首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Monitoring of an animal's blood glucose concentration is critical for diagnostic and therapeutic decisions. Over the past few decades, portable blood glucose meters (PBGMs) have been used to monitor blood glucose concentrations in animals. Recently, new and improved PBGMs have been made available on the market.

Objective: The purpose of this study was to evaluate four PBGMs for use in dogs and cats.

Animals and methods: A total of 155 venous blood samples of dogs and 85 venous blood samples of cats were tested using four PBGMs. Control solutions from manufacturers were used to determine the precision of each meter. The coefficient of variation was calculated to determine precision during a set of replicates. Pearson's correlation analysis, Passing–Bablok regression, and Bland–Altman analysis were used to determine the accuracy of four PBGMs against the hexokinase reference method. Error grid analysis was used to evaluate clinical relevance.

Results: All PBGMs, except CERA-PET®, were clinically acceptable for monitoring blood glucose concentrations; AlphaTrak® and VetMate® appeared to be the most accurate ones, demonstrating that to use PBGMs for glucose monitoring, it is important to understand the strengths or limitations of each meter. The difference in results between the PBGMs and the reference method increased at high glucose concentration ranges, which were also affected by the hematocrit.

Conclusions: Although readings of the PBGMs and the reference method varied across glycemic ranges (low, normal, and high glucose concentrations), most PBGMs were clinically acceptable for monitoring blood glucose concentrations in dogs and cats.  相似文献   


2.
3.
Fructosamine, a glycated serum protein, was evaluated as an index of glycemic control in normal and diabetic cats. Fructosamine was determined manually by use of a modification of an automated method. The within-run precision was 2.4 to 3.2%, and the day-to-day precision was 2.7 to 3.1%. Fructosamine was found to be stable in serum samples stored for 1 week at 4 C and for 2 weeks at -20 C. The reference range for serum fructosamine concentration in 31 clinically normal colony cats was 2.19 to 3.47 mmol/L (mean, 2.83 +/- 0.32 mmol/L). In 27 samples from 16 cats with poorly controlled diabetes mellitus, the range for fructosamine concentration was 3.04 to 8.83 mmol/L (mean, 5.93 +/- 1.35 mmol/L). Fructosamine concentration was directly and highly correlated to blood glucose concentration. Fructosamine concentration also remained high in consort with increased blood glucose concentration in cats with poorly controlled diabetes mellitus over extended periods. It is concluded that measurement of serum fructosamine concentration can be a valuable adjunct to blood glucose monitoring to evaluate glycemic control in diabetic cats. The question of whether fructosamine can replace glucose for monitoring control of diabetes mellitus requires further study.  相似文献   

4.
Ten diabetic cats were studied at intervals for up to 12 months with twice-daily insulin injections. Ten clinically healthy cats were also studied. Diets fed were based on the individual cat's performance, using mainly commercial dry or canned cat foods and fresh meat. In most cases more than one food was offered. Food was given fresh twice daily, and the cats allowed to eat ad libitum.The food intake and blood glucose were measured every 2 h in diabetic cats after insulin injection and in diabetic and normal cats without insulin injections. Food was quantified by the energy consumed (kJ ME), crude protein (g), crude fat (g), and carbohydrate (g). The blood glucose in 10 diabetic cats was measured for 2 h following a 20-min meal.Both diabetic cats and normal cats showed similar patterns of eating, with a higher food intake in the 2 h after fresh food was placed. Both groups of cats ate multiple small meals spread through the day and night. There was little or no correlation between the blood glucose and the amount of food consumed over the previous 2-h period, in insulin- or non-insulin-treated diabetic cats, or in normal cats. An overnight fast did not significantly alter morning blood glucose in diabetic cats. No demonstrable appetite stimulation occurred following an occurrence of low blood glucose; however, recorded incidences were few. No post-prandial hyperglycaemia was seen in the 10 diabetic cats during a 2-h period following the ingestion of typical cat foods.  相似文献   

5.
Generation of blood glucose curves is essential to monitor glycemic control in dogs and cats with diabetes mellitus. Up till now blood collection and blood glucose measurements could only be performed in a hospital. However, glucose concentrations measured in a hospital environment can markedly differ from concentrations measured at home, due to reduced appetite, different activity level and stressful handling. At the Clinic of Small Animal Internal Medicine, University of Zurich, a new method to collect capillary blood from the ear and to measure blood glucose by means of a portable glucose meter has been developed. This method enables owners of diabetic dogs or cats to determine blood glucose concentrations and generate blood glucose curves at home. Three cases demonstrate, how much blood glucose concentrations at home may differ from those in the hospital and how home monitoring can help to establish diabetic control in dogs and cats.  相似文献   

6.
Objective – (1) To determine the ability of a continuous interstitial glucose monitoring system (CGMS) to accurately estimate blood glucose (BG) in dogs and cats with diabetic ketoacidosis. (2) To determine the effect of perfusion, hydration, body condition score, severity of ketosis, and frequency of calibration on the accuracy of the CGMS. Design – Prospective study. Setting – University Teaching Hospital. Animals – Thirteen dogs and 11 cats diagnosed with diabetic ketoacidosis were enrolled in the study within 24 hours of presentation. Interventions – Once BG dropped below 22.2 mmol/L (400 mg/dL), a sterile flexible glucose sensor was placed aseptically in the interstitial space and attached to the continuous glucose monitoring device for estimation of the interstitial glucose every 5 minutes. Measurements and Main Results – BG measurements were taken with a portable BG meter every 2–4 hours at the discretion of the primary clinician and compared with CGMS glucose measurements. The CGMS estimates of BG and BG measured on the glucometer were strongly associated regardless of calibration frequency (calibration every 8 h: r=0.86, P<0.001; calibration every 12 h: r=0.85, P<0.001). Evaluation of this data using both the Clarke and Consensus error grids showed that 96.7% and 99% of the CGMS readings, respectively, were deemed clinically acceptable (Zones A and B errors). Interpatient variability in the accuracy of the CGMS glucose measurements was found but was not associated with body condition, perfusion, or degree of ketosis. A weak association between hydration status of the patient as assessed with the visual analog scale and absolute percent error (Spearman's rank correlation, ρ=?0.079, 95% CI=?0.15 to ?0.01, P=0.03) was found, with the device being more accurate in the more hydrated patients. Conclusions – The CGMS provides clinically accurate estimates of BG in patients with diabetic ketoacidosis.  相似文献   

7.
A continuous glucose monitoring system (CGMS) was evaluated in 14 cats with naturally occurring diabetes mellitus. The device measures interstitial fluid glucose continuously, by means of a sensor placed in the subcutaneous tissue. All cats tolerated the device well and a trace was obtained on 15/16 occasions. There was good correlation between the CGMS values and blood glucose concentration measured using a glucometer (r=0.932, P<0.01). Limitations to the use of the CGMS are its working glucose range of 2.2-22.2 mmol/l (40-400 mg/dl) and the need for calibration with a blood glucose measurement at least every 12 h. When compared to a traditional blood glucose curve, the CGMS is minimally invasive, reduces the number of venepunctures necessary to assess the kinetics of insulin therapy in a patient and provides a truly continuous glucose curve.  相似文献   

8.
The use of portable blood glucose meters (PBGM) has become common in veterinary medicine as a rapid means of monitoring animals' blood glucose in a variety of medical conditions. These hand-held monitors allow for diagnostic and therapeutic decisions to be made quickly and relatively inexpensively using only a small amount of blood. Both in conditions resulting in hyperglycemia, such as diabetes mellitus, and in those resulting in hypoglycemia, such as sepsis or the presence of an insulinoma, veterinarians have come to rely on PBGM to provide critical information on the status of their animal patients. In particular, PBGM are frequently used to measure individual blood glucose values in an animal over a period to create a blood glucose curve when evaluating the effectiveness of insulin therapy in diabetic dogs and cats.  相似文献   

9.
Home monitoring of blood glucose (HMBG) concentrations has been recommended in the monitoring of human diabetics for 3 decades. During the last number of years, it also gained popularity in long-term follow-up of diabetic cats and dogs. The aim of this retrospective study was to evaluate the practical feasibility of and identify the major problems encountered with HMBG in diabetic pets. A standard questionnaire was filled in by owners of 9 diabetic pets monitored with HMBG. The need for more than 1 puncture to obtain a blood drop, the creation of a sufficient blood drop, the need for assistance in restraining the pet, and the resistance of the pet were the most frequently encountered problems during HMBG. The major obstacles for the owners to start with HMBG were also identified. In conclusion, HMBG is a practical and simple technique for most owners and, overall, owners were satisfied.  相似文献   

10.
OBJECTIVE: To evaluate the clinical and analytic accuracy of 5 portable blood glucose meters (PBGM) in cats, with emphasis on the detection of potential sources of error. ANIMALS: 200 cats. PROCEDURE: Venous blood glucose readings from 5 PBGM were compared with the results of a hexokinase reference method. Agreement among methods was determined by error grid analysis and statistical methods. RESULTS: A total of 2,975 PBGM readings and 513 reference values were analyzed. The accuracy of the PBGM varied in different glycemic ranges. The largest differences between PBGM readings and reference values were in the high glycemic range; 4 PBGM underestimated and 1 PBGM overestimated the reference values in most instances. In the low and reference glycemic ranges, the absolute differences between PBGM readings and reference values were small. Despite the analytic differences in accuracy, 4 PBGM had 100% and 1 PBGM had 98.7% of readings in the clinically acceptable values of the error grid analysis. Within- and between-day precisions were good for all PBGM. Significant differences were not detected between readings of EDTA and lithium-heparinized blood and fresh blood without anticoagulant. Compared with these blood types, 1 PBGM had significantly different readings with fluoride anticoagulated blood. In blood samples with a low Hct, all PBGM overestimated glucose concentrations. Sample volumes < 3 microl resulted in inaccurate measurements in 3 PBGM. CONCLUSIONS AND CLINICAL RELEVANCE: Performance varied among the 5 PBGM analyzed; however, all PBGM were deemed acceptable for clinical use in cats.  相似文献   

11.
OBJECTIVE: To evaluate day-to-day variability of serial blood glucose concentration curves in dogs with diabetes mellitus. DESIGN: Prospective clinical study. ANIMALS: 10 dogs with diabetes mellitus. PROCEDURE: Paired 12-hour serial blood glucose concentration curves performed during 2 consecutive days were obtained on 3 occasions from each dog. Dogs received the same dose of insulin and meal every 12 hours on both days. For each pair of curves, comparison was made between the results of days 1 and 2. RESULTS: Mean absolute difference (without regard to sign) between days 1 and 2 for each parameter was significantly > 0, disproving the hypothesis that there is minimal day-to-day variability of serial blood glucose concentration curves when insulin dose and meals are kept constant. Coefficient of variation of the absolute difference between days 1 and 2 for each parameter ranged from 68 to 103%. Evaluation of the paired curves led to an opposite recommendation for adjustment of the insulin dose on day 2, compared with day 1, on 27% of occasions. Disparity between dosage recommendations was more pronounced when glucose concentration nadir was < 180 mg/dL (10 mmol/L) on 1 or both days. In this subset of 20 paired curves, an opposite recommendation for dosage adjustment was made on 40% of occasions. CONCLUSIONS AND CLINICAL RELEVANCE: There is large day-to-day variation in parameters of serial blood glucose concentration curves in diabetic dogs. Day-to-day variability of serial blood glucose concentration curves has important clinical implications, particularly in dogs with good glycemic control.  相似文献   

12.
13.
The generation of a blood glucose curve is important for assessing the response to insulin therapy in diabetic dogs. Disadvantages of this technique include patient discomfort and the potential for missing transient hypo- or hyperglycaemic episodes. The aim of the current study was to evaluate a continuous glucose monitoring system (CGMS) for use in diabetic dogs. Interstitial fluid glucose concentrations were recorded in 10 diabetic dogs, every five minutes for up to 48 hours, using a subcutaneous sensor attached to the CGMS device. Blood glucose concentrations were measured simultaneously using a glucometer. The correlation between interstitial fluid and blood glucose values was 0.81 (P < 0.01). The largest discrepancies between the two sets of data were seen during the one- to three-hour period following feeding, suggesting that postprandial hyperglycaemia might not be reflected in the interstitial fluid. The authors conclude that the CGMS is a potentially valuable tool in the management of canine diabetic patients.  相似文献   

14.
15.
Home-monitoring of blood glucose concentrations has recently been introduced to owners. The objectives of this study were to investigate the feasibility of home-monitoring of blood glucose in diabetic cats by owners, the problems encountered and to compare glucose concentrations at home with those measured in the hospital. Twelve of 15 cat owners were able to generate glucose curves over the study period of 4 months. Most problems were related to restraining the cat, generating negative pressure with the lancing device and producing a blood drop. In the majority of cases, these problems could be resolved during the study. Blood glucose concentrations in the clinic tended to be lower than at home; some of the differences were significant. No association between tolerance of the procedure and blood glucose concentrations measured at home was found. We, therefore, assume that the lower glucose levels in the hospital were caused by lack of food intake. In 38% of cases, treatment based on hospital curves would have been different from that based on home curves. Home-monitoring appears to be a valuable tool in the management of cats with diabetes mellitus. One of its major advantages is that it enables frequent generation of blood glucose curves, which is of particular importance in cats that are difficult to regulate.  相似文献   

16.
17.
18.
Background: The combined glucose‐insulin test (CGIT) is helpful for evaluating insulin sensitivity. A continuous glucose monitoring system (CGMS) reports changes in interstitial glucose concentrations as they occur in the blood. Use of the CGMS minimizes animal contact and may be useful when performing a CGIT. Hypothesis: Results obtained using a CGMS are useful for the evaluation of glucose responses during the evaluation of insulin sensitivity in equids. Animals: Seven mature, obese ponies. Methods: Ponies were equipped with CGMS for determination of interstitial glucose concentrations. Glucose (150 mg/kg, IV) and insulin (0.1 U/kg, IV) were administered and blood glucose concentrations determined at (minutes after time zero) 1, 5, 15, 25, 35, 45, 60, 75, 90, 105, and 120 with a hand‐held glucometer. Blood chemistry results were compared with simultaneously obtained results using CGMS. Results: Concordance coefficients determined for comparison of blood glucose concentrations determined by a hand‐held glucometer and those determined by CGMS after the zero time point were 0.623, 0.764, 0.834, 0.854, and 0.818 (for delays of 0, 5, 10, 15, and 20 minutes, respectively). Conclusions and Clinical Importance: Interstitial glucose concentrations obtained by the CGMS compared favorably to blood glucose concentrations. CGMS may be useful for assessment of glucose dynamics in the CGIT.  相似文献   

19.
Abstract: The objective of this study was to compare and investigate differences in glucose and lactate concentrations in sodium fluoride/potassium oxalate (NaF/Ox) plasma and serum in healthy cats and cats with metabolic disease. Glucose and lactate concentrations were determined in routinely processed serum and NaF/Ox plasma obtained from healthy (n = 30), hyperthyroid (n = 27) and diabetic (n = 30) cats, and in samples from 6 healthy cats stored at 25°C or 4°C for 0,1, 2, 4, or 8 hours. The packed cell volume (PCV) of blood collected in NaF/Ox was compared with that of blood collected in EDTA. Mean glucose concentration was significantly (P < .05) lower in NaF/Ox plasma than in serum in all groups of cats, by 0.7–2.5 mmol/L (11–45 mg/dL); the difference was greater in cats with hyperglycemia. Mean lactate concentration was significantly higher in serum than in NaF/Ox plasma in all groups of cats, by 0.4–1.2 mmol/L (3.6–10.8 mg/dL); the difference was greater in hyperthyroid and diabetic cats. In vitro, only serum stored on the clot for ≥ 1hour at 25°C had significantly lower glucose and higher lactate concentrations. The PCV of NaF/Ox-anticoagulated blood was lower than that of EDTA-anticoagulated blood, by 7.0%± 1.4% (P<.01). In conclusion, collection of feline blood in NaF/Ox was necessary to prevent in vitro increases in lactate concentration; however, NaF/Ox artifactually decreased plasma glucose concentration because of RBC shrinkage. The PCV should not be determined on blood collected in NaF/Ox.  相似文献   

20.
OBJECTIVE: To evaluate a continuous glucose monitoring system (CGMS) for use in dogs, cats, and horses. DESIGN: Prospective clinical study. Animals-7 horses, 3 cats, and 4 dogs that were clinically normal and 1 horse, 2 cats, and 3 dogs with diabetes mellitus. PROCEDURE: Interstitial glucose concentrations were monitored and recorded every 5 minutes by use of a CGMS. Interstitial glucose concentrations were compared with whole blood glucose concentrations as determined by a point-of-care glucose meter. Interstitial glucose concentrations were also monitored in 2 clinically normal horses after oral and i.v. administration of glucose. RESULTS: There was a positive correlation between interstitial and whole blood glucose concentrations for clinically normal dogs, cats, and horses and those with diabetes mellitus. Events such as feeding, glucose or insulin administration, restraint, and transport to the clinic were recorded by the owner or clinician and could be identified on the graph and associated with time of occurrence. CONCLUSIONS AND CLINICAL RELEVANCE: Our data indicate that use of CGMS is valid for dogs, cats, and horses. This system alleviated the need for multiple blood samples and the stress associated with obtaining those samples. Because hospitalization was not required, information obtained from the CGMS provided a more accurate assessment of the animal's glucose concentrations for an extended period, compared with measurement of blood glucose concentrations. Use of the CGMS will promote the diagnostic and research potential of serial glucose monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号