首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seeds of four winter wheat cultivars, Slejpner, Galahad, Avalon and Penman, were sown at depths ranging from 6–75 mm in soil in pots, and isoproturon or chlorotoluron was then applied to the soil surface. For chlorotoluron-treated plants (both pre- and post-emergence) the dose required to produce a 50% effect (ED50) was unaffected by depth of planting. In contrast, for isoproturon applied pre-emergence, the ED50 for both Avalon and Slejpner was strongly affected by sowing depth. Although chlorotoluron was much more active in a second experiment when applied post-emergence to Slejpner wheat, the ED50 for both herbicides increased with greater depth of sowing. Protection of wheat from isoproturon damage by deeper planting was enhanced if the adsorption capacity of the soil was raised from Kd 0.5 to 2.0 by incorporation of activated charcoal in the soil. Isoproturon entry into plants (as measured by the effect on rate of photosynthesis) was slower in those that had been sown deeper and were growing in more adsorptive soils, but there was no obvious relationship between these observations and isoproturon distribution in the soil profile. In nutrient culture the four wheat cultivars responded similarly to a range of doses of isoproturon. The chlorotoluron-sensitive cultivars, Slejpner and Galahad, were damaged by much lower doses of chlorotoluron than were Avalon and Penman. Bromus sterilis L. responded similarly to wheat with regard to its interaction with isoproturon and planting depth. Alopecurus myosuroides Huds., however, was less damaged by isoproturon when the zone above the seed was protected from the herbicide by growing the shoot through a plastic straw.  相似文献   

2.
BACKGROUND: It is important to understand the degradation of organic molecules in surface waters to ensure that risk assessments, intended to prevent adverse effects on human health and the environment, are robust. One important degradation mechanism in surface waters is photodegradation. This process is generally studied in laboratory test systems, and the significance of the results is then extrapolated to the field. The aim of this work was to assess how fluctuations in the composition of surface water influence the photodegradation rate of chlorotoluron. RESULTS: Photodegradation DT50 values in the lake (mean = 26.0 days) and pond (mean = 26.0 days) were significantly slower than in the river (mean = 6.8 days) and stream (mean = 7.3 days) samples. The DT50 values in the pond and lake samples were similar to the direct photolysis value (mean = 28.6 days). Photodegradation was significantly faster in the stream and river samples, suggesting that indirect photolysis was significant in those waters. Principal component analysis indicated a strong inverse correlation between nitrate concentration and degradation rate. CONCLUSIONS: Nitrate concentration had a strong influence on the rate of photodegradation, with increasing nitrate concentrations sharply reducing the DT50. However, this effect was restricted to a narrow concentration range and levelled off quite quickly, such that further increases in the nitrate concentration had no significant effect on the rate of degradation. Extrapolating photodegradation rates of chlorotoluron from the laboratory to the field should be relatively straightforward, provided the nitrate concentrations in the waters are known. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
Five soil samples were taken from each of five fields with different crop management histories. Three of the fields were in an arable rotation, the fourth field was temporary grassland, and the final field was under permanent grass. Of the three arable fields, two had been cropped with winter wheat in three of the preceding 6 years, and the third had last been cropped with winter wheat once only, 6 years previously. With one exception, the winter wheat had been sprayed with the herbicide isoproturon. The rate of isoproturon degradation in laboratory incubations was strongly related to the previous management practices. In the five soils from the field that had been treated most regularly with isoproturon in recent years, <2.5% of the initial dose remained after 14 days, indicating considerable enhancement of degradation. In the soils from the field with two applications of the herbicide in the past 6 years, residues after 27 days varied from 5% to 37% of the amount applied. In soils from the other three sites, residue levels were less variable, and were inversely related to microbial biomass. In studies with selected soils from the field that had received three applications of isoproturon in the previous 6 years, kinetics of degradation were not first‐order but were indicative of microbial adaptation, and the average time to 50% loss of the herbicide (DT50) was 7.5 days. In selected soils from the field that had received just one application of isoproturon, degradation followed first‐order kinetics, indicative of cometabolism. Pre‐incubation of isoproturon in soil from the five fields led to significant enhancement of degradation only in the samples from the two fields that had a recent history of isoproturon application.  相似文献   

4.
A laboratory study was conducted to determine the degradation rates and identify major metabolites of the herbicide metsulfuron-methyl in sterile and non-sterile aerobic soils in the dark at 20°C. Both [phenyl-U-14C]- and [triazine-2-14C]metsulfuron-methyl were used. The soil was treated with [14C]metsulfuron-methyl (0.1 mg kg−1) and incubated in flow-through systems for one year. The degradation rate constants, DT50, and DT90 were obtained based on the first-order and biphasic models. The DT50 (time required for 50% of applied chemical to degrade) for metsulfuron-methyl, estimated using a biphasic model, was approximately 10 days (9–11 days, 95% confidence limits) in the non-sterile soil and 20 days (12–32 days, 95% confidence limits) in the sterile soil. One-year cumulative carbon dioxide accounted for approximately 48% and 23% of the applied radioactivity in the [phenyl-U-14C] and [triazine-2-14C]metsulfuron-methyl systems, respectively. Seven metabolites were identified by HPLC or LC/MS with synthetic standards. The degradation pathways included O-demethylation, cleavage of the sulfonylurea bridge, and triazine ring opening. The triazine ring-opened products were methyl 2-[[[[[[[(acetylamino)carbohyl]amino]carbonyl]amino] carbonyl]-amino]sulfonyl]benzoate in the sterile soil and methyl 2-[[[[[amino[(aminocarbonyl)imino]methyl] amino]carbonyl]amino]sulfonyl]benzoate in the non-sterile soil, indicating that different pathways were operable. © 1999 Society of Chemical Industry  相似文献   

5.
Use of isoproturon, alone and in combination with other compounds, post-emergence in winter and spring on winter wheat and winter barley Isoproturon, alone and combined with dinoseb acetate and bifenox, was applied post-emergence in winter and spring to winter barley and winter wheat. The experiment was on two sites (sandy and clay soils) and lasted for two years. Although after winter application the initial herbicide level in the soil was higher than after spring treatment, there were no differences at the end of the growing season. The DT50 (time to 50% disappearance) value for isoproturon was between 12 and 33 days in both years for both soils and the DT90 value varied from 34 to 68 days. Soil residues of isoproturon were not affected by the presence of the other compounds. Winter application gave better weed control and higher crop yields.  相似文献   

6.
Twelve lysimeters with a surface area of 0.5 m2 and a length of 60 cm were taken over mole drains from a Denchworth heavy clay soil and divided into two groups with either a standard agricultural tilth or a finer topsoil tilth. The influence of topsoil tilth on leaching of the herbicide isoproturon and a bromide tracer was evaluated over a winter season. The effect of variations in soil moisture status in the immediate topsoil on leaching of isoproturon, chlorotoluron and linuron was investigated in the following winter season. Here, water inputs were controlled such that lysimeters received 50 mm at a maximum intensity of 2 mm h?1 over a 4‐week period with herbicides applied on day 15. Three treatments received the water either all prior to application, all after application, or evenly spread over the 4‐week period. Leaching losses of the three herbicides were monitored for a subsequent drainage event. Analysis of covariance showed a significant effect of topsoil tilth and total flow on both the maximum concentrations (P = 0.034) and total losses (P = 0.012) of isoproturon in drainflow. Both concentrations and losses were c 35% smaller from lysimeters with the finer tilth. However, generation of the fine tilth in the field was restricted by a wet autumn and this is not considered a reliable management option for reducing pesticide losses from heavy clay soils. In the second experiment, variation in soil moisture content prior to and after application did not have any significant effect (P < 0.05) upon subsequent losses of the three herbicides to drains. © 2001 Society of Chemical Industry  相似文献   

7.
In laboratory incubations, the times to 50% loss (DT50) of a first application of napropamide were approximately 25, 45 and 75 days in soil incubated at 25, 15 and 5°C respectively. When treated for a second time, the DT50 values were 4, 7 and 15 days at the same temperatures, irrespective of the temperature of the first incubation. This indicates that enhanced degradation of napropamide in soil can be both induced and expressed at low temperature. A mixed microbial culture able to degrade the herbicide to a single degradation product, identified by HPLC retention time as naphthoxypropionic acid, was obtained from a soil capable of rapid degradation. Addition of a sub-sample of this mixed culture to a previously untreated soil introduced rapid degrading ability. When small amounts of soil capable of rapid degradation were added to previously untreated soil, in both the laboratory and the field, the degradation rate of napropamide increased compared with that in unamended soils.  相似文献   

8.
Changes in the concentrations of [14C]carbonyl-isoproturon and its degradation products in a clay-loam soil and in soil solution during incubation at 11°C and 18°C for 6 weeks, were measured following solvent extraction and soil solution sampling with glass microfibre filters. During herbicide degradation, 14CO2 was released (up to 20%) and unextractable radioactivity increased (up to 30%). Monomethyl isoproturon was the main metabolite in soil followed by metabolite X5 (possibly hydroxy di-des-methyl isoproturon). Isoproturon and monomethyl isoproturon were mainly adsorbed by soil whereas metabolite X5 was found mainly in the soil solution. Isoproturon concentrations declined in both soil and soil solution, but the percentage of the residual herbicide dissolved in the soil solution decreased from 26 to 15%. At low temperature, herbicide degradation occurred more slowly, and the degradation products were generally less abundant. However metabolite X5 was present at unexpectedly high levels, particularly in the soil solution. Evolution de l'isoproturon et de ses produits dégradation dans le sol et la solution du sol pendant l'incubation de Vherbicide a deux temperatures. L'évolution de l'isoproturon (marqué au 14C sur le carbonyle) et de ses produits de dégradation dans un sol argilo-limoneux et dans la solution du sol est suivie pendant 6 sêmaines d'incubation de l'herbicide à 11 et 18°C. Pour ce faire, la solution du sol est échantillonnée au moyen de filtres en fibres de verre et les composés sont extraits du sol par des solvants. Au cours de la dégradation, du 14CO2 est libéré (jusqu'à 20%) et la radioactivité non extraite s'accroit (jusqu'à 30%). L'isoproturon monométhyle est le principal métabolite dans le sol suivi du metabolite X5 (probablement le dérivé hydroxy didéméthylé). L'isoproturon et son dérivé monométhyle sont surtout adsorbés par le sol alors que le métabolite X5 est surtout en solution. La quantite d'iso-proturon diminue simultanemént dans le sol et la solution du sol mais la fraction dissoute de l'herbicide residuel décroit de 26 à 15%. A basse température, la dégradation de l'herbicide est plus lente et les produits de dégradation sont généralement moins abondants à l'exception notable du métabolite X5 qui est présent a un niveau élevé, en particulier dans la solution du sol. Veränderung der Konzentration von Isoproturon und seiner Abbauprodukte im Boden und in der Bodenlösung bei Inkubation Veränderung der Konzentration von [14C]-Car-bonyl-Isoproturon und seiner Abbauprodukte in einem Lehmboden und in der Bodenlösung wurden nach 6 Wochen Inkubation bei 11 und 18°C und Extraktion bzw. Probennahme durch Glasmikrofaserfilter gemessen. Während des Herbizidabbaus wurden bis zu 20 % der Radioaktivität als 14CO2 freigesetzt, und die nichtextrahierbare Radioaktivität nahm zu (bis zu 30 %). Monomethyl-Isoproturon war der Hauptmetabolit, gefolgt vom Metabolit X5 (möglicherweise Hydroxy-didesmethyl-Isoproturon). Isoproturon und Monomethyl-Isoproturon waren weitgehend an Bodenpartikeln adsorbiert, während der Metabolit X5 vorwiegend in der Bodenlösung gefunden wurde. Die Isoproturon-Konzentrationen nahmen sowohl im Boden als auch in der Bodenlösung ab, aber der Anteil des Herbizidrückstands in der Bodenlösung ging von 26 auf 15 % zurück. Bei der niedrigen Temperatur wurde das Herbizid langsamer abgebaut, und die Menge der Abbauprodukte war allgemein geringer. Der Metabolit X5 lag jedoch in unerwartet hoher Menge vor, besonders in der Bodenlösung.  相似文献   

9.
Degradation if isoproturon and availability of residues in soil The availability and degradation of 14C-ring-labelled isoproturon in soil was investigated over 140 days under controlled laboratory conditions. Degradation of the active ingredient followed and 65 days later only a minor fraction (0.6%) of the parent molecule remained extractable. A demethylated-isoproturon metabolite was detectable in soil from day 15 (2.6%). The amount of 14CO2 derived from the 14C benzene ring label and liberated over time indicated that a total of 13.6% isoproturon was mineralized during the incubation period. In parallel, the amount of 14C residue extracted from the soil by water followed by methanol or remaining within the soil—analysed by combustion—was also determined at intervals. After 140 days, 72% of the radiolabel added remained in the soil as non-extractable residue. The degradation half-life of extractable isoproturon was an estimated 14 days.  相似文献   

10.
The herbicide isoproturon [3‐(4‐isopropylphenyl)‐1,1‐dimethylurea] was incorporated in alginate‐based granules to obtain controlled‐release (CR) properties. The basic formulation (sodium alginate (1.87%)–isoproturon (0.67%) in water) was modified by addition of different sorbents. The effect on isoproturon release rate, modified by the incorporation of natural and acid‐treated bentonite in alginate formulation, was studied by immersion of the granules in water while shaking. The release of isoproturon was diffusion‐controlled. The time taken for 50% of the active ingredient to be released into water, T50, was longer for those formulations containing added bentonite (5.98 and 7.43 days, for natural and acid‐treated (1 M H2SO4) bentonite, respectively) than for the preparation without bentonite (3.78 days). The mobilities of non‐formulated technical grade (98%) and formulated isoproturon were compared using soil columns. The use of alginate‐based CR formulations containing bentonite reduced isoproturon movement compared with the technical product. Sorption capacity of the soil for isoproturon was measured using batch experiments (0.29 litre kg−1) and the results obtained here in agreement with those obtained under dynamic conditions. © 2000 Society of Chemical Industry  相似文献   

11.
Initial attempts to develop a hydroponic bioassay test for tepraloxydim failed due to lack of repeatability. Investigation of the fate of tepraloxydim in test media revealed that small residues of chlorine and chloramines present on distilled water cause fast degradation of the herbicide. Half‐life of tepraloxydim in the presence of a chlorine excess was determined to be DT50 < 5 s. Reaction with chloramines was slower (DT50 = 4.5 h). Finally, when this factor was eliminated by using water completely free of chlorine, the main process that took place was the isomerization of the oxime group (E vs. Z). However, the overall degradation was slow (DT50 = 17 days) and the hydroponic bioassay was optimized in the absence of chlorine.  相似文献   

12.
A field microcosm study was conducted to determine persistence of tebufenozide, an insect growth regulator, in sandy litter and soil. Litter and soil plots (c. 4·5 m2 each) were sprayed with an aqueous suspension concentrate formulation of tebufenozide at rates of 35, 70 and 140 g AI ha-1. Samples were collected at intervals up to 408 days after spraying, and analyzed for tebufenozide residues. The data were subjected to regression analysis and half-life (DT50, the time required for 50% of the initial residues to disappear) values were computed. The DT50 was c. 62 days for both substrates treated with the two lower dosage rates. At the highest dosage rate, the DT50 was 115 days for the litter and c. 52 days for the soil, indicating irregular variations in persistence. Downward movement in soil occurred only in trace amounts, suggesting strong adsorption. Laboratory microcosm studies were conducted to investigate the relative importance of rainfall, exposure to light and volatilization on persistence. Vertical movement occurred in litter and soil (both sandy and clay types) during rainfall. The amount moved increased with the amount of rainfall, but decreased with the rain-free period. The larger the rain droplets, the greater the downward movement. When the rainwater could move laterally along the surface of the substrate (as would occur on a slope), more lateral movement than vertical movement of tebufenozide occurred. The photolysis study indicated that disappearance of tebufenozide was directly related to the duration of exposure to radiation and radiation intensity. Volatilization of tebufenozide depended upon the ambient temperature and the duration of air passing through the substrates. Nonetheless, the amount lost by volatilization was much lower than the amount lost after rainfall or exposure to radiation, thus indicating the greater influence of rainfall and sunlight on persistence. In the laboratory microcosm studies, more tebufenozide was lost from the sandy substrates than from the clay substrates. This behaviour was attributed to the greater adsorptive capacity of the clay substrates, thus providing a greater protection against downward mobility and loss due to radiation. © 1997 SCI  相似文献   

13.
土壤吸附是农药在环境中归趋的关键支配因素,也是支配农药在环境中的持久性和生物有效性的重要因素之一。该文采用高效液相色谱法研究了除草剂敌草胺在不同性质土壤中的吸附、持久性和生物有效性以及吸附与土壤持久性、蚯蚓生物有效性之间的关系。结果表明,在供试浓度范围内,采用批量平衡技术测定的敌草胺土壤吸附等温线可用Freundlich模型表征(r>0.99),土壤有机质含量(PPt50)在61.3-97.6 d之间;微生物对敌草胺在土壤中的持久性影响显著,微生物降解是敌草胺在土壤环境中降解的主要途径,灭菌处理后其在土壤中的半衰期延长了2.09~3.65倍。蚯蚓Eisenia foetida对敌草胺的吸收和生物积累也主要取决于土壤性质,特别是土壤的有机质含量水平(Pr=-0.885,Pr=-0.796,Pt50=94.210-3.535 Kf和BAF=0.264-0.014 Kf,表明吸附系数可用作模型参数来评价敌草胺在土壤中的持久性和生物有效性。  相似文献   

14.
BACKGROUND: In Chile, rice is cultivated under water‐seeded and continuously flooded conditions. Because herbicide dynamics in paddy fields and non‐flooded fields is different, 3 year experiments were performed to study the dissipation of molinate and penoxsulam in water and sediment. RESULTS: In field experiments, both herbicides dissipated by 45–55% from the initial applied amounts during the first 6 h after application in all crop seasons; in lysimeter experiments, dissipation amounts were approximately 10% for penoxsulam and 16% for molinate. Penoxsulam field water DT50 values varied from 1.28 to 1.96 days during the three study seasons, and DT90 values from 4.07 to 6.22 days. Molinate field water DT50 values varied from 0.89 to 1.73 days, and DT90 values from 2.82 to 5.48 days. Sediment residues were determined 2 days after herbicide application into the paddy water, and maximum concentrations were found 4–8 days after application. In sediment, DT50 values varied from 20.20 to 27.66 days for penoxsulam and from 15.02 to 29.83 days for molinate. CONCLUSIONS: Results showed that penoxsulam and molinate losses under paddy conditions are dissipated rapidly from the water and then dissipate slowly from the sediment. Penoxsulam and molinate field water dissipation was facilitated by paddy water motion created by the wind. Sediment adsorption and degradation are considered to have a secondary effect on the dissipation of both herbicides in paddy fields. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Wheat (cv. WH-147) and five biotypes of Phalaris minor Retz. (KR-1, H-4, K-2, H-2 and J-1) were treated with isoproturon in controlled environmental conditions to assess their level of resistance. Resistance of P. minor to isoproturon was found in the order of KR-1 > H-4 > K-2 > H-2 = J-1. Compared with the susceptible (S) biotype (H-2), the resistant (R) biotypes (KR-1. H-4 and K-2) of P. minor required 13.0, 4.5 and 2.7 times higher doses of isoproturon for a 50% reduction in growth (GR50) and 2.4 times that of the S biotype (H-2) by wheat. The corresponding figures for KR-1, H-4, K-2 biotypes and wheat were 18, 4.1, 2.4 and 4.6 times based on dry weight reduction. The effect of isoproturon on photosynthesis was studied in vitro using five biotypes of P. minor and in viro with wheat. KR-1 (R) and H-2 (S) biotypes of P. minor. Under in vitro treatment conditions isoproturon inhibited the photosynthesis of all five P. minor biotypes, whereas in vivo the recovery was greater in the R biotype than in the wheat and the S biotype. Effects on chlorophyll fluorescence were also measured in wheat and the KR-1 (R) and H-2 (S) biotypes of P. minor. A 4-h treatment of excised leaves incubaled in isoproluron solution (0.025 and 0.05 mm concentration) resulted in a decreased fluorescence coefficient (Fv Fm ratio in which Fv= variable fluorescence (Fm - Fo): Fm= the maximum fluorescence and Fo= initial fiuorescence) in wheat (Triticum aestivum L.) and both biotypes of P. Minor. The recovery was, however, greater in the R biotype than in wheat and it was completely recovered within 24 h. No recovery was recorded in the case of the S biotype of P. minor and a greater recovery time was required for wheat than the R biotype. The higher dose required for growth inhibition in the R biotype and rapid recovery of oxygen evolution and fluorescence coeflicient under in viro conditions together with the absence of selectivity in vitro suggests that the target site was unaffected. It can be conjectured that resistance to isoproturon is most probably because of enhanced metabolism or sequestration of isoproturon, resulting in decreased target site delivery.  相似文献   

16.
The degradation of chlorotoluron, 1-(3-chloro-4-methylphenyl)-3,3-dimethylurea, was investigated in laboratory and field-grown wheat and soil. Thin-layer cochromatography and, partially, derivatization and mass spectroscopy were used to elucidate the structures of the metabolites. Wheat treated with 4-methyl[14C]-phenyl-labeled chlorotoluron rapidly metabolized the herbicide using two independent mechanisms: (I) oxidation of the 4-methylphenyl group to yield 4-hydroxy-methylphenyl and 4-carboxyphenyl derivatives; and (II) N-demethylation. Mechanism (I) clearly predominated over mechanism (II). Young wheat degraded the herbicide mainly to 4-hydroxy-methylphenyl derivatives with only a small fraction being additionally N-monodemethylated. Most of both metabolites was conjugated, most probably, with glucose. In straw and grains of mature field-grown summer wheat treated postemergence with labeled chlorotoluron at a rate corresponding to 2 kg active ingredient/hectare 2.8 ppm and 0.12 ppm radioactivity equivalent to chlorotoluron were found, respectively. About 50% of this terminal radioactivity was nonextractable by organic solvents. No chlorotoluron or its N-demethylated derivatives were present in either plant part. About 40% of the radioactivity in straw consisted of 4-carboxyphenyl derivatives half of which were N-mono- or didemethylated. The rest of the terminal radioactivity was mainly in form of the 4-hydroxymethylphenyl derivative of chlorotoluron. Less than 20% of the soluble metabolites was present as conjugates. In soil mechanism (II) exceeded mechanism (I). At harvest of the wheat the 0.4 ppm radioactivity of the 0- to 30-cm soil layer was composed of 43% chlorotoluron, 36% N-mono- and 3% N-didemethylated chlorotoluron, as well as 13% 4-carboxyphenyl derivatives partly N-demethylated.  相似文献   

17.
Prediction of the fate of pesticides in soil is of interest from an environmental (pollution) as well as an agricultural (efficacy, carryover) viewpoint. Two environmental parameters that control microbial degradation of pesticides in soil are moisture and temperature. This study was designed to quantify the impact of soil water content and temperature on microbial degradation rates of the insecticide carbofuran (2, 3-dihydro-2, 2-dimethylbenzofuran-7-yl methyl-carbamate). Carbofuran degradation was determined by monitoring the [ 14 C] carbondioxide production from soils amended with [carbonyl- 14 C]carbofuran. Soils were incubated at seven soil-water tensions over the range of 0–03 to 1–5 MPa, and at five temperatures (10°C to 30°C). The sigmoidal degradation kinetics observed from these incubations were modeled using a general saturation model. For the moisture experiments, maximum rate of hydrolysis and half-life (DT50) were accurately modeled by an exponential relationship. The response of carbofuran degradation to temperature was also well described by an exponential relationship, from which it was estimated that the Q10 associated with the maximum rate was 1.68, and the Q10 for DT50 was 1–89.  相似文献   

18.
BACKGROUND: Variations in soil properties with depth influence retention and degradation of pesticides. Understanding how soil properties within a profile affect pesticide retention and degradation will result in more accurate prediction by simulation models of pesticide fate and potential groundwater contamination. Metolachlor is more persistent than other acetanilide herbicides in the soil environment and has the potential to leach into groundwater. Reasonably, information is needed about the dissipation and eventual fate of metolachlor in subsoils. The objectives were to evaluate the adsorption and desorption characteristics and to determine the dissipation rates of metolachlor in both surface and subsurface soil samples. RESULTS: Adsorption of metolachlor was greater in the high‐organic‐matter surface soil than in subsoils. Lower adsorption distribution coefficient (Kads) values with increasing depth indicated less adsorption at lower depths and greater leaching potential of metolachlor after passage through the surface horizon. Desorption of metolachlor showed hysteresis, indicated by the higher adsorption slope (1/nads) compared with the desorption slope (1/ndes). Soils that adsorbed more metolachlor also desorbed less metolachlor. Metolachlor dissipation rates generally decreased with increasing soil depth. The first‐order dissipation rate was highest at the 0–50 cm depth (0.140 week?1) and lowest at the 350–425 cm depth (0.005 week?1). Degradation of the herbicide was significantly correlated with microbial activity in soils. CONCLUSION: Metolachlor that has escaped degradation or binding to organic matter at the soil surface might leach into the subsurface soil where it will dissipate slowly and be subject to transport to groundwater. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
The persistence of tralkoxydim herbicide in wheat crop and in soil was evaluated under Indian sub-tropical field conditions at two application rates (400 g a.i ha ?1 and 800 g a.i ha ?1). At 400 g a.i ha ?1, tralkoxydim persisted up to 28 days in soil but became non-detectable only after 45 days in the crop. However, at 800 g a.i ha ?1, tralkoxydim residues persisted for 45 days in both soil and crop. The dissipation of the herbicide from both soil and crop appeared to occur in two phases at both rates of application. Each phase followed first-order kinetics. The values of DT50 and DT90 for both soil and crop are reported.  相似文献   

20.
为明确转cry1Ab基因玉米植株残体中Cry1Ab杀虫蛋白在不同条件下的降解动态,选取转cry1Ab基因玉米MON810和Bt11,采用ELISA方法测定4种条件下秸秆中Cry1Ab杀虫蛋白的残留量。结果表明,在不同条件、不同取样时间,2种玉米秸秆中Cry1Ab杀虫蛋白的残留量差异显著;整株秸秆中的Cry1Ab杀虫蛋白降解速度比粉碎后的慢;秸秆粉碎埋入土壤后播种冬小麦,玉米秸秆中Cry1Ab杀虫蛋白降解速度最快,且可完全降解;在不同条件下,MON810玉米秸秆中Cry1Ab杀虫蛋白的降解速度比Bt11玉米慢,MON810和Bt11玉米秸秆中Cry1Ab杀虫蛋白的DT50分别为10.2~207.8、13.6~124.0 d,DT90分别为185.1~368.3、45.2~224.0 d。研究表明,在不同条件下MON810和Bt11玉米秸秆中Cry1Ab杀虫蛋白的降解速度不同,依次为秸秆粉碎后埋在土壤后种植冬小麦秸秆粉碎埋在玉米田土壤中秸秆粉碎后放在地表整株秸秆放在地表。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号