首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationships between the clay mineralogy and the primary mineral association were studied on seventeen Andosol samples (<3,000 years old) collected from Aomori, Hokkaido, and Iwate. Opaline silica, allophane, and imogolite were predominant in the soils derived from volcanic ashes which contained practically no quartz, while opaline silica, crystalline layer silicates, alumina-rich gel-like materials, and allophanelike constituents were abundant in the soils which contained abundant quartz. There was no positive indication of the presence of allophane in any quartz andesitic Andosols. High contents of finely comminuted amphibole and mica in the quartz andesitic volcanic ashes suggested that the crystalline layer silicates are inherited and are not formed pedochemically from amorphous materials.  相似文献   

2.
The clay mineralogy of 22 samples of the Ap horizons of Ando soils was determined by a combination of methods. Of these samples, 15 did and 7 did not contain allophane and imogolite. Opaline silica was found in 4 samples, whereas aluminum—humus complexes, iron oxides and layer silicates were found in all samples. The presence of allophane and imogolite and the absence of opaline silica in a few Ap horizons was related to mixing of A1 horizons and subsoils by cultivation and to lower supplies of organic matter relative to the amounts of aluminum released from volcanic ash by weathering. The contents of 2:1 and 2:1:1 layer silicates and their intergrades were larger in soils in which quartz predominated in fine fractions. It was inferred that aluminum bound with humus and in allophane-like constituents, rather than aluminum in allophane and imogolite, is important in reactions with phosphate and fluoride.  相似文献   

3.
Towada Ando soils consisted of five soils—Towada-a (1,000 years old), Towada-b (2,000 years old), Chuseri (4,000 years old), Nanbu (8,600 years old), and Ninokura soils (10,000 years Amorphous clay materials of these soils taken at different localities were studied by the combined use of selective dissolution and differential infrared spectroscopy, X-ray analysis, electron microscopy, etc.

The main clay minerals of Towada-a soils, present-day soils, were montmorillonite-vermic-ulite chloritic intergrades and opaline silica, or these minerals and allophane in the humus horizons, and allophane in the non-humus ones. Towada-b soils overlain by the Towada-a soils showed the clay mineralogical constituents similar to those of Towada-a soils. However, allophane was one of the main clay minerals in all the humus horizons as well as non-humus ones. The main clay minerals of Chuseri soils were allophane and layer silicates consisting chiefly of chloritic intergrades and chlorite in the humus horizons, and allophane in the non-humus ones. Opaline silica was present in minor amounts in the humus horizons of Chuseri soils, but nearly absent in Nanbu and Ninokura soils.

There were remarkable differences in the clay mineralogical composition of Nanbu and Ninokura soils with differences of their environmental conditions. Allophane and imogolite Were dominant in the clay fractions of both humus and non-humus horizons of very shallowly buried Nanbu soil which was subjected to the strong leaching process. Allophane was the main clay mineral of deeply buried Nanbu and Ninokura soils which showed the absence of notable accumulation of bases and silica. On the contrary, halloysite with a small amount of siliceous amorphous material appeared in very deeply buried Nanbu and Ninokura soils where bases and silica were distinctly accumulated. The amounts of halloysite in the clay fractions were larger in the humus horizons than non-humus ones, and in Ninokura soil than Nanbu soil.

Soil age, soil organic matter, and depositional overburden of tephras were observed to be conspicuous among various factors relating to the weathering of amorphous clay materials in Towada Ando soils.  相似文献   

4.
Abstract

A method to determine the contents of imogolite and Al-rich allophane (Sil Al ? 1 : 2) in volcanic ash soils was presented. The method is based on the (1) assessment of the presence of Al-rich allophane in clays by successsive extraction with dithionite-citrate and oxalate-oxalic acid, (2) trimethylsilylation of soil clay with a mixture of hexamethyldisiloxane, HCl, and isopropyl alcohol, and determination of the content of monomeric Si based on the trimethylsilyl derivative of monomeric orthosilicate anion by gas / liquid chromatography, (3) determination of the total content of imogolite and Al-rich allophane based on the content of monomeric Si from imogolite, (4) determination of the imogolite content by Thermogravimetry (TG )-Differential Thermal Analysis (DTA) based on the weight loss due to endothermic dehydroxylation with maximum values at ca. 386°C, (5) calculation of the Al-rich allophane content by subtracting the imogolite content from the total content of these minerals, and (6) evaluation of the imogolite and Al-rich allophane content of soil by multiplying clay content of soil and the two mineral content of clay. The trimethylsilylation analysis was found to be reproducible, and the estimated total amounts of two minerals in clays by this method were adequately approximated to those evaluated from the amount of Si (= Sio) extracted with oxalate-oxalic acid after extraction with dithionite-citrate. The variation in the abmldance of two minerals in the soil horizons of volcanic ash soils from the San'in region indicated that this method is suitable for the profile-study of volcanic ash soils.  相似文献   

5.
A contrasting occurrence of clay minerals was found within a soil profile which was derived from volcanic materials in the suburbs of Fukuoka-city, Northern Kyushu. The soil profile is located on an isolated terrace, and the morphological characteristics of the soil correspond exactly to Andosols, so-called Kuroboku soils or Humic Allophane soils.

The clay fraction of upper horizons of the soil consists largely of alumina-rich gel-like materials, gibbsite, and layer silicates such as chlorite and chloritevermiculite intergrades, while that of lower horizons is composed of allophane and gibbsite or halloysite. There was no positive indication of allophane in the upper horizons. Corresponding with the clay mineralogical composition, quartz is abundant in the fine sand fraction of the upper horizons, while the mineral is very scarce or none in the lower horizons, suggesting a close relation between the petrological nature of parent volcanic materials and the mineralogical composition of weathering products. The dominant clay mineral in the volcanic 1.10il might be dependent on the petrological nature of parent materials, and allophane is mostly formed from andesitic materials, and alumina-rich gel-like materials and layer silicates have come from quartz andesitic materials. Allophane would transform to gibbsite or halloysite according to weathering conditions, and aluminarich gel-like materials change to gibbsite under a well-drained condition.

The soil materials have been so greatly weathered that some horizons contain gibbsite of even more than 40 per cent or halloysite over 70 per cent. The morphology and mineralogy are quite similar to so-cailed “non-volcanic Kuroboku soils.”  相似文献   

6.
Abstract

The clay mineralogy of seven Dystrandepts developed on basalts in Northland (New Zealand), the French Massif Central and Western Oregon (U.S.A.) was determined by selective dissolution—differential infrared spectroscopy in combination with chemical, X-ray diffrac tion, electron microscopic and thermogravimetric analyses. Of 14 soil samples, 6 from Northland and Cantal (French Massif Central) contained allophane and imogolite, whereas the remaining 8 did not. Allophane-like constituents and/or “alumina” were found in all the samples, and opaline silica was present in three A1 horizons. The contents of 2 : 1–2 : 1 : 1 layer silicates and their intergrades varied somewhat among the samples. Predominant volcanic glass shards in the Northland Dystrandepts and quartz in the Western Oregon Dystrandepts indicated that their parent materials were not restricted to basalt.  相似文献   

7.
The electric charge characteristics of four Ando soils (A1 and μA1) and a Chernozemic soil (Ap) were studied by measuring retention of NH4+ and Cl at different pH values and NH4Cl concentrations. No positive charge appeared in the Ando soils at pH values 5 to 8.5 except for one containing allophane and imogolite. The magnitude of their negative charge (CEC; meq/l00g soil) was dependent on pH and NH4Cl concentration (C; N) as represented by a regression equation: log CEC =a pH +b log C +c, where the values of a and b were 0.113–0.342 and 0.101–0.315, respectively. Unlike the Chernozemic soil, Ando soils containing allophane, imogolite, and/or 2:1–2:1:1 layer silicate intergrades and humus showed a marked reduction of cation retention as pH decreased from 7 to 5. This was attributed to the charge characteristics of the clay minerals and to the carboxyl groups in humus being blocked by Al and Fe.  相似文献   

8.
The mineralogy of the clay fractions separated from the B horizons of two Hydrandepts (Hilo and Akaka soils), a Torrox (Molokai soil) and a Humitropept (Kolekole soil) was determined by a combination of methods.The Hydrandept B horizons were characterized by predominance of hydrous non-crystalline alumina and iron oxides associated with considerable amounts of humus and with very small amounts of silica. Allophane, allophane-like constituents and imogolite were present but in minor amounts. Gibbsite, goethite, chlorite and illite were also present as accessory minerals.The Torrox and Humitropept B horizons were characterized by predominance of kaolinite, hematite and goethite. The iron oxide minerals were present as fine particles (40–80 A diameter) often clustered to form larger aggregates. Neither imogolite nor allophane and allophane-like constituents were detected. Considerable amounts of dithionite-citrate soluble Al and humus were, however, present in the Humitropept B horizon, which may reflect the effect of an admixture of volcanic ash to the parent material.  相似文献   

9.
Allophane has been known to occur widely in volcanic ash soils in Japan and New Zealand. However, exact knowledge of its nature has not been well established, mainly because of extreme difficulty to separate it in pure state and of its x-amorphous nature. In the course of the studies on soil allophane, it was noticed that certain Ando soils contained two different mineral colloids together, in addition to crystalline clay minerals and free sesquioxides. X-ray examination revealed that one was x-amorphous colloid which would be called allophane, and the other an unknown colloid of low crystallinity. Imogolite*** Imogolite will be described in a subsequent paper by the present authors. was proposed as the name of the latter colloid by the present authors after imogo in which imogolite was first found. Imogo is a brownish yellow, volcanic ash soil. in the Kuma basin in the Kumamoto Prefecture3). When deferration treatment is applied to the soils, allophane disperses both in an acid and alkaline media, whereas imogolite disperses in an acid medium and flocculates in an alkaline one.  相似文献   

10.
Abstract

The aluminum solubility of acidified soils both from furrows and under tree canopies of a tea garden was studied using equilibrium experiments in 0.01 mol L?1 CaCl2 solution systems. The soils were originally classified as allophanic Andosols. The furrow soils were more severely acidified because of the heavy application of nitrogen fertilizer, especially in the upper soil horizons (pH[H2O] of 3.6–3.8 in the A1 and 2A2 horizons). These acidified soils were characterized by the dissolution of allophanic materials (allophane, imogolite and allophane-like materials) and by an increase in Al–humus complexes. Ion activity product (IAP) values of the strongly acidified soil horizons were largely undersaturated with respect to imogolite (allophanic clay) or gibbsite. Plots of p(Al3+) as a function of pH strongly indicated that Al solubility of the soils was largely controlled by Al–humus complexes, especially in the A1 horizon. In the canopy soils, which were more weakly acidified (pH[H2O] 4.9–5.0), Al solubility was close to that of gibbsite and allophanic materials, indicating that the solubility is partly controlled by these minerals.  相似文献   

11.
Abstract

The greenhouse industry aims to decrease phosphate discharge to help reduce eutrophication of surface waters, to reduce fertilizer consumption, and to maintain a more constant level of plant‐available phosphate. Iron and aluminum oxides and some aluminosilicate minerals are efficient sorbents for phosphate. The phosphate adsorption characteristics of synthetic hematite (α‐Fe2O3), goethite (α‐FeOOH), and allophane (Si3Al4O12 nH2O), and a commercial alumina (A12O3) were evaluated to determine their potential for reducing phosphate leaching from soilless root media. The pH dependence of phosphate adsorption and maximum adsorption capacities were determined by reacting each mineral with various levels of phosphate between pH 4.0 and 9.0 in a 10 mM potassium chloride (KCl) background solution. Adsorbed phosphate was determined by loss from solution. Adsorption envelopes (adsorbed phosphate versus pH) showed a decrease in phosphate adsorption with increasing pH, particularly for alumina and allophane, and at greater added phosphate concentrations. The maximum adsorption capacities per unit mass of the minerals at pH 5.4 decreased in the order allophane > alumina ? goethite > hematite. When expressed on a surface area basis, the order of maximum adsorption capacity remains the same except that alumina exceeded that of goethite. The allophane, goethite, and alumina sorbed enough phosphate that 3 to 9 g of these minerals would retain the amount of phosphate required for a high nutrient element requiring plant such as chrysanthemum.  相似文献   

12.
A characteristic gel-like substance has been noticed around weathered pumice grains in the pumice beds of Kanuma near Utsunomiya and of Kitakami, Iwate prefecture. This substance was first studied by SHIOIRI (6) in 1934, and reported as allophane according to its chemical composition, refractive index, and dye-adsorbing nature similar to the colloid of volcanic ash soils of the Onji-type. Recently, KUWANO and MATSUI (5) remarked that the colloidal film in the Kanuma and Imaichi pumice beds diffracted x-rays at about 8 and 33 Å, and they presumed that this substance might be an early transitional material from allophane to some crystalline clay minerals. KANNO (2) and KANNO et al. (3) examined this gel-like substance from Imaichi and Kitakami districts precisely by the x-ray diffraction, differential thermal, infrared spectroscopical, electron microscopical, and chemical methods, and they concluded that the substance was a mixture of poorly crystallized montmorillonite, allophane in various weathering stages, and free sesquioxide, although there was no positive evidence of montmorillonite. YOSHINAGA and AOMINE (7) noticed that the properties of imogolite designated by themselves bore a striking likeness to those of the gel-like substance reported by KANNO et al. (3), and they considered that both substances were essentially of the same kind irrespective of occurrence.  相似文献   

13.
Gustafsson et al. in a recent paper in this Journal reported the effects of adding HCl, AlCl3 and Si(OH)4 on the pH and concentrations of Al and Si in 1:1 soil:solution systems at three different temperatures, using samples of soil from an allophanic Bs horizon. Contrary to their conclusions, their observations are compatible with Al in the soil solution being in equilibrium with a proto‐imogolite allophane; it is neither necessary nor even plausible to postulate a hypothetical Al hydroxide. Concentrations of 0.2–0.4 mm Si in the equilibrated solutions at pH 5 could arise from an amorphous silica, probably phytoliths. They cannot come from the allophane.  相似文献   

14.
The clay mineralogical composition of soils on volcanic ashes from Mashū and Kamuinupuri-dake volcanoes, Hokkaido, which are rich in cristobalite, was determined using petrological, X-ray diffraction, differential thermal, and selective dissolution and differential infrared spectroscopic methods.

The cristobalite occurred in abundance in every size of fraction from coarse sand to clay and every soli from approximately 1,700 to 8,400 years old, and was concluded to be of igneous origin. The major clay minerals were allophanelike constituents and allophane with some layer silicates as the minor clay mineral, being similar to those of andesitic ash soils and different from those of volcanic ash soils containing abundant quartz. The quartz of volcanic ashes was presumed to bederived from the groundmass-equivalent portion of the ashes which had been formed from magma at a low temperature.  相似文献   

15.
Eight samples of Ando soil A1 and buried A1 horizons of different ages were fractionated into clay-, silt-, and sand-size separates, and the yields and carbon contents of these separates were determined. The clay-size separates were subjected to two series of successive extractions, 1) 0.1 M Na4 P2 O7/2% Na2 CO3/0.5 M NaOH and 2) dithionite-citrate/2% Na2 CO3/0.5 M NaOH; and to difference infra-red spectroscopy for identification of the extracted constituents. The result indicated that humus evolves from forms with a very low complexing ability for Al and Fe into forms that complex Al and Fe in the A1 horizon, and that humus further interacts with allophane-like constituents, allophane and imogolite in the buried A1 horizon. These reactions between humus and inorganic constituents result in formation of silt- and sand-size aggregates which are stable to sonic wave treatment, but are broken down into finer particles upon boiling with H2 O2.  相似文献   

16.
High phosphate (Pi) sorption in soils is a serious limiting factor for plant productivity and Pi fertilization efficiency, particularly in highly weathered and volcanic ash soils. In these soils, the sorbed Pi is so strongly held on the surfaces of reactive minerals that it is not available for plant root uptake. The use of phosphate-solubilizing microorganisms (PSM) capable of Pi desorption seems to be a complementary alternative in the management of these soils. The aim of this study was to evaluate the effectiveness of the soil fungus Mortierella sp., a known PSM, to desorb Pi from four soil minerals differing in their Pi sorption capacity. The fungus was effective in desorbing Pi from all tested minerals except from allophane, and its desorption depended on the production of oxalic acid. The effectiveness of the fungus to desorb Pi was ranked as montmorillonite > kaolinite > goethite > allophane. The quantity of desorbed Pi increased by increasing the amount of sorbed Pi. The Pi sorption capacity expressed as P0.2 value (amount of P required to increase a solution P concentration up to 0.2 mg L?1) was a good indicator of the effectiveness of Mortierella sp. to desorb Pi from soil minerals.  相似文献   

17.
SYNTHETIC ALLOPHANE AND IMOGOLITE   总被引:1,自引:0,他引:1  
In order to prepare allophane and imogolite in the laboratory, solutions containing l–2× 10–3 M orthosilicic acid and 4–0.5 × 10–3 M A1C13 (SiO2/Al2O3 molar ratio; 0.5, 1.0, 2.0, 4.0 and 8.0) were heated at 95–100°C for 113 hours after addition of NaOH (NaOH/Al molar ratio; 1.0, 2.0, 2.8 and 3.0). Boehmite was found in the precipitates from all solutions with initial SiO2/Al2O3 ratios of 0.5. Imogolite was found with allophane II in the products from solutions with SiO2/Al2O3 ratios of 1.0 or greater and with NaOH/Al ratios of 2.8 or less (final pH 5.0), whereas allophane I was found in the precipitates from solutions with the same SiO2/Al2O3 ratios but with the NaOH/Al ratio of 3.0 (final pH = 5.0–6.3). The mode of formation, chemical composition, infrared spectra, electron micrographs, electron diffraction patterns and differential thermal analysis curves of synthetic imogolite and allophanes (I and II) were compared with those of their natural counterparts.  相似文献   

18.
For the past ten years much work has been carried out on clay minerals of volcanic ash soils. Most investigators have reported that allophane is dominant among clay minerals of volcanic ash soils and crystallizes to halloysite or meta-halloysite with the advance of weathering (1–8). On the other hand, UCHIYAMA, MASUI and ONIKURA (1960) found that montmorillonite predominates in the clay fraction of volcanic ash soil in Kawatabi (9). Furthermore, MASUI, SHOJI and UCHIYAMA (1966) showed that the major crystalline clay minerals of volcanic ash soils in the Tohoku district are montmorillonite, vermiculite, intergradient montmorillonite-vermiculite and chlorite (10). They also showed that these minerals increase with the advance of weathering and that kaolin minerals are minor constituents.  相似文献   

19.
Abstract

Properties and classification of four selected volcanic ash soils from Abashiri, Hokkaido were studied and the transition of Andisols to Mollisols was discussed. Two of the four pedons (Brown Andosol and Cumulic Andosol)1 showed morphological, clay mineralogical, physical, and chemical properties common to most Andisols in Japan. However, the properties of the other two pedons (Acid Brown Forest soil and Brown Forest soil)1 were considerably different from those of common Andisols in Japan. It was found that the changes in the andic soil properties or transition of Andisols to Mollisols was closely related to the progression of clay weathering, mainly the transformation of noncrystalline clay materials to halloysite. One of the four pedons (Brown Forest soil)1had the clay fraction dominated by halloysite from the uppermost horizon down to the bottom of the profile and satisfied both andic and mollic requirements. Thus we concluded that the pedon is a transitional soil between Andisols and Mollisols and that the transition is closely related to the duration of surface weathering under relatively weak leaching conditions. The four pedons were classified according to the Andisol Proposal (Leamy et al. 1988, New Zealand Soil Bureau) as follows:

Pedon 1: Medial, amorphic (allophane/imogolite), frigid Typic Hapludand (Brown Andosol).1 Pedon 2: Medial, amorphic (allophane/imogolite), frigid Typic Melanudand (Cumulic Andosol).1 Pedon 3: Medial, amorphic (allophane/ imogolite), over kandic, frigid Typic Melanudand (Acid Brown Forest soil).1 Pedon 4: Medial, kandic, frigid Typic Hapludand (Brown Forest soil).1  相似文献   

20.
Laminar opaline silica was first found in the 0.2 to 5 μ fraction and most abundant in the 0.4 to 2 μ fractions of young Japanese Andosols by Shoji and Masui (1969a, b). It was noted that the A horizon of a profile tends to be relatively rich in opaline silica whereas the B or C horizon, in allophane (Shoji and Masui, 1972a, b). They (I972a) distinguished four types of opaline silica particles such as circular, elliptical, rectangular, and rhombic, of which the circular and elliptical types predominate. It has been suggested that the formation of opaline silica is favored by a plentiful supply of soluble silica in the early weathering stage of Andosols, the supersaturation of silica by surface evaporation of soil solution, and the suppression of aluminum activity in the soil solution by the accumulation of soil organic matter (Shoji and Masui, 1972b; Wada and Harward, 1974). The purpose of the present short communication is to describe the occurrence of laminar opaline silica particles in some Oregon Andosols, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号