首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Similar to higher plants, microbial autotrophs possess photosynthetic systems that enable them to fix CO2. To measure the activity of microbial autotrophs in assimilating atmospheric CO2, five paddy soils were incubated with 14C-labeled CO2 for 45 days to determine the amount of 14C-labeled organic C being synthesized. The results showed that a significant amount of 14C-labeled CO2 incorporated into microbial biomass was soil specific, accounting for 0.37%–1.18% of soil organic carbon (14C-labeled organic C range: 81.6–156.9 mg C kg?1 of the soil after 45 days). Consequently, high amounts of C-labeled organic C were synthesized (the synthesis rates ranged from 86 to 166 mg C m?2 d?1). The amount of atmospheric 14CO2 incorporated into microbial biomass (14C-labeled microbial biomass) was significantly correlated with organic C components (14C-labeled organic C) in the soil (r = 0.80, p < 0.0001). Our results indicate that the microbial assimilation of atmospheric CO2 is an important process for the sequestration and cycling of terrestrial C. Our results showed that microbial assimilation of atmospheric CO2 has been underestimated by researchers globally, and that it should be accounted for in global terrestrial carbon cycle models.  相似文献   

2.
Carbon mineralization kinetics as influenced by soil properties   总被引:3,自引:0,他引:3  
In a short-term laboratory study C mineralization potentials were determined on soil samples obtained from some representative agricultural soils in Tuscany, Italy. All the kinetic models tested to describe the mineralization process provided a good fit to the experimental data. A modified first-order model best described C mineralization in the soil. Both potentially mineralizable C and the mineralization rate (k) varied considerably among soils, reflecting the differences in soil properties. Potentially mineralizable C was positively related to C evolved as CO2 and to the exchange capacity. Normalized values (potentially mineralizable C divided by organic C), representing on average about 2% of the total soil C, was positively correlated to soil pH and negatively to the soil C pool, the soil N pool, and total microbial activity. Values for k ranged between 0.050 and 0.104 day-1, being higher in fine-textured soils and in soils with a large free Fe content. A low C:N ratio was indicative of a high k value. Turnover times for mineralized C were relatively rapid, ranging from 10 to 20 days.  相似文献   

3.
Subtropical recent alluvial soils are low in organic carbon (C). Thus, increasing organic C is a major challenge to sustain soil fertility. Biochar amendment could be an option as biochar is a C-rich pyrolyzed material, which is slowly decomposed in soil. We investigated C mineralization (CO2-C evolution) in two types of soils (recent and old alluvial soils) amended with two feedstocks (sugarcane bagasse and rice husk) (1%, weight/weight), as well as their biochars and aged biochars under a controlled environment (25 ±2 ℃) over 85 d. For the recent alluvial soil (charland soil), the highest absolute cumulative CO2-C evolution was observed in the sugarcane bagasse treatment (1 140 mg CO2-C kg-1 soil) followed by the rice husk treatment (1 090 mg CO2-C kg-1 soil); the lowest amount (150 mg CO2-C kg-1 soil) was observed in the aged rice husk biochar treatment. Similarly, for the old alluvial soil (farmland soil), the highest absolute cumulative CO2-C evolution (1 290 mg CO2-C kg-1 soil) was observed in the sugarcane bagasse treatment and then in the rice husk treatment (1 270 mg CO2-C kg-1 soil); the lowest amount (200 mg CO2-C kg-1 soil) was in the aged rice husk biochar treatment. Aged sugarcane bagasse and rice husk biochar treatments reduced absolute cumulative CO2-C evolution by 10% and 36%, respectively, compared with unamended recent alluvial soil, and by 10% and 18%, respectively, compared with unamended old alluvial soil. Both absolute and normalized C mineralization were similar between the sugarcane bagasse and rice husk treatments, between the biochar treatments, and between the aged biochar treatments. In both soils, the feedstock treatments resulted in the highest cumulative CO2-C evolution, followed by the biochar treatments and then the aged biochar treatments. The absolute and normalized CO2-C evolution and the mineralization rate constant of the stable C pool (Ks) were lower in the recent alluvial soil compared with those in the old alluvial soil. The biochars and aged biochars had a negative priming effect in both soils, but the effect was more prominent in the recent alluvial soil. These results would have good implications for improving organic matter content in organic C-poor alluvial soils.  相似文献   

4.
中国亚热带稻田土壤碳氮含量及矿化动态   总被引:9,自引:0,他引:9  
Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China. Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 days of laboratory incubation. In the first 30 years of cultivation, soil organic C and N contents increased rapidly. After 30 years, 0-10 cm soil contained 19.6 g kg^-1 organic C and 1.62 g kg^-1 total N, with the corresponding values of 18.1 g kg^-1 and 1.50 g kg^-1 for 10-20 cm, and then remained stable even after 80 years of rice cultivation. During 20 days incubation the mineralization rates of organic C and N in surface soil (0-10 cm) ranged from 2.2% to 3.3% and from 2.8% to 6.7%, respectively, of organic C and total N contents. Biologically active C size generally increased with increasing soil organic C and N contents. Soil dissolved organic C decreased after cultivation of wasteland to 10 years paddy field and then increased. Soil microbial biomass C increased with number of years under cultivation, while soil microbial biomass N increased during the first 30 years of cultivation and then stabilized. After 30 years of cultivation surface soil (0-10 cm) contained 332.8 mg kg^-1 of microbial biomass C and 23.85 mg kg^-1 of microbial biomass N, which were 111% and 47% higher than those in soil cultivated for 3 years. It was suggested that surface soil with 30 years of rice cultivation in subtropical China would have attained a steady state of organic C content, being about 19 g kg^-1.  相似文献   

5.
Soil cultivation changes and usage of agricultural wastes can have profound impacts on greenhouse gas (GHG) emission from soil. In this study, the effects of soil cultivation and organic amendment on GHG emission were investigated using aerobic incubation. Surface soil (0–20 cm) from (1) rice–legume consecutive rotation (Rice) and (2) recently (<3 years) converted from rice field to plastic-covered intensive vegetable and flower production (VegC) were collected in Kunming, P.R. China. Rose (Rosa rugosa Thunb.) residues and cattle manure were applied at 5% by weight. Results indicated that N2O and CO2 fluxes were significantly influenced by soil cultivation, organic amendment, incubation time and their interaction (p <0.05). Applying cattle manure increased, while rose residue decreased, cumulative N2O emissions from soil (84 days). Rose residue application significantly increased cumulative CO2 emissions with peak values of 6371 (Rice) and 7481 mg kg?1 (VegC), followed by cattle manure addition figure of 2265 (VegC) and 3581 mg kg?1 (Rice). Both were significantly higher (p <0.05) than the un-amended Control at 709 (VegC) and 904 mg kg?1 (Rice). Our study demonstrates that a low C/N ratio in cattle manure is better than a high C/N ratio in rose residue in regard to reducing the global warming potential of agricultural soil.  相似文献   

6.
Abstract

The seriousness of soil acidity and the unavailability of “conventional”; liming materials in many developing countries necessitate a search for alternatives. With this goal in mind, the liming potential of two organic manures was investigated. The investigation was conducted in the greenhouse, using a highly weathered, acid Ultisol. Application rates were 0, 5, 10, 20, and 40 g kg‐1 for chicken manure and 20 g kg‐1 for sewage sludge. Treatments of Ca(OH)2 at 2, 4, 6, and 8 cmolckg‐1, were included for comparison.

Based on growth response of Desmodium intortum, a tropical forage legume with a relatively high Ca requirement and low Al tolerance, it was demonstrated that soil acidity can be corrected by either Ca(OH)2 or organic manure additions. Both lime and manures raised soil pH and inactivated Al. In terms of pH increases, 5 and 10 g chicken manure kg‐1 were equivalent to 3.4 and 6.7 cmolckg‐1; and 20 g sludge kg‐1, equivalent to 6.5 cmolckg‐1 as Ca(OH)2. The manures also detoxified soluble Al by organic complexation and enhanced Ca uptake of the Desmodium. The plant's maximum growth required at least 1.0% Ca in leaves, and this growth was reduced by half when leaf Al 76 mg kg‐1 and soil‐solution Al3+ activity 4 μM.  相似文献   

7.
 Nitrogen and carbon mineralization of cattle manure (N=6 g kg–1; C:N=35), pressmud (N=17.4 g kg–1; C:N=22), green manure (N=26.8 g kg–1; C:N=14) and poultry manure (N=19.5 g kg–1; C:N=12) and their influence on gaseous N losses via denitrification (using the acetylene inhibition technique) in a semiarid subtropical soil (Typic Ustochrepts) were investigated in a growth chamber simulating upland, nearly saturated, and flooded conditions. Mineralization of N started quickly in all manures, except pressmud where immobilization of soil mineral N was observed for an initial 4 days. Accumulation of mineral N in upland soil plus denitrified N revealed that mineralization of cattle manure-, pressmud-, poultry manure- and green manure-N over 16 days was 12, 20, 29 and 44%, respectively, and was inversely related to C:N ratio (R 2=0.703, P=0.05) and directly to N content of organic manure (R 2=0.964, P=0.01). Manure-C mineralized over 16 days ranged from 6% to 50% in different manures added to soil under different moisture regimes and was, in general, inversely related to initial C:N ratio of manure (R 2=0.690, P=0.05). Cumulative denitrification losses over 16 days in control soils (without manure) under upland, nearly saturated, and flooded conditions were 5, 23, and 24 mg N kg–1, respectively. Incorporation of manures enhanced denitrification losses by 60-82% in upland, 52–163% in nearly saturated, and 26–107% in flooded soil conditions over a 16-day period, demonstrating that mineralized N and C from added manures could result in 2- to 3-fold higher rate of denitrification. Cumulative denitrification losses were maximal with green manure, followed by poultry manure, pressmud and cattle manure showing an increase in denitrification with increasing N content and decreasing C:N ratio of manure. Manure-amended nearly saturated soils supported 14–35% greater denitrification than flooded soils due to greater mineralization and supply of C.  相似文献   

8.
Sludge derived from cow manure anaerobically digested to produce biogas (methane; CH4) was applied to maize (Zea mays L.) cultivated in a nutrient-low, alkaline, saline soil with electrolytic conductivity 9.4 dS m?1 and pH 9.3. Carbon dioxide (CO2) emission increased 3.1 times when sludge was applied to soil, 1.6 times when cultivated with maize and 3.5 times in sludge-amended maize cultivated soil compared to the unamended uncultivated soil (1.51 mg C kg?1 soil day?1). Nitrous oxide (N2O) emission from unamended soil was -0.0004 μg nitrogen (N) kg?1 soil day?1 and similar from soil cultivated with maize (0.27 μg N kg?1 soil day?1). Application of sludge increased the N2O emission to 4.59 μg N kg?1 soil day?1, but cultivating this soil reduced it to 2.42 μg N kg?1 soil day?1. It was found that application of anaerobic digested cow manure stimulated maize development in an alkaline saline soil and increased emissions of CO2 and N2O.  相似文献   

9.
In a long‐term study of the effects on soil fertility and microbial activity of heavy metals contained in sewage sludges, metal‐amended liquid sludges each with elevated Zn, Cu or Cd concentrations were applied over a 3‐year period (1995–1997) to three sites in England. The experiments were sited adjacent to experimental plots receiving metal‐rich sludge cakes enabling comparisons to be made between the effects of heavy metal additions in metal‐amended liquid sludges and sludge cakes. The liquid sludge additions were regarded as ‘worst case’ treatments in terms of likely metal availability, akin to a long‐term situation following sewage sludge additions where organic matter levels had declined and stabilised. The aim was to establish individual Zn (50–425 mg kg?1), Cu (15–195 mg kg?1) and Cd (0.3–4.0 mg kg?1) metal dose–response treatments at each site, but with significantly smaller levels of organic matter addition than the corresponding sludge cake experiments. There were no differences (P > 0.05) in soil respiration rates, biomass carbon concentrations or most probable numbers of clover Rhizobium between the treatments at any of the sites at the end of the liquid sludge application programme. Soil heavy metal extractability differed between the metal‐amended liquid sludge and metal‐rich sludge cake treatments; Zn and Cd extractabilities were higher from the liquid sludge additions, whereas Cu extractability was higher from the sludge cake application. These differences in metal extractability in the treated soil samples reflected the contrasting NH4NO3 extractable metal contents of the metal‐amended liquid sludges and sludge cakes that were originally applied.  相似文献   

10.
Abstract

The rate and timing of manure application when used as nitrogen (N) fertilizer depend on N‐releasing capacity (mineralization) of manures. A soil incubation study was undertaken to establish relative potential rates of mineralization of three organic manures to estimate the value of manure as N fertilizer. Surface soil samples of 0–15 cm were collected and amended with cattle manure (CM), sheep manure (SM), and poultry manure (PM) at a rate equivalent to 200 mg N kg?1 soil. Soil without any amendment was used as a check (control). Nitrogen‐release potential of organic manures was determined by measuring changes in total mineral N [ammonium‐N+nitrate‐N (NH4 +–N+NO3 ?–N)], NH4 +–N, and accumulation of NO3 ?–N periodically over 120 days. Results indicated that the control soil (without any amendment) released a maximum of 33 mg N kg?1soil at day 90, a fourfold increase (significant) over initial concentration, indicating that soil had substantial potential for mineralization. Soil with CM, SM, and PM released a maximum of 50, 40, and 52 mg N kg?1 soil, respectively. Addition of organic manures (i.e., CM, SM, and PM) increased net N released by 42, 25, and 43% over the control (average). No significant differences were observed among manures. Net mineralization of organic N was observed for all manures, and the net rates varied between 0.01 and 0.74 mg N kg?1 soil day?1. Net N released, as percent of organic N added, was 9, 10, and 8% for CM, SM, and PM. Four phases of mineralization were observed; initial rapid release phase in 10–20 days followed by slow phase in 30–40 days, a maximum mineralization in 55–90 days, and finally a declined phase in 120 days. Accumulation of NO3 ?–N was 13.2, 10.6, and 14.6 mg kg?1 soil relative to 7.4 mg NO3 ?–N kg?1 in the control soil, indicating that manures accumulated NO3 ?–N almost double than the control. The proportion of total mineral N to NO3 ?–N revealed that a total of 44–61% of mineral N is converted into NO3 ?–N, indicating that nitrifiers were unable to completely oxidize the available NH4 +. The net rates of mineralization were highest during the initial 10–20 days, showing that application of manures 1–2 months before sowing generally practiced in the field may cause a substantial loss of mineralized N. The rates of mineralization and nitrification in the present study indicated that release of inorganic N from the organic pool of manures was very low; therefore, manures have a low N fertilizer effect in our conditions.  相似文献   

11.
The influence of Cd on the decomposition of various types of organic materials in soil was studied. CdCl2 or CaCl2 (control) was added to a Gley soil at a level of 10 mmol kg-1 soil. Three days later, organic materials including glutamic acid, glucose, casein, starch, cellulose, lignin, rice straw, rice straw compost, or 3 kinds of sludges were mixed with the soil in a proportion of 1%, respectively. During an 8-week period of incubation at 28°C, CO2 evolution was measured periodically. At the end of the incubation period, the form of Cd in the soil was analyzed by successive extractions with water, CaCl2, CH3COOH, Na4P2O7, and with hot HCl after HNO3-HClO4 digestion.

The decomposition of all the organic materials was inhibited by the addition of Cd, but the degree of inhibition varied considerably among the types of organic materials. The decomposition of rice straw, rice straw compost, and sludges was markedly inhibited by Cd. The amount of water-soluble Cd was less in the soils treated with rice straw, rice straw compost, and sludges than in the soils treated with other types of organic materials, while the amounts of CaCI2-extractable Cd were much larger in the latter soils. In the case of rice straw, rice straw compost, and sludges Cd was easily adsorbed from the CdCl2 solution.

These results suggest that the inhibition of organic matter decomposition by Cd is caused by the adsorption of Cd onto organic matter.  相似文献   

12.
NaCl and Na2SO4 often dominate salt compositions in saline soils. While either salt alone affects soil organic matter mineralization, their interactions on soil organic matter dynamics are unknown. This study aimed to investigate interactive effects of the two salts on organic C mineralization and microbial biomass C of the saline soils after addition of maize straws. Both NaCl and Na2SO4 were applied at 0, 40 and 80 mmol Na kg−1 soil and the incubation was undertaken at soil water content of 15% and 20% (w/w) in dark at 28.5 °C for 70 days. The study found significant interactions of NaCl and Na2SO4 on CO2-C evolution during the early incubation periods—a suppressing effect at days 1-2 but a stimulating effect at days 6-8 and 17-20, and thereafter the salt interactions were influenced by water content. The interactions of water content with NaCl or Na2SO4 on CO2-C evolution were observed through the incubation periods except days 1-2, showing that the salt effects were dependent on water content. Total CO2 evolution over the 70-day-long incubation decreased with increasing NaCl but increased with increasing Na2SO4 compared to the nil-salted treatment. Salt interactions on soil microbial biomass C were observed at days 7, 21, but not at day 49. Microbial biomass C increased at day 7 in the soils treated with either NaCl or Na2SO4 but decreased where the two salts were combined. At day 21, microbial biomass C increased with NaCl but decreased with Na2SO4 regardless whether the counterpart salt was added. The results suggest that soil organic C mineralization can be affected by the interactions of NaCl and Na2SO4, possibly through the salt-induced changes in microbial biomass community structure.  相似文献   

13.
Seasonally flooded várzea forests of Western Amazonia are one of the most productive and biodiverse wetland forests in the world.However,data on their soil CO2emissions,soil organic matter decomposition rates,and soil C stocks are scarce.This is a concern because hydrological changes are predicted to lead to increases in the height,extent,and duration of seasonal floods,which are likely to have a significant effect on soil C stocks and fluxes.However,with no empirical data,the impact of altered flood regimes on várzea soil C cycles remains uncertain.This study quantified the effects of maximum annual flood height and soil moisture on soil CO2efflux rate(Rs)and soil organic matter decomposition rate(k)in the várzea forests of Pacaya Samiria National Reserve,Peru.The study was conducted between May and August 2017.The results showed that Rs(10.6–182.7 mg C m-2h-1)and k(0.016–0.078)varied between and within sites,and were considerably lower than the values reported for other tropical forests.In addition,Rswas negatively affected by flood height(P<0.01)and soil moisture(P<0.001),and it decreased with decreasing river levels post flooding(P<0.001).In contrast,k was not affected by any of the above-mentioned factors.Soil moisture was the dominant factor influencing Rs,and it was significantly affected by maximum flood height,even after the floods had subsided(P<0.001).Consequently,we concluded that larger floods will likely lead to reduced Rs,whilst k could remain unchanged but with decomposition processes becoming more anaerobic.  相似文献   

14.
In a long‐term study of the effects on soil fertility and microbial activity of heavy metals contained in sewage sludges, metal‐rich sludge cakes each with high Zn, Cu or Cd concentrations were applied annually for 4 years (1994–1997) to nine sites throughout Britain. These sites were selected to represent agricultural soils with a range of physical and chemical properties, typical of those likely to be amended with sewage sludge. The aim was to establish individual total Zn (approx. 60–450 mg kg?1), total Cu (approx. 15–200 mg kg?1) and total Cd (approx. 0.2–4 mg kg?1) metal dose–response treatments at each site. Sludges with low metal concentrations were added to all treatments to achieve as constant an addition of organic matter as possible. Across the nine sites, soil pH was the single most important factor controlling Zn (P < 0.001; r2 = 92%) and Cd extracted with 1 m NH4NO3 (P < 0.001; r2 = 72%), and total iron content the most important factor controlling Cu extracted with 1 m NH4NO3 (P < 0.001; r2 = 64%). There were also positive relationships (P < 0.001) between soil organic carbon (C) concentrations and soil biomass C and respiration rates across the nine sites. Oxidation of sludge C following land application resulted in approximately 45% of the digested sludge cake C and approximately 64% of the ‘raw’ sludge cake C being lost by the end of the 4‐year application period. The sludge cake applications generally increased soil microbial biomass C and soil respiration rates, whilst most probable numbers of clover Rhizobium were generally unchanged. Overall, there was no evidence that the metal applications were damaging soil microbial activity in the short term after the cessation of sludge cake addition.  相似文献   

15.
We established a field trial to assess the impacts on soil biological properties of application of heavy metal-spiked sewage sludge, with the aim of determining toxicity threshold concentrations of heavy metals in soil. Plots were treated with sludges containing increasing concentrations of Cu, Ni and Zn in order to raise the metal concentrations in the soil by 0-200 mg Cu kg−1, 0-60 mg Ni kg−1 and 0-400 mg Zn kg−1, and were then cultivated and sown in ryegrass-clover pasture and monitored annually for 6 years. All biological properties measured (soil basal respiration, microbial biomass C, and sulphatase enzyme activities), except phosphatase activity, increased in all plots over the duration of the experiment. Consequently, it was only possible to assess effects of heavy metals across time if, each year, all data for each metal were normalised by expressing them as percentages of the activities measured in an un-sludged control plot. When this was done, no significant effects of increasing heavy-metal concentrations on basal respiration, microbial biomass C or respiratory quotient (qCO2) were observed, although total Cu and soil solution Cu were significantly negatively related to microbial biomass C when it was expressed as a proportion of soil total C. None of the properties measured were affected by increasing Ni concentrations. Phosphatase and sulphatase activities were significantly negatively related to increasing Zn concentrations, but not usually to increasing Cu unless they were expressed as a proportion of total C. A sigmoidal dose-response model was used to calculate EC20 and EC50 values using the normalised data, but generally, the model parameters had very large 95% confidence intervals and/or the fits to the model had small R2 values. The factors primarily responsible for confounding these results were site and sample variations not accounted for by the normalisation process and the absence of any data points at metal concentrations beyond the calculated EC50 values. In the few instances where reasonable EC20 values could be calculated, they were relatively consistent across properties, e.g., EC20 for total Zn and phosphatase (330 mg kg−1), total Zn and sulphatase (310 mg kg−1), and EC20 for total Cu and sulphatase (140 mg kg−1) and total Cu and microbial biomass C (140 mg kg−1), when both sulphatase and microbial biomass C were expressed as a proportion of total C. Our results suggest that Cu and Zn at the upper concentrations used in this experiment were possibly having adverse effects on some soil biological properties. However, much higher metal concentrations will be needed to accurately calculate EC20 and EC50 and this may not be easily achievable without many applications of sewage sludge, even if the sludge is spiked with heavy metals.  相似文献   

16.
蒙古高原草原土壤微生物量碳氮特征   总被引:48,自引:0,他引:48  
李香真  曲秋皓 《土壤学报》2002,39(1):97-104
沿着水分梯度采集了蒙古高原不同草原类型表层土壤样品 1 44个 ,分析了土壤微生物量C、N含量及其与年平均温度和降雨量的关系。结果表明 :蒙古高原草原土壤微生物量C、N与土壤有机C、全N、降雨量、温度均表现出了很好的相关性。微生物量C变化在5 1 7~ 797mgkg- 1之间 ,微生物量N变化在 1 1 0~ 1 1 8 6mgkg- 1之间。微生物量C∶N比变化在 5~ 9之间。土壤微生物量碳 (Cmic)占土壤有机碳 (Corg)的比例 (Cmic Corg)变化在 1 1 5 %~ 4 1 %之间 ,Cmic Corg与土壤有机C、全N、降雨量均成显著的负相关。土壤呼吸表现为草甸草原土壤 >典型草原 >荒漠草原 ,土壤呼吸与降雨量显著正相关 ,与温度显著负相关。呼吸熵 (QCO2 )与降雨量成二次抛物线关系。放牧对微生物量的影响与不同草原类型和放牧率有关。  相似文献   

17.
Nitrate and glucose additions were investigated for their role in the C and N dynamics during anaerobic incubation of soil. A gas-flow soil core method was used, in which the net production of N2, N2O, NO, CO2, and CH4 under a He atmosphere could be monitored both accurately and frequently. In all experiments clayey silt loam soil samples were incubated for 9 days at 25 °C. Addition of nitrate (50 mg KNO3-N kg-1 soil) had no effect on total denitrification and CO2 production rates, while the N2O/N2 ratio was affected considerably. The cumulative N2O production exceeded the cumulative N2 production for 6 days in the treatment with nitrate addition, compared to 1.2 days in the unamended treatment. Glucose addition stimulated the microbial activity considerably. The denitrification rates were limited by the growth rate of the denitrifying population. During denitrification no significant differences were observed between the treatments with 700 mg glucose-C kg-1 and 4200 mg glucose-C kg-1, both in combination with 50 mg KNO3-N kg-1. The N2 production rates were remarkably low, until NO inf3 sup- exhaustion caused rapid reduction of N2O to N2 at day 2. During the denitrification period 15–18 mg N kg-1 was immobilised in the growing biomass. After NO inf3 sup- shortage, a second microbial population, capable of N2-fixation, became increasingly important. This change was clearly reflected in the CO2 production rates. Net volatile fatty acid (VFA) production was monitored during the net N2-fixation period with acetate as the dominant product. N2-fixation faded out, probably due to N2 shortage, followed by increased VFA production. In the high C treatment butyrate became the most important VFA, while in the low C treatment acetate and butyrate were produced at equal rates. During denitrification no VFA accumulation occurred; this does not prove, however, that denitrification and fermentation appeared sequentially. The experiments illustrate clearly the interactions of C-availability, microbial population and nitrate availability as influencing factors on denitrification and fermentation.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday  相似文献   

18.
Soil management practices that result in increased soil carbon (C) sequestration can make a valuable contribution to reducing the increase in atmospheric CO2 concentrations. We studied the effect of poultry manure, cattle slurry, sewage sludge, NH4NO3 or urea on C cycling and sequestration in silage grass production. Soil respiration, net ecosystem exchange (NEE) and methane (CH4) fluxes were measured with chambers, and soil samples were analysed for total C and dissolved organic C (DOC). Treatments were applied over 2 years and measurements were carried out over 3 years to assess possible residual effects. Organic fertilizer applications increased CO2 loss through soil respiration but also enhanced soil C storage compared with mineral fertilizer. Cumulative soil respiration rates were highest in poultry manure treatments with 13.7 t C ha?1 in 2003, corresponding to 1.6 times the control value, but no residual effect was seen. Soil respiration showed an exponential increase with temperature, and a bimodal relationship with soil moisture. The greatest NEE was observed on urea treatments (with a CO2 uptake of ?4.4 g CO2 m?2 h?1). Total C and DOC were significantly greater in manure treatments in the soil surface (0–10 cm). Of the C added in the manures, 27% of that in the sewage pellets, 32% of that in the cattle slurry and 39% of that in the poultry manure remained in the 0–10 cm soil layer at the end of the experiment. Mineral fertilizer treatments had only small C sequestration rates, although uncertainties were high. Expressed as global warming potentials, the benefits of increased C sequestration on poultry manure and sewage pellet treatments were outweighed by the additional losses of N2O, particularly in the wet year 2002. Methane was emitted only for 2–3 days on cattle slurry treatments, but the magnitudes of fluxes were negligible compared with C losses by soil respiration.  相似文献   

19.
In this study, we investigated the effects of lanthanum (La), one of the rare earth elements (REEs), on microbial biomass C as well as the decomposition of 14C-labelled glucose in a fluvo-aquic soil in 28 days. The soil was collected from the field plots under maize/wheat rotation in Fengqiu Ecological Experimental Station of Chinese Academy of Sciences, Henan Province, China. Application of La decreased soil microbial biomass C during the experimental period, and there was a negative correlation (P < 0.01) between microbial biomass and application rate of La. La increased microbial biomass 14C after 14C glucose addition, and the increase was significant (P < 0.05) at the rates of more than 160 mg kg−1 soil. La slightly increased 14CO2 evolution at lower rates of application but decreased it at higher rates 1 day after 14C glucose addition, while there was no significant effect from days 2 to 28. For the cumulative 14CO2 evolution during the incubation of 28 days, La slightly increased it at the rates of less than 120 mg kg−1 soil, while significantly decreased (P < 0.05) it at the rate of 200 mg kg−1 soil. The results indicated that agricultural use of REEs such as La in soil could decrease the amount of soil microbial biomass and change the pattern of microbial utilization on glucose C source in a short period.  相似文献   

20.
未经处理的污泥农业利用后,不仅会增加土壤中污染物的含量,而且会威胁人类和其他生物的健康。室内培养试验结果表明,污泥中的重金属进入土壤后,表现出先释放,后固定的变化趋势,而且随培养时间的增加,施污泥土壤中EDTA和CaCl2提取态Cu和Zn含量逐渐增加,150d时其含量达到最高。与对照处理相比,施污泥土壤中EDTA提取态Cu和Zn含量分别增加了21.4mgkg-1和26.1mgkg-1,而CaCl2提取态Cu和Zn含量分别增加了0.10mgkg-1和3.37mgkg-1。重金属不合格的污泥农业利用存在一定程度的重金属污染风险,且其风险大小与土壤类型、污泥种类和培养时间及污泥的土壤施用量等因素密切相关。选择适宜的土壤类型、污泥种类、施用时间及控制污泥施用量等,能够在一定程度上降低污泥中重金属农业利用的环境风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号