0.87 +/- 0.14. Kinetic calculations predicted that IM injections of 5 mg of gentamicin/kg every 8 hours would provide average steady-state serum concentrations of 7.0 micrograms/ml, with maximum and minimum steady-state concentrations of 16.8 and 1.1 micrograms/ml, respectively.  相似文献   

9.
Oxytetracycline (OTC) concentration in plasma and tissues, plasma pharmacokinetics, depletion from tissue, and toxicity were studied in 30 healthy calves after IM administration of a long-acting OTC preparation (40 mg/kg of body weight) at double the label dosage (20 mg/kg). Plasma OTC concentration increased rapidly after drug administration, and by 2 hours, mean (+/- SD) values were 7.4 +/- 2.6 micrograms/ml, Peak plasma OTC concentration was 9.6 +/- 2.6 micrograms/ml, and the time to peak plasma concentration was 7.6 +/- 4.0 hours. Plasma OTC concentration decreased slowly for 168 hours (elimination phase) after drug administration, and the elimination half-life was 23.9 hours. Plasma OTC concentration exceeded 3.8 micrograms/ml at 48 hours after drug administration. From 168 to 240 hours after drug administration, plasma OTC concentration decreased at a slower rate than that seen during the elimination phase. This slower phase was termed the depletion phase, and the depletion half-life was 280.7 hours. Tissue OTC concentration was highest in kidneys and liver. Lung OTC concentration exceeded 4.4 micrograms/g of tissue and 2.0 micrograms/g of tissue at 12 and 48 hours after drug administration, respectively. The drug persisted the longest in kidneys and liver. At 42 days after drug administration, 0.1 micrograms of OTC/g of kidney was detected. At 49 days after drug administration, all OTC tissue concentrations were below the detectable limit. Reactions and toxicosis after drug administration were limited to an anaphylaxis-like reaction (n = 1) and injection site swellings (n = 2).  相似文献   

10.
Absorption rate and plasma and fat disposition of lindane after various lindane percutaneous treatments in shorn and unshorn sheep were investigated. To analyze data with a deconvolution method, IV administration was performed to determine the basic pharmacokinetic values of lindane in sheep. After IV administration, the steady state volume of distribution was very high (8.07 +/- 3.60 L/kg of body weight), and the mean residence time was long (28.1 +/- 11.7 hours). Deconvolution analysis indicated that lindane absorption was continuous until 33 to 41 days after spraying with a 0.025% lindane solution. Total amount of absorbed lindane in shorn (15,171 +/- 4,463 micrograms/kg) sheep was about twice that in unshorn (7,615 +/- 3,128 micrograms/kg) sheep; from deconvolution analysis, it was calculated that the time required for 50% of the available dose to be absorbed was between 115 and 179 hours. After percutaneous lindane administration, the fat concentration was compared with the available lindane dose. The apparent half-life of lindane elimination in fat was 225 +/- 47.4 hours, which is similar to the value calculated for the absorption rate constant. By comparing fat and plasma concentrations, it was calculated that for a mean plasma concentration of 5 ng/ml, the fat lindane concentration was 1.65 +/- 0.87 micrograms/g (ie, lower than the generally accepted tolerance level of 2 micrograms/g).  相似文献   

11.
Pharmacokinetics and bioavailability of cephalothin in horse mares   总被引:1,自引:0,他引:1  
The pharmacokinetics and bioavailability of cephalothin given to 6 horse mares at a dosage level of 11 mg/kg of body weight IV or IM were investigated. The disposition of cephalothin given IV was characterized by a rapid disposition phase with a mean half-life of 2.89 minutes and a subsequent slower elimination phase with a mean half-life of only 14.7 minutes. The mean residence time of cephalothin was 10.6 +/- 2.11 minutes. The total plasma clearance of cephalothin averaged 13.6 ml/min/kg and was caused by metabolism and renal elimination. Renal clearance of cephalothin averaged 1.32 ml/min/kg and accounted for elimination of about 10.1% of the administered dose. The volume of distribution at steady state averaged 151 mg/kg. Plasma protein binding of cephalothin at a concentration of 10 micrograms/ml averaged 17.9 +/- 2.5%. Cephalothin was rapidly metabolized to desacetylcephalothin. Maximum plasma desacetylcephalothin concentrations were observed in the blood samples collected 5 minutes after IV doses and averaged 22.9 micrograms/ml. The apparent half-life of desacetylcephalothin in plasma was 41.6 minutes and its renal clearance averaged 4.49 +/- 2.43 ml/min/kg. An average of 33.9% of the dose was recovered in the urine as desacetylcephalothin. The maximum plasma cephalothin concentration after IM administration was 11.3 +/- 3.71 micrograms/ml. The terminal half-life was 47.0 minutes and was longer than the half-life after IV administration. The bioavailability of cephalothin given IM ranged from 38.3% to 93.1% and averaged 65.0 +/- 20.5%.  相似文献   

12.
OBJECTIVE: To assess bioequivalence after oral, IM, and IV administration of racemic ketoprofen in pigs and to investigate the bioavailability after oral and IM administration. ANIMALS: 8 crossbred pigs. PROCEDURES: Each pig received 4 treatments in a randomized crossover design, with a 6-day washout period. Ketoprofen was administered at 3 and 6 mg/kg, PO; 3 mg/kg, IM; and 3 mg/kg, IV. Plasma ketoprofen concentrations were measured by use of high-performance liquid chromatography for up to 48 hours. To assess bioequivalence, a 90% confidence interval was calculated for the area under the time-concentration curve (AUC) and maximum plasma concentration (C(max)). RESULTS: Equivalence was not detected in the AUCs among the various routes of administration nor in C(max) between oral and IM administration of 3 mg/kg. The bioavailability of ketoprofen was almost complete after each oral or IM administration. Mean +/- SD C(max) was 5.09 +/- 1.41 microg/mL and 7.62 +/- 1.22 microg/mL after oral and IM doses of 3 mg/kg, respectively. Mean elimination half-life varied from 3.52 +/- 0.90 hours after oral administration of 3 mg/kg to 2.66 +/- 0.50 hours after IV administration. Time to peak C(max) after administration of all treatments was approximately 1 hour. Increases in AUC and C(max) were proportional when the orally administered dose was increased from 3 to 6 mg/kg. Conclusions and Clinical Relevance: Orally administered ketoprofen was absorbed well in pigs, although bioequivalence with IM administration of ketoprofen was not detected. Orally administered ketoprofen may have potential for use in treating pigs.  相似文献   

13.
The pharmacokinetics of flunixin were studied in 6 adult lactating cattle after administration of single IV and IM doses at 1.1 mg/kg of body weight. A crossover design was used, with route of first administration in each cow determined randomly. Plasma and milk concentrations of total flunixin were determined by use of high-pressure liquid chromatography, using an assay with a lower limit of detection of 50 ng of flunixin/ml. The pharmacokinetics of flunixin were best described by a 2-compartment, open model. After IV administration, mean plasma flunixin concentrations rapidly decreased from initial concentrations of greater than 10 micrograms/ml to nondetectable concentrations at 12 hours after administration. The distribution phase was short (t1/2 alpha, harmonic mean = 0.16 hours) and the elimination phase was more prolonged (t1/2 beta, harmonic mean = 3.14 hours). Mean +/- SD clearance after IV administration was 2.51 +/- 0.96 ml/kg/min. After IM administration, the harmonic mean for the elimination phase (t1/2 beta) was prolonged at 5.20 hours. Bioavailability after IM dosing gave a mean +/- SD (n = 5) of 76.0 +/- 28.0%. Adult, lactating cows (n = 6) were challenge inoculated with endotoxin as a model of acute coliform mastitis. After multiple administration (total of 7 doses; first IV, remainder IM) of 1.1 mg/kg doses of flunixin at 8-hour intervals, plasma flunixin concentrations were approximately 1 microgram/ml at 2 hours after each dosing and 0.5 micrograms/ml just prior to each dosing. Flunixin was not detected in milk at any sampling during the study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Tritium-labeled prednisolone sodium succinate was administered IV to 4 healthy, awake, nonsplenectomized dogs. The concentration of prednisolone and its metabolites in the plasma were measured for 10 hours. Forty-one percent of the blood volume of these dogs was removed, and plasma prednisolone was measured again. The data before and after hemorrhage were fitted to a 2-compartment open model. From plasma profiles, a rapid distributional phase, followed by a slower phase, was observed in control and shock groups. Volume of the central compartment of prednisolone before and after hemorrhage was 165 ml/kg of body weight and 110 ml/kg, respectively; and the difference was significant (P less than 0.05). The rate of total body clearance of prednisolone before and after hemorrhage was 3.96 ml/min/kg and 2.53 ml/min/kg, respectively; the difference was significant. The mean plasma half-lives for prednisolone sodium succinate and its metabolites, before and after hemorrhage, were 166 and 197 minutes, respectively; the difference was not significant. The mean half-life data indicated that prednisolone sodium succinate may be repeated in a patient 2.5 to 3 hours after onset of treatment if signs of hypovolemic shock reappear.  相似文献   

15.
The pharmacokinetics of chloramphenicol were studied in sheep after 3 single intravenous (IV), intramuscular (IM) and subcutaneous (SC) administrations (30 mg/kg). The two extravascular routes were studied during a crossover trial for a bioequivalence test. After IV and SC administrations, the plasma-concentration time graphs were characteristic of a two-compartment model, and after IM administration it was characteristic of a monocompartment model. The two routes of absorption were not bioequivalent. Using the kinetic values, multidose regimens to maintain the therapeutic chloramphenicol blood level (5 micrograms/ml) were proposed: 60 mg/kg every 12 hours for 72 hours for the IM administration and 45 mg/kg administered subcutaneously according to the same regimen. A study of the chloramphenicol residues in tissues was carried out. Chloramphenicol residues remained at the injection site, and 400 hours would be necessary to obtain the level of 10 micrograms/kg. Determination of the creatinine phosphokinase serum values showed that the subcutaneous route induced less damage to muscle than the intramuscular route.  相似文献   

16.
OBJECTIVE: To study the pharmacokinetics of difloxacin (5 mg/kg) following IV, IM, and intragastric (IG) administration to healthy horses. ANIMALS: 6 healthy mature horses. PROCEDURES: A crossover study design with 3 phases was used (15-day washout periods between treatments). An injectable formulation of difloxacin (5%) was administered IV and IM in single doses (5 mg/kg); for IG administration, an oral solution was prepared and administered via nasogastric tube. Blood samples were collected before and at intervals after each administration. A high-performance liquid chromatography assay with fluorescence detection was used to determine plasma difloxacin concentrations. Pharmacokinetic parameters of difloxacin were analyzed. Plasma creatine kinase activity was monitored to assess tissue damage. RESULTS: Difloxacin plasma concentration versus time data after IV administration were best described by a 2-compartment open model. The disposition of difloxacin following IM or IG administration was best described by a 1-compartment model. Mean half-life for difloxacin administered IV, IM, and IG was 2.66, 5.72, and 10.75 hours, respectively. Clearance after IV administration was 0.28 L/kg.h. After IM administration, the absolute mean +/- SD bioavailability was 95.81 +/- 3.11% and maximum plasma concentration (Cmax) was 1.48 +/- 0.12 mg/L. After IG administration, the absolute bioavailability was 68.62 +/- 10.60% and Cmax was 0.732 +/- 0.05 mg/L. At 12 hours after IM administration, plasma creatine kinase activity had increased 7-fold, compared with the preinjection value. CONCLUSIONS AND CLINICAL RELEVANCE: Data suggest that difloxacin is likely to be effective for treating susceptible bacterial infections in horses.  相似文献   

17.
The pharmacokinetics and bioavailability of rifampin were determined after IV (10 mg/kg of body weight) and intragastric (20 mg/kg of body weight) administration to 6 healthy, adult horses. After IV administration, the disposition kinetics of rifampin were best described by a 2-compartment open model. A rapid distribution phase was followed by a slower elimination phase, with a half-life (t1/2[beta]) of 7.27 +/- 1.11 hours. The mean body clearance was 1.49 +/- 0.41 ml/min.kg, and the mean volume of distribution was 932 +/- 292 ml/kg, indicating that rifampin was widely distributed in the body. After intragastric administration of rifampin in aqueous suspension, a brief lag period (0.31 +/- 0.09 hour) was followed by rapid, but incomplete, absorption (t1/2[a] = 0.51 +/- 0.32 hour) and slow elimination (t1/2[d] = 11.50 +/- 1.55 hours). The mean bioavailability (fractional absorption) of the administered dose during the first 24 hours was 53.94 +/- 18.90%, and we estimated that 70.0 +/- 23.6% of the drug would eventually be absorbed. The mean peak plasma rifampin concentration was 13.25 +/- 2.70 micrograms/ml at 2.5 +/- 1.6 hours after dosing. All 6 horses had plasma rifampin concentrations greater than 2 micrograms/ml by 45 minutes after dosing; concentrations greater than 3 micrograms/ml persisted for at least 24 hours. Mean plasma rifampin concentrations at 12 and 24 hours after dosing were 6.86 +/- 1.69 micrograms/ml and 3.83 +/- 0.87 micrograms/ml, respectively. We tested 162 isolates of 16 bacterial species cultured from clinically ill horses for susceptibility to rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The plasma concentrations and pharmacokinetics of rifampin disposition were determined after a single IV, IM, or oral dose of 10 mg/kg of body weight and an oral dose of 25 mg/kg. The overall elimination rate constants per minute were similar for the 10 mg/kg dose (0.0021 +/- 0.0004, IV; 0.0017 +/- 0.0002, IM; and 0.0023 +/- 0.0006, orally). The apparent bioavailability was moderate to low for IM and oral administrations (59.8% +/- 3.2% and 39.5% +/- 5.0%, respectively). The rate of absorption was most rapid for oral administration with an absorption half-life of 249.7 +/- 71.6 minutes as compared with 403.5 +/- 89.7 minutes for IM administration. However, the IM route produced longer detectable plasma concentrations (50 hours in 2 of the 4 horses). Based on bacterial sensitivity information derived for human and canine isolates, the daily oral administration of 10 mg of rifampin/kg administered in the feed represents a reasonable dose for susceptible gram-positive bacterial pathogens. Higher doses (greater than or equal to 25 mg/kg) or IV administration would be required for most gram-negative bacteria. Adverse effects of sufficient severity to limit use of the drug, especially by the oral route of administration, were not encountered under the single-dose experimental conditions used.  相似文献   

19.
Five healthy adult dogs were given a single IV dose (40 mg/kg of body weight) of ticarcillin disodium. Serum concentrations were measured serially over a period of 12 hours. Five days later, the drug was administered IM to the dogs at the same dose rate, and serum concentrations were measured serially for 12 hours. The mean peak serum concentration after IM administration was 120.5 micrograms/ml at 1.5 hours. Pharmacokinetic values following IV administration were (i) elimination rate constant = 0.8/hour-1, (ii) half-life = 0.8 hour, (iii) serum clearance = 292 ml/hr/kg, and (iv) apparent volume of distribution = 347 ml/kg. Estimated values after IM administration were (i) elimination rate constant = 0.6/hour, (ii) half-life = 1.1 hours, (iii) serum clearance = 218 ml/hr/kg, and (iv) apparent volume of distribution = 345 ml/kg; only the elimination rate constants were significantly different between the 2 routes of administration.  相似文献   

20.
The pharmacokinetics of oxytetracycline given in a single dose (22 mg/kg) either IV or IM was studied in 4 female buffalo calves. The half-life (t1/2) after IV administration varied between 169.02 and 216.56 minutes and that after IM administration, between 630 and 990 minutes. The drug was distributed well in the body after IM administration (Vdarea 1.18 to 2.15 L/kg). The total body clearances varied between 1.02 and 1.45 and between 1.17 and 1.49 ml/kg/min after the IV and the Im dosings, respectively. It has been proposed that oxytetracycline is excreted mainly by glomerular filtration in the buffalo species, but tubular reabsorption also may have a small part. About 42% of the drug was bound to plasma proteins at concentrations of 2 to 20 micrograms of oxytetracycline/ml. The drug dosage schedules to maintain serum levels of 0.5, 1, 2, and 5 micrograms/ml also are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号