首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Color change of city refuse during composting process was investigated according to the methods of measurement for color of materials based on the CIE 1931 Standard Colorimetric System. Stimulus value Y (the degree of lightness) and chromaticity coordinates (x, y) were determined with Color Analyzer by measuring relative spectral reflectance. Stimulus value Y of city refuse decreased during composting process, but chromaticity coordinates (x, y) scarcely changed.

Color of various composts, which were produced from city refuse, straw, hog fecal wastes, tree bark, and tree bark mixed with activated sludge, were also investigated by measuring relative spectral reflectance. The shapes of the reflection spectra of city refuse were different from those of the other composts. Colors of the various composts were similar to each other when specified according to their three attributes: value, hue, and chroma (Munsell renotation).

While city refuse was rotting and maturing, stimulus value Yand C/N ratio equally decreased. A positive correlation was found between stimulus value Y and C/N ratio. It was concluded that stimulus value Y can be used as a criterion for determining the degree of maturity of city refuse compost.

The correlation between stimulus value Y and C/N ratio of various composts was also investigated. According to the position on the two coordinates having stimulus value Y and C/N ratio as axe s, various composts were classified into three groups: (i) city refuse compost group, (ii) straw compost group, and (iii) tree bark compost group.  相似文献   

2.
The use of composted municipal refuse on agricultural land requires prior knowledge of the interactions among compost, soil, and plants. Research into the availability of N in highly matured municipal refuse compost is particularly important considering the current concern about groundwater contamination by NO inf3 sup- -N. A greenhouse pot bioassay was conducted to determine the percentage of short-term apparent bioavailable N of a highly matured refuse compost and its relative efficiency in supplying inorganic N to the soil-plant system in comparison with NH4NO3. Municipal refuse (after 165 days of composting) was applied at rates equivalent to 10, 20, 30, 40, and 50 t ha-1 to a ferrallitic soil from Tenerife Island (Andeptic Paludult). NH4NO3 was applied at rates equivalent to the total N content of the compost treatments. Perennial ryegrass (Lolium perenne L.) was grown in 3-kg pots and the tops were harvested at regular intervals after seedling emergence. The compost increased dry matter yield, soil mineral N, and plant N uptake proportional to the applied rate. These increases were significantly higher than the control at an application rate of 20 t ha-1. After 6 months the apparent bioavailable N ranged from 16 to 21%. The relative efficiency was 43% after 30 days. This suggests that large inputs of inorganic N into soil can be obtained with high rates of this kind of compost, with a potential for NO inf3 sup- -N contamination. However, applied at moderate rates in our bioassay (<50 t ha-1), compost showed a low N-supplying capacity to ryegrass, i.e. a small fraction of the mineralized compost N was used by plants in the course of time. This was ascribed to a partial biological immobilization. This pattern of N availability in highly matured municipal refuse compost, positive net mineralization but partial immobilization, is similar to the pattern of N availability in biologically active soils and is therefore extremely interesting for the conservation of N in agro-ecosystems.  相似文献   

3.
Establishment of vegetative cover on coal refuse stabilizes the pile surface and reduces off site deposition of acidic sediments and drainage water. Direct revegetation through the use of by-product amendments would eliminate the need for topsoil cover and provide a beneficial use for by-product materials. This 8 month greenhouse study investigated yard trimmings compost, flue gas desulfurization (FGD) by-product, and agricultural limestone (ag-lime) amendments for direct revegetation of hyper-acidic coal refuse and their effects on leachate and plant quality. Pots (30 cm tall × 15 cm diam) of coal refuse were amended with five rates of compost (0 to 200 g kg?1), with and without sufficient agricultural limestone (ag-lime) to raise refuse pH to 7, and planted with orchardgrass (Dactylis glomerata). Compost increased leachate pH from <2 to 4.4, decreased specific conductance from >17 to <5 mmho cm?1 (due to large decreases in Al, Fe, and S), and decreased leachate concentrations of several trace elements. The pH increase from ag-lime greatly reduced leachate Al, Fe, and S and largely masked any effects of compost addition. Because no plant growth occurred with compost only, after 2 months FGD (200 g kg?1) was added to the upper 1/3 depth of compost-amended coal refuse. The FGD increased refuse pH to the range 4.2 (no compost) to 5.7 (200 g kg?1 compost), decreased leachate Al and Fe, increased leachate B, and allowed vigorous growth of orchardgrass. When combined with FGD, compost increased downward movement of Ca and Mg. Although compost addition decreased plant growth at the first harvest due to N immobilization, application of mineral N fertilizer alleviated this problem in subsequent harvests. Compost did not increase orchardgrass growth when combined with ag-lime. With FGD, however, compost increased orchardgrass growth to levels above that for ag-lime and compost, in spite of increased plant tissue B.  相似文献   

4.
Selected maturity indicators were monitored over a period of 335 days during the degradation of organic wastes subjected to four simple composting procedures, which varied in raw material (garden refuse with and without market refuse) and turning frequency (0×, 6×). All procedures produced mature composts. The inclusion of market refuse and frequent turning generally increased the cation exchange capacity of compost on an ash-free basis. Until day 118 of the composting process, compost samples which contained market refuse in their raw material mixture had the lowest redox potentials after anaerobic incubation. Cress grown on these composts also produced the lowest fresh mass. At a later stage of the composting process, the same composts displayed increased cellulolytic activity. Frequent turning of the compost heaps resulted in greater fluorescein diacetate hydrolysis, a greater occurrence of low-molecular-weight humic compounds and, occasionally, an inhibition of cellulolytic activity. The arginine ammonification assay gave information on the N-status of the composts, rather than on the compost maturity, and suggested that all the composts could be safely applied to soil with no risk of microbial immobilisation of soil N.  相似文献   

5.
The aims of this study were to monitor the changes in physicochemical, including spectroscopic, and biological characteristics during composting of green tea waste–rice bran compost (GRC) and to define parameters suitable for evaluating the stability of GRC. Compost pile temperature reflected the initiation and stabilization of the composting process. The pH, electrical conductivity, NO3 -N content, and carbon-to-nitrogen ratio were measured as chemical properties of the compost. The color (CIELAB variables), humification index (the absorption ratio Q 4/6 = A 472 / A 664 of 0.5 M NaOH extracts), absorption at 665 nm of acetone extracts, and Fourier-transform infrared (FT-IR) spectra were measured to evaluate the organic matter transformation; germination of komatsuna or tomato seeds was measured to assess the potential phytotoxicity of composting materials during composting. No single parameter was capable of giving substantial information on the composting process, the nutrient balance, phytotoxicity, and organic matter decomposition. The FT-IR spectra at 3,300, 2,930, 2,852, and 1,065 cm−1 provided information on the molecular transformation of GRC during composting and they decreased over the composting. Most of the assayed parameters showed no further change after about 90 days of composting suggesting that GRC can be used for agricultural purposes after this period.  相似文献   

6.
Water extracts from fresh wheat and barley straw, straw incubated with Pleurotus ostreatus, and straw compost were studied by IR, 1H NMR, and 13C NMR spectroscopy. During incubation lignin was degraded, water extractability increased, and water extracts were rich in polysaccharides. After composting solubility decreased and the water extracts were rich in aromatic, methoxyl, and carboxyl C, but poor in O-alkyl C indicating that during composting mainly polysaccharides had been mineralized. GPC revealed that water extracts from straw compost contained polysaccharides, peptides, C- and O-substituted aromatics, and alkyl compounds.  相似文献   

7.
In the infrared absorption (IR) spectrum of the water in allophane, two kind of the absorption band within on region is found near 3,450 and 1,650cm-1 associated with O-H stretching vibration and O-H deformation vibration, respectively. The maximum of IR band associated with stretching vibration in allophane specimens dried under the relative humidity of 30% at the room temperature, was situated at 3,467 cm-1 for the Misotsuchi and at 3,461 cm-1 for the Kanumatsuchi (4). The band was shifted to higher wave-number as heating the specimen till 300°C (4). In this note, the situation of IR band associated with O-H deformation vibration of the water adsorbed on allophanes was exactly measured, because it was hardly done in the past.  相似文献   

8.
小麦玉米轮作条件下不同生物质炭对土壤腐殖物质的影响   总被引:2,自引:0,他引:2  
生物质炭是有效的土壤固碳材料.通过1年的田间试验探究了小麦玉米轮作施用花生壳生物质炭和木材生物质炭后盐化潮土腐殖物质(HS)含量及化学结构的变化.试验设置不施肥(CK)、常规单施化肥(T1)、花生壳生物质炭(T2)、木材生物质炭(T3)4个处理.结果表明,与CK和T1处理相比,小麦季和玉米季生物质炭处理的土壤有机碳(s...  相似文献   

9.
Changes in the structural composition of fulvic acids were followed during composting of tannery solid waste after neutralization of its acidity by ammonium or by lime. Different techniques (elemental analysis, Fourier transform infrared (FTIR), 13C-NMR spectroscopy) were applied. During both trials of composting, a decrease of carbon and increase of oxygen occurred, which originated from strong microbial oxidation and preservation of some structures during composting. In fact, Nuclear Magnetic Resonance (NMR) spectra showed the preservation of anomeric or tannin structures around 105 ppm. The infrared (IR) spectral data showed a decrease in the intensity of COO? group bands (1623 and 1399.5 cm?1); this is correlated with a decrease of fulvic acid levels. The variations observed in NMR spectra could be explained by the involvement of COO? groups of certain structures in polycondensing to form humic acids. The fulvic acids remain composed of less polycondensed structures with a –COOH extremity, as supported by a decrease of the C/H ratio. In contrast, in the trial with addition of ammonia a slight increase in N content occurred, a decrease in absorbance in the 1730–1000 cm?1 regions compared to the absorbance around 3400 cm?1, and a strong decrease of carboxyl carbon in the 13C-NMR spectra.  相似文献   

10.
This paper proposes an index for the evaluation of compost maturity based on the evolution of molecular weights of humic acids (HA) during composting. The evolution of HA molecular weight was followed during the composting of both olive mill wastewater (OMW) and olive mill pomace (OMP). The wastes were composted in forced aeration static piles. Samples of the compost were collected at different times during composting. The elution profiles of HA obtained by gel filtration (Sephadex G-150) showed the disappearance of fractions with molecular weights ≤ 50 KDa and the contemporary increase of fraction with molecular weights ≥ 102 KDa. In this range, two fractions can be separated: the first one (A1) with molecular weights greater than 102 KDa and below 2 102 KDa, and the second one (A2) with molecular weight greater than 2 102 KDa. During composting, the ratio A2/A1 tends to reach a constant value which indicates the evolution toward the polymerization of HA. The ratio A2/A1 was named HAEI (Humic Acid Evolution Index). It varies with the material composted and the composting process and represents the maximum possible degree of HA polymerization. A comparison between HAEI and the usually used maturity indexes is also presented.  相似文献   

11.
The decomposition of organic matter of source-separated biowaste during composting was followed during 18 months. Compost samples were fractionated into three parts: (i) hot water soluble extract (HWE) (ii) bitumen fraction and (iii) humic substances (humic acids (HA) and fulvic acids (FA)). Original compost samples and the HA and FA fractions were hydrolyzed with sulfuric acid for hexoses and pentoses. Quantitative spectrophotometric and qualitative GC/MS analyses of monosaccharides as trimethylsilyl ethers of the corresponding alditols were carried out.

During composting, the amount of HA in the organic matter of the compost increased, the amounts of HWE and bitumen decreased and the amount of the FA fraction changed only a little. Carbohydrates were found to be important constituents of biowaste composts and their HA and FA fractions. Elemental analysis (C, N and H) of compost and HA samples showed an increase in the C:H ratio and in unsaturation of compounds during composting. The decrease in the C:N ratio was marginal.

The amounts of hexoses and pentoses in original compost samples and the HA and FA fractions decreased during composting. The sugar alcohols erythritol, xylitol, L-arabitol, ribitol, L-rhamnitol, L-fucitol, D-mannitol, D-glucitol and galactitol were identified in both the HA and FA fractions. 2-Deoxy-D-erythro-pentitol was identified in one HA fraction and inositol in two FA fractions. An analysis of gas chromatographic data for relative abundances showed that, in every sample except one and in every stage of composting D-glucitol was the main sugar alcohol. In general, the relative amount of D-glucitol decreased during composting, while the relative amounts of all other sugar alcohols increased.

As chemical indicators of compost maturity, carbohydrates would appear to be a important group of compounds. Most informative as a general indicator would be the ratio of the amount of HA to the amount of organic matter in the total compost samples.

According to our studies, the carbohydrates in composts are covalently bound to the structures of FA and HA. Carbohydrate determination clearly deserves more attention in the structural elucidation of FA and HA.  相似文献   

12.
To study the influence of the physical properties of compost feedstock on some characteristics associated with maturity, two types of compost were made from poultry manure, rice husk, and rice bran. The bulk density of one type (PMC) was always higher than that of another type (NMC) during composting. In the case of PMC, the change in temperature, decrease in NH4+, appearance of NO3, and increase in germination indices (GI) with Japanese Komatsuna (Brassica campestris cv. Osome) were all more delayed than in NMC. As the composting process progressed, the proportion of branched (iso-, anteiso-, 10Me-) and saturated phospholipid fatty acids (PLFA) [BRANCHED FAMES (fatty acid methyl esters), biomarkers for gram-positive bacteria] gradually increased, then reached plateau. The high proportion of BRANCHED FAMES was maintained over a long storage period. The straight hydroxyl and saturated PLFAs (SOH-FAMES) initially increased, then disappeared with the progress of composting. The increase in BRANCHED FAMES and the decrease in SOH-FAMES were more delayed in PMC than NMC. The day on which the proportion of BRANCHED FAMES reached plateau and the proportion of SOH-FAMES dipped below 2 mol% coincided with the maturity stage based on the changes of physicochemical characteristics and GI. The composition of BRANCHED FAMES showed highly positive and negative correlation with GI and NH4+, respectively. In the case of SOH-FAMES, inverse correlations were observed. This indicates that the proportion of BRANCHED FAMES and/or SOH-FAMES can be used as a tool for evaluating the maturity of poultry manure compost.  相似文献   

13.
The objective of this research was to evaluate a variety of stability and maturity indices for yard trimmings compost produced in the Puget Sound region of western Washington State. Compost samples were collected periodically during a 133-d composting cycle at a commercial composting facility, showing that indices of compost respiration rate were sensitive indicators of compost quality. All respiration rate indices identified a period of high respiration rates during active composting (first 27 d), and a period of relatively stable respiration rates during the latter part of curing (70 to 133 d). Chemical tests of compost solids showed less promise as maturity indicators, but provided valuable information on final compost quality. Mature yard trimmings compost had a C:N of 12, an NH4-N to NO3-N ratio of less than 4, a cation exchange capacity (CEC) of 400 cmol per kg of compost-C, and a pH between 6.5 and Seed germination tests and sensory tests (color and odor) were of limited value in assessing compost maturity. Fully-cured compost produced with forced aeration had a Solvita CO2 test value of 6 to 7 and a respiration rate via the alkaline trap method of 2 mg CO2-C g compost-C?1 d?1. It reheated less than 2°C in an insulated Dewar flask in a 7 d incubation. Further evaluation and calibration of respiration test protocols for compost quality assurance testing programs are recommended.  相似文献   

14.
IR-Spectra of Microbial Biomass and Humic Acid from Podzol IR-examination of soil samples from podzol with or without different pretreatments was carried out in order to check the possibility of humic acid and microbial biomass detection. Pure humic acid and microbial biomass, both isolated or enriched from the soil under controle, showed distinct absorption bands or shoulders at 1730cm?1, 1620cm?1 and 1380cm?1. Only weak absorption bands at the respective wave numbers were detected in the untreated soil sample.  相似文献   

15.
Abstract

The humic acids (HA) from composted and uncomposted city refuse (CR) were characterized by degradative (oxidation with persulphate and permanganate) and non-degradative techniques (FT-IR and 13C-NMR) in order to analyze the effect of the composting process on these HA. They were also compared with commercial HA extracted from leonardite. The carboxyl and carbonyl group content of the HA from CR increased slightly during composting. Since the HA from the composted CR showed a lower N and H content, the FT-IR spectra showed a lower intensity in the bands corresponding to peptides and carbohydrates. Differences were revealed when the HA from both CR were compared with those from leonardite which showed a much lower N and H content and a less aliphatic character. The percentage of degraded products by persulphate was higher for the HA from uncomposted CR. For the HA from both CR the major components among the oxidation products were dicarboxylic acids and normal fatty acids. In the leonardite HA, the major components consisted of benzene polycarboxylic acids. 13C-NMR revealed an attenuation of the aliphatic character of the HA from CR with composting.  相似文献   

16.
Complex formation between pure silicate clay minerals and humic acid (HA) extracted from a Eustis loamy sand (Psammentic Paleudult) was investigated by i.r. spectroscopy and Sephadex G50 and G25 gel filtration. Gel filtration of humic acid after treatment with clay resulted in the separation of normal amounts of high m.w., but reduced concentrations of low m.w. HA. This observation suggested that only the low m.w. fraction of HA was adsorbed by silicate clays. As compared to i.r. spectrograms of original HA, humic acid remaining in solution after interaction with clay exhibited i.r. curves with new bands at 940 and 840 cm?1 for O-Al-OH vibrations and increased absorption in the 1050, 1400 and 1620 cm?1 regions for Si-O and COO? stretching vibrations, respectively. The absorption band for Si-O was retained by the i.r. spectrum of the high m.w. fraction of HA, and the O-Al-OH absorption by that of low m.w. HA. The latter showed in addition the strong band for COO? stretching vibrations.  相似文献   

17.
水分含量对水葫芦渣堆肥进程及温室气体排放的影响   总被引:2,自引:0,他引:2  
水葫芦经挤压处理后,容积减小、干物质含量提高,利于堆肥生产,但目前缺乏相关堆肥条件的研究。本文通过水稻秸秆与水葫芦渣以不同比例混合来调节堆体水分,探讨在65%、70%、75%、80%水分条件下堆肥效果及环境影响,以获得堆肥的最优水分条件。本试验为静态堆肥,动态监测堆体温度、pH值、碳氮养分和温室气体。结果表明,水分对堆体pH、胡敏酸(堆肥7 d)、富里酸无显著影响,对温度、水溶性碳、胡敏酸(堆肥50 d)、凯氏氮、硝态氮、铵态氮影响显著。其中75%水分处理升温能力最佳,堆肥6 d即达最高堆温(53.4℃);50 d时其凯氏氮、硝态氮、铵态氮显著高于65%和70%的水分处理(P<0.05);75%水分处理堆肥50 d与7 d相比,凯氏氮降低最多(21.1%),硝态氮增加最多(434%),铵态氮降低幅度最小(14.1%)。水分对CH4的产生无显著影响;但高水分促进CO2和N2O排放,75%水分处理的CO2排放能量最高,是其他处理的1.9~2.5倍,80%水分处理的N2O排放通量最高,是其他处理的3.9~23.1倍。综合考虑,水稻秸秆与水葫芦渣混合堆肥,堆体水分为75%较为适宜,能兼顾堆肥效率、品质和环境效益。  相似文献   

18.
为探究生物炭对土壤腐殖质组成和团聚体特征的影响,以东北黑土区植烟土壤为研究对象,设置了3个处理,2019-2020年连续施用低量生物炭5t/hm2(C1);高量生物炭25t/hm2(C2)和不施生物炭(CK),分析了不同用量生物炭对土壤腐殖质组分及水稳性团聚体分布的影响,并利用傅里叶红外光谱(FTIR)和13C核磁共振光谱(13C-NMR)对土壤胡敏酸化学结构进行表征。结果表明:C1和C2处理分别使富里酸减少了16.90%和40.85%,胡敏酸含量显著增加了14.86%和33.78%,胡敏酸在腐殖酸中所占比例(PQ值)也显著增加;FTIR和13C-NMR分析表明,C2处理的土壤胡敏酸的2920/1620值降低了11.82%,脂族C/芳香C比值降低了13.04%,表明高量生物炭使胡敏酸芳构化程度增强,脂肪结构比例降低;生物炭的添加促使土壤大团聚体(>0.25mm)比例增加,C2处理提升大团聚体的作用更显著。结合相关性分析发现,胡敏酸含量与2~0.25mm大团聚体含量显著正相关,胡敏酸分子的脂肪族官能团特征与>2mm粒级团聚体显著正相关。此外,C1和C2处理显著提高了烟叶产量。从而表明,生物炭能提升土壤腐殖质中胡敏酸含量和结构,有利于土壤大团聚体形成,提高土壤固碳潜力,对作物有一定的增产效果。  相似文献   

19.
宋修超  黑若楠  姚怡  郭德杰  罗佳  马艳 《土壤》2023,55(1):45-52
为研究不同配方中药渣废弃物好氧堆肥产品品质差异及其对土壤碳素矿化的影响,设置了好氧堆肥和有机肥还田两个试验。通过工厂化条垛式好氧堆肥试验,研究了中药渣废弃物3种组合,在相同碳氮比、不同木质纤维素含量下对好氧堆肥产品品质的影响;采用土壤呼吸瓶进行室内恒温恒湿培养模拟土壤施肥效应,研究了3种有机肥施用对不同肥力土壤有机碳分解动态的影响。试验结果显示:中药渣物料的初始木质纤维素含量显著影响堆肥产品的碳氮养分转化和腐殖质组分。与初始低木质纤维素含量处理(T1)相比,高木质纤维素含量处理(T3)堆肥有机碳降解难,堆肥产品中全碳含量提高5.7%,全氮含量降低18.4%,但有利于腐殖质形成,尤其是显著增加胡敏酸组分20.9%。3种中药渣堆肥产品等碳量输入对不同肥力土壤的碳素矿化效果差异显著,高肥力土壤CO2-C的释放速率和累积释放量均高于低肥力土壤,但有机碳的累积矿化率却低于低肥力土壤,并且高肥力土壤中添加T1堆肥产品累积矿化率显著高于添加T3堆肥产品。两个肥力土壤中有机肥中胡敏酸组分与土壤碳素矿化率之间呈显著负相关关系。因此,为提高有机肥的土壤固碳效应,可适当提高有机肥中胡敏...  相似文献   

20.
Monitoring the physical, chemical and biological properties during accelerated composting enables concise determination of its stability and maturity. Determination of physical parameters such as pH, moisture and temperature, chemical parameters such as total nitrogen (N), phosphorus (P), potassium (K), organic matter and humic acid as well as biological parameters such as microbial count and carbon dioxide (CO2) evolution was carried out during a four (4) week composting period, The trend observed for pH showed the mesophilic and thermophilic phases and a similar trend was observed for the compost temperature. Intermittent increase and decrease was observed for total N, P, K as well as for the fungal and bacterial population. A direct relationship was observed among the bacterial population, CO2 evolution and humic acid. However, composting for four (4) weeks produced a stable compost, which was evident through the physical observation of the final product and the results obtained for the chemical and biological parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号