首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, it was evaluated the accumulation of free and two types of liposome‐encapsulated enrofloxacin (LEE) at the doses of 0.25, 0.5 and 1 μg/ml, which were clinically relevant concentrations into monocytes of healthy Anatolian shepherd dogs. Enrofloxacin was encapsulated with two different types of liposome in multilamellar large vesicles (MLV). Type A MLV composed of 15 mg egg phosphatidylcholine and 35 mg cholesterol, Type B MLV composed of phosphatidylcholine (PC), cholesterol and enrofloxacin, in a molar ratio of 1 : 1 : 1. The mean sizes of Type A and Type B liposome were found to be 7.65 and 4.27 μm, respectively. However, the mean encapsulation rate determined of Type A (13 ± 2%) was found lower than Type B liposome (44 ± 3%). The amounts of intracellular enrofloxacin concentrations were determined by high performance liquid chromatography. Type B LEE accumulated significantly higher level into monocytes when compared to free drug or Type A liposome. This study showed that Type B LEE markedly concentrated within monocytes and may improve the antibacterial efficacy of the antibiotic.  相似文献   

2.
Drug use in livestock has received increased attention due to welfare concerns and food safety. Characterizing heterogeneity in the way swine populations respond to drugs could allow for group‐specific dose or drug recommendations. Our objective was to determine whether drug clearance differs across genetic backgrounds and sex for sulfamethazine, enrofloxacin, fenbendazole and flunixin meglumine. Two sires from each of four breeds were mated to a common sow population. The nursery pigs generated (n = 114) were utilized in a random crossover design. Drugs were administered intravenously and blood collected a minimum of 10 times over 48 h. A non‐compartmental analysis of drug and metabolite plasma concentration vs. time profiles was performed. Within‐drug and metabolite analysis of pharmacokinetic parameters included fixed effects of drug administration date, sex and breed of sire. Breed differences existed for flunixin meglumine (P‐value<0.05; Cl, Vdss) and oxfendazole (P‐value<0.05, AUC0→∞). Sex differences existed for oxfendazole (P‐value < 0.05; Tmax) and sulfamethazine (P‐value < 0.05, Cl). Differences in drug clearance were seen, and future work will determine the degree of additive genetic variation utilizing a larger population.  相似文献   

3.
Pharmacokinetic properties and tissue concentrations of enrofloxacin and ciprofloxacin were compared after intramuscular (i.m.) administrations of free and liposome-encapsulated enrofloxacin at the dose of 5 mg/kg body weight (bw). Twelve healthy adult New Zealand white rabbits were used in the experiment. Blood samples were obtained at 10, 20, 40, 60 and 90 min and 2, 4, 6, 8 and 12 h and tissue samples were collected 24 h after injection. Concentrations of drugs in serum were determined by high-performance liquid chromatography. Pharmacokinetics were best described by a two-compartment open model. Results indicated that absorption rate was slow, peak concentration was higher (P < 0.05), and the time to peak concentration (tmax congruent with 1.5 h) was significantly longer (P < 0.05) for liposome-encapsulated enrofloxacin (LEE) when compared with free enrofloxacin. Values of elimination half-life (t1/2beta = 12.9 h) and mean residence time (MRT = 17.6 h) of liposome-encapsulated enrofloxacin were longer (P < 0.05) and total clearance (Cl = 0.43 l/h/kg) was lower than those of free form. Moreover, the distribution volume at steady-state (Vd(ss) = 14.4 l/kg) of enrofloxacin administered encapsulated into liposomes was significantly higher (P < 0.05) than that of free enrofloxacin (FE). The tissue levels of enrofloxacin and ciprofloxacin after LEE injection were not different (P > 0.05) from FE. In conclusion, the result of present study suggest that LEE may be a beneficial and valuable formulation in the treatment of infectious diseases caused by sensitive pathogens in animals, providing sustained drug release from injection side and prolonged therapeutic serum concentrations after i.m. administration.  相似文献   

4.
[Correction added on 23 March 2015, after first online publication: Terminal half‐life values of enrofloxacin is corrected in the fourth sentence of the abstract] Clinically healthy common ringtail possums (= 5) received single doses of 10 mg/kg enrofloxacin orally and then 2 weeks later subcutaneously. Serial plasma samples were collected over 24 h for each treatment phase, and enrofloxacin concentrations were determined using a validated HPLC assay. Pharmacokinetic parameters were determined by noncompartmental analysis. Following oral administration, plasma concentrations were of therapeutic relevance (Cmax median 5.45 μg/mL, range 2.98–6.9 μg/mL), with terminal‐phase half‐life (t½) shorter than in other species (median 3.09 h, range 1.79–5.30 h). In contrast, subcutaneous administration of enrofloxacin did not achieve effective plasma concentrations, with plasma concentrations too erratic to fit the noncompartmental model except in one animal. On the basis of the AUC:MIC, enrofloxacin administered at 10 mg/kg orally, but not subcutaneously, is likely to be effective against a range of bacterial species that have been reported in common ringtail possums.  相似文献   

5.
Clinically normal koalas (n = 6) received a single dose of intravenous enrofloxacin (10 mg/kg). Serial plasma samples were collected over 24 h, and enrofloxacin concentrations were determined via high‐performance liquid chromatography. Population pharmacokinetic modeling was performed in S‐ADAPT. The probability of target attainment (PTA) was predicted via Monte Carlo simulations (MCS) using relevant target values (30–300) based on the unbound area under the curve over 24 h divided by the minimum inhibitory concentration (MIC) (fAUC0–24/MIC), and published subcutaneous data were incorporated (Griffith et al., 2010). A two‐compartment disposition model with allometrically scaled clearances (exponent: 0.75) and volumes of distribution (exponent: 1.0) adequately described the disposition of enrofloxacin. For 5.4 kg koalas (average weight), point estimates for total clearance (SE%) were 2.58 L/h (15%), central volume of distribution 0.249 L (14%), and peripheral volume 2.77 L (20%). MCS using a target fAUC0–24/MIC of 40 predicted highest treatable MICs of 0.0625 mg/L for intravenous dosing and 0.0313 mg/L for subcutaneous dosing of 10 mg/kg enrofloxacin every 24 h. Thus, the frequently used dosage of 10 mg/kg enrofloxacin every 24 h subcutaneously may be appropriate against gram‐positive bacteria with MICs ≤ 0.03 mg/L (PTA > 90%), but appears inadequate against gram‐negative bacteria and Chlamydiae in koalas.  相似文献   

6.
The pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin were investigated in goats after a single intramuscular administration of enrofloxacin at 2.5 mg/kg body weight. The plasma concentrations of enrofloxacin and ciprofloxacin were determined simultaneously by a HPLC method. The peak concentrations (C max) of enrofloxacin (1.13 g/ml) and ciprofloxacin (0.24 g/ml) were observed at 0.8 and 1.2 h, respectively. The elimination half-life (t 1/2), volume of distribution (V d(area)), total body clearance (ClB) and mean residence time (MRT) of enrofloxacin were 0.74 h, 1.42 L/kg, 1329 ml/h per kg and 1.54 h, respectively. The t 1/2, area under the plasma concentration–time curve (AUC) and the MRT of ciprofloxacin were 1.38 h, 0.74 g h/ml and 2.73 h, respectively. The metabolic conversion of enrofloxacin to ciprofloxacin was appreciable (36%) and the sum of the plasma concentrations of enrofloxacin and ciprofloxacin was maintained at or above 0.1 g/ml for up to 4 h. Enrofloxacin appears to be useful for the treatment of goat diseases associated with pathogens sensitive to this drug.  相似文献   

7.
The pharmacokinetics, PK/PD ratios, and Monte Carlo modeling of enrofloxacin HCl‐2H2O (Enro‐C) and its reference preparation (Enro‐R) were determined in cows. Fifty‐four Jersey cows were randomly assigned to six groups receiving a single IM dose of 10, 15, or 20 mg/kg of Enro‐C (Enro‐C10, Enro‐C15, Enro‐C20) or Enro‐R. Serial serum samples were collected and enrofloxacin concentrations quantified. A composite set of minimum inhibitory concentrations (MIC) of Leptospira spp. was utilized to calculate PK/PD ratios: maximum serum concentration/MIC (Cmax/MIC90) and area under the serum vs. time concentration of enrofloxacin/MIC (AUC0‐24/MIC90). Monte Carlo simulations targeted Cmax/MIC = 10 and AUC0‐24/MIC = 125. Mean Cmax obtained were 6.17 and 2.46 μg/ml; 8.75 and 3.54 μg/ml; and 13.89 and 4.25 μg/ml, respectively for Enro‐C and Enro‐R. Cmax/MIC90 ratios were 6.17 and 2.46, 8.75 and 3.54, and 13.89 and 4.25 for Enro‐C and Enro‐R, respectively. Monte Carlo simulations based on Cmax/MIC90 = 10 indicate that only Enro‐C15 and Enro‐C20 may be useful to treat leptospirosis in cows, predicting a success rate ≥95% when MIC50 = 0.5 μg/ml, and ≥80% when MIC90 = 1.0 μg/ml. Although Enro‐C15 and Enro‐C20 may be useful to treat leptospirosis in cattle, clinical trials are necessary to confirm this proposal.  相似文献   

8.
A recrystallized form of enrofloxacin as dehydrate‐HCl (enro‐C) was assessed for bacteriological and clinical cure efficacies in Holstein‐Friesian cows affected of nonsevere clinical mastitis. Treatments were enro‐Csusp (n = 81), treated with a pharmaceutical suspension of enro‐C/quarter; group enro‐Cpd (n = 80) treated as above, but using enro‐C powder suspended in water; group CF (n = 65), treated with ceftiofur HCl/quarter; and group enroR (n = 66), treated with standard enrofloxacin solution (5 mg/kg, intramuscular). Cows had a mean milk production of 31 L/day and were 2‐3 lactational periods old. Treatments were administered every 24 hr for 3 days. Groups treated with enro‐C exhibited statistically significant (p > .05) better clinical cure as compared to groups treated with CF or enroR (95.06%, 96.25%, 67.79%, and 57.55%, for enro‐Csusp, enro‐Cpd, CF, and enroR, respectively). In contrast, probability of bacteriological cure was not statistically different among treatments. Yet, the outstanding clinical and bacteriological cure rates obtained for enro‐C for nonsevere cases of mastitis is superior to previously reported data for parenteral enrofloxacin and other antibacterial‐intramammary treatments. Impact of using enro‐C on the rate and pattern of bacterial resistance, somatic cell counts and milk electric conductivity, must be studied. Also, the use of enro‐C for complicated cases of mastitis should be studied and milk withdrawal times must be accurately established.  相似文献   

9.
Four hundred and eighty mixed‐sex broiler chicks aged 3 h after hatching were allotted according to a completely random design in a 6 × 2 × 2 factorial schedule into two groups of 12 replications of 20 chicks each. The main experimental factors were fasting for 0, 6, 12, 24, 36 and 48 h after chick placement and calcium gluconate (Ca‐glu) injection (0 and 0.6 ml). Live body weight (BW) of chicks decreased linearly (Y = 43.36–0.109BW0 h, r2 = 0.876) as neonatal fasting extended. Injection of 0.6 ml Ca‐glu at 3 h post‐hatching did not affect weight loss of chicks. Yolk residuals (YR) utilized linearly (Y = 5.75–0.062YR, r2 = 0.956) by 0.062 g/h in neonate fasted chicks up to 48 h, showing no effect of Ca‐glu injection. Neonatal fasting periods longer than 12 h increased liver weight (p < 0.05). The mean absolute and proportional (% of BW0 h) breast and leg weight were reduced linearly as neonatal fasting extended (p < 0.05). Serum glucose concentration increased up to 6 h and then reduced linearly to 150 mg/dl after 48‐h fasting. The Ca‐glu treatment influenced serum glucose level for a short period up to 6 h of fasting. Serum Ca concentration sharply increased up to threefolds in the birds received Ca‐glu injection resulting in acute hypercalcemia, then decreased to the initial level after 24‐h feed withdrawal (p < 0.05). The mean serum level for creatinine, uric acid, cholesterol, HDL, albumins and total proteins significantly increased during the fasting periods of 6 to 48 h and significantly elevated in the birds receiving 0.6‐ml Ca‐glu injection compared with the non‐treated chicks (p < 0.05). It was concluded that subcutaneous administration of 0.6 ml Ca‐glu in the chick's neck did not suitably support the increased metabolic demands for glucose and calcium in feed‐deprived neonate chicks.  相似文献   

10.
In this study, it was evaluated the accumulation of free and two types of liposome-encapsulated enrofloxacin (LEE) at the doses of 0.25, 0.5 and 1 microg/ml, which were clinically relevant concentrations into monocytes of healthy Anatolian shepherd dogs. Enrofloxacin was encapsulated with two different types of liposome in multilamellar large vesicles (MLV). Type A MLV composed of 15 mg egg phosphatidylcholine and 35 mg cholesterol, Type B MLV composed of phosphatidylcholine (PC), cholesterol and enrofloxacin, in a molar ratio of 1 : 1 : 1. The mean sizes of Type A and Type B liposome were found to be 7.65 and 4.27 microm, respectively. However, the mean encapsulation rate determined of Type A (13 +/- 2%) was found lower than Type B liposome (44 +/- 3%). The amounts of intracellular enrofloxacin concentrations were determined by high performance liquid chromatography. Type B LEE accumulated significantly higher level into monocytes when compared to free drug or Type A liposome. This study showed that Type B LEE markedly concentrated within monocytes and may improve the antibacterial efficacy of the antibiotic.  相似文献   

11.
The hypothesis that a local serotonergic network might also exist in the follicle of mares remains poorly documented, with exception for humans and laboratory species. For this reason, the aim of the present study was to clarify this possibility, investigating intrafollicular serotonin concentrations of the cycling mare at ovulation time. Sixty ovaries collected from 30 clinically healthy mares of slaughterhouse meat production with clinically normal reproductive tracts after slaughtering were evaluated. Blood samples were taken prior to sacrifice. Follicles were classified in three categories in relation to size, as small (20–30 mm), medium (31–40 mm) and large (>41 mm), and the follicular fluid samples were extracted from each follicle. Intrafollicular and systemic serotonin (5‐HT), oestradiol‐17β (E2) and progesterone (P4) were determined by means of enzyme‐linked immunosorbent assay and RIA, respectively. Intrafollicular 5‐HT, E2 and P4 concentrations were higher than systemic ones (p < .05). 5‐HT concentrations increased in larger compared to medium follicles, without differences compared to small size follicles (p < .05). 5‐HT and E2 (r = .79) and 5‐HT and P4 (r = .79; p < .05) were positively correlated. 5‐HT and P4 concentrations in follicular fluid increased progressively with the increase in follicular size (p < .05). Follicle diameter and E2 (r = .85) and P4 (r = .68) were correlated (p < .05). Since serotonin interacts with steroids, its role on steroidogenesis during growth of the dominant follicle may be suggested.  相似文献   

12.
13.
The pharmacokinetic–pharmacodynamic (PK/PD) modeling of enrofloxacin data using mutant prevention concentration (MPC) of enrofloxacin was conducted in febrile buffalo calves to optimize dosage regimen and to prevent the emergence of antimicrobial resistance. The serum peak concentration (Cmax), terminal half‐life (t1/2K10), apparent volume of distribution (Vd(area)/F), and mean residence time (MRT) of enrofloxacin were 1.40 ± 0.27 μg/mL, 7.96 ± 0.86 h, 7.74 ± 1.26 L/kg, and 11.57 ± 1.01 h, respectively, following drug administration at dosage 12 mg/kg by intramuscular route. The minimum inhibitory concentration (MIC), minimum bactericidal concentration, and MPC of enrofloxacin against Pasteurella multocida were 0.055, 0.060, and 1.45 μg/mL, respectively. Modeling of ex vivo growth inhibition data to the sigmoid Emax equation provided AUC24 h/MIC values to produce effects of bacteriostatic (33 h), bactericidal (39 h), and bacterial eradication (41 h). The estimated daily dosage of enrofloxacin in febrile buffalo calves was 3.5 and 8.4 mg/kg against P. multocida/pathogens having MIC90 ≤0.125 and 0.30 μg/mL, respectively, based on the determined AUC24 h / MIC values by modeling PK/PD data. The lipopolysaccharide‐induced fever had no direct effect on the antibacterial activity of the enrofloxacin and alterations in PK of the drug, and its metabolite will be beneficial for its use to treat infectious diseases caused by sensitive pathogens in buffalo species. In addition, in vitro MPC data in conjunction with in vivo PK data indicated that clinically it would be easier to eradicate less susceptible strains of P. multocida in diseased calves.  相似文献   

14.
The aim of this study was to evaluate the effect of leptin administration during superovulation on in vivo goat embryo production. Ten mature does were superovulated with 133 mg follicle‐stimulating hormone (FSH) i.m. in six descending doses at 12‐h intervals. The goats received 4.8 μg/kg human recombinant leptin s.c. (leptin group, n = 5) or phosphate‐buffered saline (PBS) (control group, n = 5) with the first and second FSH doses. The does were mated and subjected to embryo collection by transcervical technique 6 days later. The total number of cells per embryo and the number of cells with fragmented DNA were assessed in selected blastocysts by combining Hoechst 33342 and terminal dUTP nick‐end labelling (TUNEL) staining. Plasma concentrations of oestradiol (E2) and progesterone (P4) were determined by electrochemiluminescence from the day of FSH treatment, on the day of superovulatory oestrus and on the day before embryo collection. Compared with the control group, the does that received leptin had a higher number of transferable embryos (p < 0.005), fewer embryos classified as degenerated (p < 0.001) and fewer TUNEL‐positive cells/blastocyst (p < 0.001). The number of transferable embryos was positively correlated with E2 concentrations on day of oestrus (r = 0.562; p < 0.01) and P4 concentrations on the day of embryo collection (r = 0.912; p < 0.001). We concluded that in vivo leptin administration during FSH treatment improved embryo quality and affected ovarian steroidogenesis in superovulated goats.  相似文献   

15.
The link between energy availability, turnover of energy substrates and the onset of inflammation in dairy cows is complex and poorly investigated. To clarify this, plasma inflammatory variables were measured in mid‐lactating dairy cows allocated to three groups: hyperinsulinemic hypoglycaemic clamp, induced by insulin infusion (HypoG, n = 5); hyperinsulinemic euglycaemic clamp, induced by insulin and glucose infusion (EuG; n = 6); control, receiving a saline solution infusion (NaCl; n = 6). At 48 h after the start of i.v. infusions, two udder quarters per cow were challenged with 200 μg of E. coli lipopolysaccharide (LPS). Individual blood samples were taken before clamps, before LPS challenge (i.e. 48 h after clamps) and 6.5 h after. At 48 h, positive acute phase proteins (posAPP) did not differ among groups, whereas albumin and cholesterol (index of lipoproteins), negative APP (negAPP), were lower (p < 0.05) in EuG compared to NaCl and HypoG. The concentration of IL‐6 was greater in EuG (p < 0.05) but only vs. HypoG. At 6.5 h following LPS challenge, IL‐6 increased in the NaCl and EuG clamps (p < 0.05), while TNF‐α increased (p < 0.05) in the EuG only. Among the posAPP, haptoglobin markedly increased in EuG (p < 0.05), but not in NaCl (p = 0.76) and in HypoG; ceruloplasmin tended to decline during LPS challenge, the reduction was significant when all animals were considered (p < 0.05). Conversely, all the negAPP showed a marked reduction 6.5 h after LPS challenge in the three groups. In conclusion, EuG caused an inflammatory status after 48‐h infusion (i.e. decrease of negAPP) and induced a quicker acute phase response (e.g. marked rise of TNF‐α, IL‐6) after the intramammary LPS challenge. These data suggest that the simultaneous high availability of glucose and insulin at the tissue‐level makes dairy cows more susceptible to inflammatory events. In contrast, HypoG seems to attenuate the inflammatory response.  相似文献   

16.
The objective of this field trial was to determine if vaccination against Haemophilus parasuis serovar 5 (HPS 5) and pathogenic serotypes of Escherichia coli would improve nursery pig performance in an outdoor unit in different seasons. The unit was concurrently infected with HPS 5 and with different serotypes of E. coli. All piglets were born to HPS 5 vaccinated sows. The trial was carried out in four (two summer and two winter) groups. Group 1 (E. coli and HPS vaccinated, summer season) (n = 362): Piglets were vaccinated pre‐weaning with inactivated E. coli‐VT2e‐toxin and post‐weaning against HPS 5. Group 2 (non‐vaccinated, summer season) (n = 349): Piglets were not vaccinated. Group 3 (E. coli and HPS vaccinated, winter season) (n = 358): The animals were analogously treated as Group 1. Group 4 (non‐vaccinated, winter season) (n = 353): Piglets were not vaccinated. The following parameters were evaluated: A: average daily nursery weight gain (ADG), B: nursery mortality, C: feed efficiency (FE). No significant weight differences were detected within the vaccinated and non‐vaccinated summer or winter raised groups of weaners. Summer raised weaners were significantly (P<0.05) heavier from day 35 on than winter raised animals. ADG and FE of summer raised pigs were significantly better (weeks 1–3 P<0.05; fourth week post‐weaning P<0.01) during the nursery period than that of the winter raised groups. Winter raised vaccinated weaners showed during the last week of nursing significantly (P<0.05) better daily gain and feed efficiency compared with the non‐vaccinated winter raised animals. Non‐significant ADG and FE differences were detectable between the summer raised vaccinated or non‐vaccinated groups of pig. Winter raised non‐vaccinated animals suffered significantly (P<0.05) higher nursery mortality (10.63%) compared to the winter raised vaccinated animals. Implication: In cases of concurrent infections with HPS 5 and with different serotypes of E. coli, especially during winter season, vaccination against both diseases is suggested.  相似文献   

17.
Very small follicles (<3.0 mm diameter) are over‐represented on the surface of ovaries of non‐cycling pigs, and the oocytes collected from these follicles generally have reduced developmental competence in vitro. This study examined the effect of follicle size on the nuclear maturation (n = 608), the potential of parthenogenetic activation (n = 243) and the cyclic AMP (cAMP) content of pre‐pubertal porcine oocytes (n = 480). In addition, the influence of follicle size on steroid hormone synthesis was analysed. Cumulus oocyte complexes (COCs) flushed from small (2.5–4.0 mm) or large (4.5–6.0 mm) ovarian follicles were cultured for 0, 28 and 46 h. After 46 h of IVM, a greater proportion of oocytes from 4.5‐ to 6.0‐mm follicles reach metaphase II (MII) compared with those from follicles with 2.5–4.0 mm of diameter (96.1 vs 77.0%, respectively; p < 0.001). Parthenogenetic activation of oocytes from large follicles produced higher developmental rates than oocytes from large follicles (p < 0.05). At 28 h, the IVM medium with oocytes from large follicles contained significantly more 17ß‐oestradiol (E2) than the medium with oocytes from small follicles (5.55 vs 3.45 ng/ml, respectively; p < 0.05) and at 46 h, the medium with oocytes from small follicles contained significantly more progesterone (P4) than the medium with oocytes from large follicles (276.7 vs 108.2 ng/ml, respectively, p < 0.05). Porcine oocytes from large follicles have higher nuclear and cytoplasmic maturation capacities, but the differences did not appear to be cAMP‐mediated. Our findings also suggest that COCs from small follicles undergo more intensive luteinization than COCs from large follicles. The results show that oocytes from follicles with a diameter greater than 4.0 mm are more suitable for in vitro studies.  相似文献   

18.

Objectives

Glutathione‐S‐transferases (GSTs) detoxify reactive xenobiotics, and defective GST gene polymorphisms increase cancer risk in humans. A low activity GST‐theta variant was previously found in research beagles. The purpose of our study was to determine the molecular basis for this phenotype and its allele frequency in pet dogs.

Methods

Banked livers from 45 dogs of various breeds were screened for low GST‐theta activity by the substrate 1,2‐dichloro‐4‐nitrobenzene (DCNB), and were genotyped for variants in a novel canine GST gene, GSTT5. Whole‐genome sequences from 266 dogs were genotyped at one discovered variant GSTT5 locus.

Results

Canine livers ranged 190‐fold in GST‐theta activities, and a GSTT5 exon coding variant 385_390delGACCAG (Asp129_Gln130del) was significantly associated with low activity (P < 0.0001) and a marked decrease in hepatic protein expression (P = 0.0026). Recombinant expression of variant GSTT5 led to a 92% decrease in Vmax for DCNB (P = 0.0095). The minor allele frequency (MAF) for 385_390delGACCAG was 0.144 in 45 dog livers, but was significantly higher in beagles (0.444) versus nonbeagles (0.007; P = 0.0004). The homozygous genotype was significantly over‐represented in Pembroke Welsh corgis (P < 0.0001) based on available whole‐genome sequence data.

Conclusions

An Asp129_Gln130del variant in canine GSTT5 is responsible for marked loss of GST‐theta enzyme activity. This variant is significantly over‐represented in purpose‐bred laboratory beagles and in Pembroke Welsh corgis. Additional work will determine the prevalence of this variant among other purebred dogs, and will establish the substrate range of this polymorphic canine enzyme with respect to common environmental carcinogens.  相似文献   

19.
The goal of this study was to confirm the vasopressor and cardiac effects of POTENAY® INJETÁVEL (POT), a mephentermine‐based product, given to cattle with induced vascular/cardiac depression. Ten healthy Holstein cattle (206 ± 13 kg) followed a randomized‐complete‐block design (RCBD) utilizing crossover study design. Each animal randomly received (1 ml/25 kg, IM) of either POT (= 10) or volume‐matched placebo control (0.9%NaCl, CP,= 10). A subset of animals (= 5) received POT first (day 0) while the remaining (= 5) received CP; after a six‐day washout period, cattle received the opposite compound. Animals were anesthetized and catheterized for systemic/left ventricular hemodynamic monitoring. Myocardial dysfunction/hypotension was induced by increasing the end‐tidal isoflurane concentration until arterial blood pressure was 20% lower than at baseline and remained stable. Once the animal was determined to be hypotensive and hemodynamically stable, steady‐state hypotensive baseline data (BL2) were acquired, and treatment with either POT or CP was given. Data were acquired post‐treatment at every 15 min for 90 min. POT improved cardiac output (+68 L/min, ±14%, < 0.05), MAP (+14 mmHg, ±4%, < 0.05), HR (+22 bpm, ±8%, < 0.05), and peak rates of ventricular pressure change during both systole (dP/dtmax: +37 mmHg/s ±13%, < 0.05) and diastole (dP/dtmin: +31 mmHg/s, ±7%, < 0.05). No improvements were noted following placebo‐control administration. Results indicate that POT improves cardiac performance and systemic hemodynamics in cattle with induced cardiovascular depression when given as single intramuscular injection.  相似文献   

20.
Enrofloxacin, a key antimicrobial agent in commercial avian medicine, has limited bioavailability (60%). This prompted its chemical manipulation to yield a new solvate‐recrystallized enrofloxacin hydrochloride dihydrate entity (enroC). Its chemical structure was characterized by means of mass spectroscopy, Fourier transformed infrared spectroscopy, X‐ray powder diffraction, and thermal analysis. Comparative oral pharmacokinetics (PK) of reference enrofloxacin (enroR) and enroC in broiler chickens after oral administration revealed noticeable improvements in key parameters and PK/PD ratios. Maximum serum concentration values were 2.61 ± 0.21 and 5.9 ± 0.42 μg/mL for enroR and enroC, respectively; mean residence time was increased from 5.50 ± 0.26 h to 6.20 ± 0.71 h and the relative bioavailability of enroC was 336%. Considering Cmax/MIC and AUC/MIC ratios and the MIC values for a wild‐type Escherichia coli O78/H12 (0.25 μg/mL), optimal ratios will only be achieved by enroC (Cmax/MIC = 23.6 and AUC/MIC = 197.7 for enroC; vs. Cmax/MIC = 10.4 and AUC/MIC = 78.1 for enroR). Furthermore, enroC may provide in most cases mutant prevention concentrations (Cmax/MIC ≥ 16). Ready solubility of powder enroC in drinking water at concentrations regularly used (0.01%) to provide an additional advantage of enroC in the field. Further development of enroC is warranted before it can be recommended for clinical use in veterinary medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号