首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同秸秆还田年限对稻麦轮作系统温室气体排放的影响   总被引:4,自引:0,他引:4  
为揭示稻麦轮作系统不同秸秆还田年限下温室气体排放特征及减排调控机制,本研究采用大田小区试验,考察了稻麦轮作不同秸秆还田年限[空白对照(CK)、常规处理秸秆不还田(NT)、1年秸秆还田(SR1)和5年秸秆还田(SR5)]对CH4、CO2和N2O 3种温室气体排放规律的影响,同时测定了土壤固碳量,估算了秸秆焚烧产生的温室气体排放量,综合计算了4种处理对全球变暖的贡献。试验结果表明,SR1和SR5均显著提升CH4和CO2的排放通量,分别高出NT、CK处理73.52%、309.49%和13.29%、13.06%;同时显著降低N2O排放通量,较NT降低29.68%和42.55%;但SR1和SR5之间温室气体排放通量差异不显著;与NT相比,SR1和SR5可以显著提高土壤固碳量517.9%和709.03%,SR5土壤固碳量高出SR1达30.93%;NT秸秆焚烧产生的全球气温变暖贡献为9 698.49 kg(CO2-eqv)·hm?2,比CK高126.98%。综合分析温室气体排放、土壤固碳以及秸秆焚烧3个因素,SR1全球升温贡献最低,显著低于NT 4.72%。短期全量秸秆还田有助于降低总体温室气体排放,长期进行秸秆还田后降低幅度会逐步减小。  相似文献   

2.
In the context of sustainable soil-quality management and mitigating global warming, the impacts of incorporating raw or field-burned adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) and wheat (Triticum aestivum L.) straw residues on carbon dioxide (CO2) and nitrous oxide (N2O) emission rates from soil were assessed in an Andosol field in northern Japan. Losses of carbon (C) and nitrogen (N) in residue biomass during field burning were much greater from adzuki bean residue (98.6% of C and 98.1% of N) than from wheat straw (85.3% and 75.3%, respectively). Although we noted considerable inputs of carbon (499 ± 119 kg C ha–1) and nitrogen (5.97 ± 0.76 kg N ha–1) from burned wheat straw into the soil, neither CO2 nor N2O emission rates from soil (over 210 d) increased significantly after the incorporation of field-burned wheat straw. Thus, the field-burned wheat straw contained organic carbon fractions that were more resistant to decomposition in soil in comparison with the unburned wheat straw. Our results and previously reported rates of CO2, methane (CH4) and N2O emission during wheat straw burning showed that CO2-equivalent greenhouse gas emissions under raw residue incorporation were similar to or slightly higher than those under burned residue incorporation when emission rates were assessed during residue burning and after subsequent soil incorporation.  相似文献   

3.
水分类型对土壤排放的温室气体组成和综合温室效应的影响   总被引:34,自引:2,他引:34  
蔡祖聪 《土壤学报》1999,36(4):484-491
实验室研究表明,土壤排放出的温室气体(CO2、CH4和N2O)组成及总理显著地受土壤水分类型和施用秸秆的影响。连续淹水条件下,土壤仅排放微理的N2O,但排放出大量的C睡C敢条件下,土壤不排放C上键合的但排放出大量的N2O;虽然淹水的土壤排水促进N2O排放,但显著抑制CH4的排放,淹水好气交替处理的土壤其排放的CO2、CH4和N2O均在好气和连续淹水之间。根据各种温室产生温室效应的相对潜力,计算土壤  相似文献   

4.
This study evaluated the effects of rice straw and water regimes on CH4 and N2O emissions from paddy fields for two rice growing seasons (summer 2014 and spring 2015). Water regimes included alternating wet–dry irrigation (AWD) maintained at three levels (–5 cm, – 10 cm and –15 cm) in comparison to continuous flooding irrigation (CF). Rice straw (5 t ha–1) was incorporated into the top soil (0 – 15 cm), distributed and burned in situ. Results showed that using burned in situ rice straw was found to reduce seasonal cumulative CH4 emission (24–34% in summer; 18–28% in spring), N2O emission (21–32% in summer; 22–29% in spring) and lower rice yield (8–9%) than rice straw incorporation into top soil. AWD methods reduced the amount of CH4 production (22.6–41.5%) and increased N2O emission (25–26%) without any decrease in rice yield. Rice straw incorporation into the top soil with AWD had higher water productivity (23–37%) than rice straw when burned in situ with CF. The results conclude that AWD and rice straw management can be employed as mitigation strategy for CH4 and N2O emissions from paddy fields in Central Vietnam.  相似文献   

5.
Abstract

Methane emission rates from plots with and without fertilizer and rice straw application, and growth of two rice varieties (an improved variety, IR74 or IR64, and a local variety, Krueng Aceh) in two Indonesian paddy fields (Inceptisol and Alfisol soils of volcanic ash origin) were measured every week throughout the growth period in the first and the second cropping seasons, 1994. The CH4 emission rates from the fields were similar between the two varieties. The effect of chemical fertilizer on the increase of the emissions was observed only in the Tabanan paddy field for the plots treated with rice straw. Application of rice straw increased the CH4 emission rates. The mean rates of CH4 emission were 1.37-2.13 mg CH4?C m?2 h?1 for the plots without rice straw and 2.14–3.62 mg CH4?C m?2 h?1 for the plots with rice straw application in the Alfisol plots, and 2.32–3.32 mg CH4 -C m-2 h-1 for the plots without rice straw and 4.18–6.35 mg CH4?C m?2 h?1 for the plots with rice straw application in the Inceptisol plots, respectively. Total amounts of CH4 emitted during the growth period were 3.9–6.8 and 2.6–3.3 g CH4?C m?2 for the Alfisol plots and 6.9–10.7 and 4.2–5.8 g CH4?C m?2 for the Inceptisol plots with and without rice straw application, respectively. These findings suggested that CH4 emission from tropical paddy fields with soils of volcanic ash origin is low.  相似文献   

6.
Abstract

A short-term study was conducted to investigate the greenhouse gas emissions in five typical soils under two crop residue management practices: raw rice straw (Oryza sativa L., cv) and its derived biochar application. Rice straw and its derived biochar (two biochars, produced at 350 and 500°C and referred to as BC350 and BC500, respectively) were incubated with the soils at a 5% (weight/weight) rate and under 70% water holding capacity for 28 d. Incorporation of BC500 into soils reduced carbon dioxide (CO2) and nitrous oxide (N2O) emission in all five soils by 4?40% and 62?98%, respectively, compared to the untreated soils, whereas methane (CH4) emission was elevated by up to about 2 times. Contrary to the biochars, direct return of the straw to soil reduced CH4 emission by 22?69%, whereas CO2 increased by 4 to 34 times. For N2O emission, return of rice straw to soil reduced it by over 80% in two soils, while it increased by up to 14 times in other three soils. When all three greenhouse gases were normalized on the CO2 basis, the global warming potential in all treatments followed the order of straw > BC350 > control > BC500 in all five soils. The results indicated that turning rice straw into biochar followed by its incorporation into soil was an effective measure for reducing soil greenhouse gas emission, and the effectiveness increased with increasing biochar production temperature, whereas direct return of straw to soil enhanced soil greenhouse gas emissions.  相似文献   

7.
Wheat straw management affects CH4 and N2O emissions from rice fields   总被引:1,自引:0,他引:1  
A 3-year field experiment was conducted in Jiangsu Province, China from 2004 to 2006 to investigate CH4 and N2O emissions from paddy fields as affected by various wheat straw management practices prior to rice cultivation. Five methods of returning wheat straw, no straw, evenly incorporating, burying straw, ditch mulching and strip mulching, were adopted in the experiment. Evenly incorporating is the most common management practice in the region. Results showed that compared with no straw, evenly incorporating increased CH4 emission significantly by a factor of 3.9-10.5, while decreasing N2O emission by 1-78%. Methane emission from burying straw was comparable with that from evenly incorporating, while N2O emission from burying straw was 94-314% of that from evenly incorporating. Compared with evenly incorporating, CH4 emission was decreased by 23-32% in ditch mulching and by 32% in strip mulching, while N2O emission was increased by a factor of 1.4-3.7 in ditch mulching and by a factor of 5.1 in strip mulching. During the rice-growing season, the emitted N2O was negligible compared to that of emitted CH4. No significant difference in grain yield was observed between ditch mulching, burying straw, evenly incorporating and no straw. Compared with no straw, the grain yield was increased by 27% in strip mulching. Based on these results, the best management practice for returning wheat straw to the soil is strip mulching wheat straw partially or completely onto the field surface, as the method reduced CH4 emission from rice fields with no decrease in rice yield.  相似文献   

8.
Proper rice straw management in paddy fields is necessary in order to sustain soil productivity and reduce greenhouse gas emissions. A field experiment was carried out from 2008 to 2011 in subtropical China: (1) to monitor rice yield, soil available nutrients, CH4, and N2O emissions and (2) to evaluate the effects of timing of rice straw incorporation and joint N application rate in a double rice cropping system. The total amount of rice straw from one cropping season was incorporated in winter (WS) or in spring (SS) and mineral N was jointly applied with rice straw incorporation at rates of 0, 30, and 60 % of the basal fertilization rate (N0B, N30B, and N60B) for the first rice crop. Soil water was naturally drained during the period of winter fallow (PWF) and controlled under intermittent irrigation during the period of first rice growth (PFR). Compared with SS, WS significantly (P?<?0.05) increased the first rice yield only in the flooding year (2010), and increased the soil available K concentration after PWF and PFR in 2008–2009 and the hydrolysable N concentration after PWF in 2010–2011. Meanwhile, WS significantly decreased the total CH4 emission by about 12 % in 2009–2010 and 2010–2011, but increased the total N2O emission by 15–43 % particularly during PWF in all 3 years, resulting in a lower GWP in WS in the flooding year and no differences in the nonflooding years. Compared with N0B, joint N application (N60B and N30B) increased the soil hydrolysable N after PWF in all 3 years. Meanwhile, it decreased the total CH4 emissions by 21 % and increased the N2O emissions during PWF by 75–150 % in the nonflooding years, but the net GWP was lower in N60B than in N0B. The results suggested that the rice straw incorporation with joint N application in winter is more sustainable compared with the local practices such as rice straw incorporation in spring or open-field burning.  相似文献   

9.
Prolonged summer droughts due to climate change are expected for this century, but little is known about the effects of drying and wetting on biogenic trace‐gas fluxes of forest soils. Here, the response of CO2, N2O, NO, and CH4 fluxes from temperate forest soils towards drying–wetting events has been investigated, using undisturbed soil columns from a Norway spruce forest in the “Fichtelgebirge”, Germany. Two different types of soil columns have been used for this study to quantify the contribution of organic and mineral horizons to the total fluxes: (1) organic horizons (O) and (2) organic and mineral soil horizons (O+M). Three drying–wetting treatments with different rewetting intensities (8, 20, and 50 mm of irrigation d–1) have been compared to a constantly moist control to estimate the influence of rainfall intensity under identical drying conditions and constant temperature (+15°C). Drought significantly reduced CO2, N2O, and NO fluxes in most cycles. Following rewetting, CO2 fluxes quickly recovered back to control level in the O columns but remained significantly reduced in the O+M columns with total CO2 fluxes from the drying–wetting treatment ranging approx. 80% of control fluxes. Fluxes of N2O and NO remained significantly reduced in both O and O+M columns even after rewetting, with cumulative fluxes from drying–wetting treatments ranging between 20% and 90% of the control fluxes, depending on gas and cycle. Fluxes of CH4 were small in all treatments and seem to play no significant role in this soil. No evidence for the release of additional gas fluxes due to drying–wetting was found. The intensity of rewetting had no significant effect on the CO2, N2O, NO, and CH4 fluxes, suggesting that the length of the drought period is more important for the emission of these gases. We can therefore not confirm earlier findings that fluxes of CO2, N2O, and NO during wetting of dry soil exceed the fluxes of constantly moist soil.  相似文献   

10.
王强盛  刘欣  许国春  余坤龙  张慧 《土壤》2023,55(6):1279-1288
稻田是大气温室气体甲烷(CH4)和氧化亚氮(N2O)的重要排放源, 稻田温室气体减排一直是生态农业研究的热点。目前, 采用水稻品种选择利用、水分控制管理、肥料运筹管理、耕作制度调整以及种养结合模式等方法来减少稻田温室气体排放有较好实践效应, 但不同稻田栽培环境(露地、网室)基础上的稻鸭共作对麦秸全量还田的稻田温室气体排放特征及相关土壤理化特性关联性的影响尚为少见。本研究采用裂区设计, 在两种栽培环境条件下, 以无鸭子放养的常规稻作和麦秸不还田为对照, 在等养分条件下分析麦秸全量还田与稻鸭共作模式对稻田土壤氧化还原电位、CH4排放量、产CH4潜力及CH4氧化能力、N2O排放量及N2O排放高峰期土壤反硝化酶活性、全球增温潜势、水稻产量的影响, 为稻田可持续生产和温室气体减排提供参考。结果表明, 麦秆还田增加了稻田产CH4潜力、提高了CH4排放量, 降低了稻田土壤反硝化酶活性、土壤氧化还原电位和N2O排放量, 整体上导致全球增温潜势上升96.89%~123.02%; 稻鸭共作模式, 由于鸭子的不间断活动提高了稻田土壤氧化还原电位, 降低了稻田产CH4潜力, 增强了稻田CH4氧化能力, 从而降低稻田CH4排放量, N2O排放量虽有提高, 整体上稻鸭共作模式的全球增温潜势较无鸭常规稻田下降8.72%~14.18%; 网室栽培模式显著提高了稻田土壤氧化还原电位, 降低稻田产CH4潜力、CH4氧化能力和土壤反硝化酶活性, 减少了稻田CH4和N2O排放量, 全球增温潜势降低6.35%~13.14%。本试验条件下, 稻田土壤的CH4氧化能力是产CH4潜力的2.21~3.81倍; 相同环境条件下, 稻鸭共作和麦秸还田均能增加水稻实际产量, 网室栽培的所有处理较相应的露地栽培减少了水稻实际产量1.19%~5.48%。本试验表明, 稻鸭共作和网室栽培可减缓全球增温潜势, 稻鸭共作和麦秸还田能够增加水稻实际产量。  相似文献   

11.
为了研究耕作措施对双序列轮作农田土壤温室气体的排放及影响, 采用CO2分析仪、静态箱 气相色谱法在陇中黄土高原半干旱区对传统耕作不覆盖、免耕不覆盖、免耕秸秆覆盖和传统耕作+秸秆还田4种耕作措施下豆麦双序列轮作农田土壤温室气体(CO2、N2O和CH4)的排放及影响因素进行了连续测定和分析。结果表明: 测定期内4种耕作措施下农田土壤均表现为CO2源、N2O源和CH4净吸收汇; 除传统耕作不覆盖措施, 其他3种耕作措施不同程度地减少了2种轮作序列土壤的N2O排放通量, 并显著增加了土壤对CH4的吸收。CO2和N2O的排放通量分别与地表、地下5 cm处、地下10 cm处的土壤温度呈极显著和显著正相关关系, 相关系数分别为0.92**和0.89**、0.95**和0.91**、0.77*和0.62*; 而CH4吸收通量与不同地层的温度之间无明显的相关关系; CO2和CH4的通量与0~5 cm、5~10 cm的土壤含水量均呈显著正相关关系, 相关系数分别为0.69*和0.72*、0.77*和0.64*, 而与10~30 cm土壤含水量无明显相关关系; N2O排放通量与各层次的土壤含水量之间均呈不显著负相关关系。对2种轮作序列各处理下土壤中排放的3种温室气体的增温潜势计算综合得出: 4种耕作措施中, 免耕不覆盖处理可相对减少土壤温室气体的排放量, 进而降低温室效应。  相似文献   

12.
Pot experiments were conducted to monitor the changes in compositions and δ13C values of soil-trapped CH4 and C02 in flooded rice soil with and without rice plants or rice straw. Incorporation of rice straw increased the concentration of CH4 and C02 accumulated in soil, and the quantities of emitted CH4 to the atmosphere. Rice plants reduced the concentration of soil-trapped CH4 and CO2, and the decreased portion of CH4 was replaced by N2. A significantly negative correlation was found between soil-trapped CH4 and N2. The presence of rice plants increased the δ13C values of CH4. The δ13C values of CH4 tended to increase toward the end of the growing season and were positively correlated with concentration of soil-trapped CH4. A positive correlation between δ13C values of CH4 and C02, and between the δ13C values of CH4 and its concentration, were observed. The CH4 in the rice stems was 4–14% enriched in13C relative to soil-trapped CH4. In contrast, CO2 in rice plant stems was 1–9% lighter in13C relative to soil-trapped C02. These results are discussed in relation to the precursor pools and pathways of methanogenesis.  相似文献   

13.
Globally, CO2, CH4 and N2O, contribute 60%, 15% and 5%, respectively, to the anthropogenic greenhouse effect. Atmospheric CO2, CH4 and N2O are currently increasing by 0.5%, 1.1% and 0.3% per year, respectively. This paper reviews studies on greenhouse gas emission and mitigation measures in China in recent years. CH4 emissions originate mainly from rice paddy fields, and are determined by soil characteristics, e.g., temperature, water content, pH and Eh conditions, and by land and crop management, e.g., land use, rice varieties and fertilizer application. Rice paddies emit N2O in addition to CH4, however, the N2O and CH4 emission patterns are quite different. Fertilization practices and field water conditions are major factors that control N2O emissions. In order to minimize net greenhouse gas emissions from agricultural production systems, either sources of emissions must be reduced, or agricultural greenhouse gas sinks must be enhanced or newly created. Because the effects of greenhouse gas mitigation measures on each greenhouse gas are different, specific practices must be developed and adopted for the various gases. This paper discusses some promising greenhouse gas mitigation strategies to reduce net emissions from agroecosystems in China.  相似文献   

14.
太湖地区不同水旱轮作方式下稻季甲烷和氧化亚氮排放研究   总被引:15,自引:0,他引:15  
为准确编制我国稻田温室气体排放清单及制定合理减排措施提供基础数据,选择太湖地区典型水稻种植区江苏省苏州市,研究设计了休闲水稻(对照,CK)、紫云英水稻(T1)、黑麦草水稻(T2)、小麦水稻(T3)和油菜水稻(T4)5种水旱轮作方式,采用静态箱气相色谱法,开展了不同水旱轮作方式下水稻生长季田间甲烷(CH4)和氧化亚氮(N2O)排放监测试验。试验结果表明:不同水旱轮作方式下水稻生长季CH4排放通量呈先升高后降低的变化趋势,CH4排放峰值出现在水稻生育前期,移栽至有效分蘖临界叶龄期CH4累积排放量占全生育期排放总量的比例为65%~81%,而N2O仅在水稻烤田期间有明显排放。水旱轮作方式对稻季CH4和N2O排放有极显著(P 0.01)影响,CH4季节总排放量表现为T1(283.2 kg.hm 2)CK(139.5 kg.hm 2)T3(123.4kg.hm 2)T4(114.7 kg.hm 2)T2(100.8 kg.hm 2),N2O季节总排放量顺序为T1 T4 T3 T2 CK,依次为1.06kg.hm 2、0.87 kg.hm 2、0.81 kg.hm 2、0.72 kg.hm 2和0.53 kg.hm 2。T1处理稻季排放CH4和N2O产生的增温潜势最高[7 396 kg(CO2).hm 2],显著(P 0.05)高于其他处理,比CK[3 646 kg(CO2).hm 2]增加103%,T2[2 735kg(CO2).hm 2]较CK减少25%(P 0.05)。紫云英水稻轮作方式增加了太湖地区水稻生长季的温室效应。  相似文献   

15.

Purpose

Genetic modification of Bt rice may affect straw decomposition and soil carbon pool under flood conditions. This study aims to assess the effects of cry gene transformation in rice on the residue decomposition and fate of C from residues under flooded conditions.

Materials and methods

A decomposition experiment was set up using 13C-enriched rice straws from transgenic and nontransgenic Bt rice to evaluate the soil C dynamics and CH4 or CO2 emission rates in the root and non-root zones. The concentrations and stable carbon isotope compositions of the soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), CH4, and CO2 of the root and non-root zones were determined from 7 to 110 days after rice straw incorporation.

Results and discussion

Rice straw incorporation into soil significantly increased the SOC, DOC, and MBC concentrations and the CH4 and CO2 emission rates. The percentage of 13C-SOC remaining in the root zone was significantly lower than that in the non-root zone with rice straw decomposition. The DOC and MBC concentrations significantly increased in both the root and non-root zones between 0 and 80 days after rice straw incorporation. However, no significant differences were found after Bts (Bt rice straw added into soil) and Cks (nontransgenic Bt rice straw added into soil) incorporation in the root and non-root zones. This result may be attributed to the priming effects of sufficient oxygen and nutrients on straw degradation in the root zone.

Conclusions

Bt gene insertion did not affect the SOC, DOC, and MBC concentrations and the CH4 and CO2 emission rates in both the root and non-root zones. However, rice straw incorporation and root exudation significantly increased the SOC, DOC, and MBC concentrations and the CH4 and CO2 emission rates.  相似文献   

16.
Abstract

To evaluate the effect of increasing forest disturbances on greenhouse gas budgets in a taiga forest in eastern Siberia, CO2, CH4 and N2O fluxes from the soils were measured during the growing season in intact, burnt and clear-felled larch forests (4–5 years after the disturbance). Soil temperature and moisture were higher at the two disturbed sites than at the forest site. A 64–72% decrease in the Q 10 value of soil CO2 flux from the disturbed sites compared with the forest site (5.92) suggested a reduction in root respiration and a dominance of organic matter decomposition at the disturbed sites. However, the cumulative CO2 emissions (May–August) were not significantly different among the sites (2.81–2.90 Mg C ha?1 per 3 months). This might be because decreased larch root respiration was compensated for by increased organic matter decomposition resulting from an increase in the temperature and root respiration of invading vegetation at the disturbed sites. The CH4 uptake (kg C ha?1 per 4 months [May–September]) at the burnt site was significantly higher (–0.15) than the uptake at the forest (–0.045) and clear-felled sites (0.0027). Although there were no significant differences among the sites, N2O emission (kg N ha?1 per 4 months) was slightly lower at the burnt site (0.013) and higher at the clear-felled site (0.068) than at the forest site (0.038). This different influence of burning and tree felling on CH4 and N2O fluxes might result from changes in the physical and chemical properties of the soil with respect to forest fire.  相似文献   

17.
中国农业温室气体排放量测算及影响因素研究   总被引:3,自引:0,他引:3  
农业生产过程所产生的温室气体在全球生产活动温室气体排放总量中占有很大比例,因此对农业温室气体的排放量进行测算并分析其影响因素,对实现农业节能减排有重要意义。本文基于1993―2011年中国农业生产的相关统计数据,借鉴前人关于农业生产中各种温室气体排放源排放系数的研究成果,测算了中国农业生产过程中的CH4、N2O和CO2排放量,并分析了影响因素。结果表明,CH4排放量基本平稳波动不大,N2O排放量从1993年的93.21万t波动增加到2011年的120.51万t,农业生产资料CO2排放量由15 626.98万t增加到31 258.10万t。种植业CO2排放主要分为土壤排放和生产资料排放,土壤CO2排放与大气温度、土壤温度、地表温度和土壤水分有关,生产资料CO2排放主要是由化肥和农药造成的;种植业CH4、N2O排放原因较为复杂,还有待进一步研究;动物肠道发酵CH4、N2O排放的影响因素主要取决于动物种类、饲料特性、饲养方式和粪便管理方式等。  相似文献   

18.
Major rice growth characteristics and grain yield were compared between inside and outside of a chamber coverage area after a seasonal CH4 and N2O flux measurement using a closed chamber technique. Results show that only grain yield was significantly (P<0.01) reduced by chamber enclosure. There was no significant difference (P>0.05) in plant height, total straw weight, spike length, and average grain weight. Temperature increase during the gas flux measurement was likely the major cause for the observed grain yield decrease by sterilizing rice reproductive organs. Methane flux rates from rice fields were likely overestimated by using closed chamber technique because decreasing grain yield by chamber enclosure may result in more plant photosynthesis products released into soils to enhance CH4 production. Analyzing CH4 and CO2 emission ratio from the rice field, after cutting the above-water part of rice plants, indicated that CH4–C emission accounted for approximately 13% of the total CO2 and CH4–C emission during the major rice growing season.  相似文献   

19.
秸秆条带状覆盖对稻田CH_4和N_2O排放的影响   总被引:1,自引:1,他引:1  
采用3种秸秆还田方式(对照、秸秆均匀混施和秸秆条带状覆盖)进行田间试验,观测稻田CH4和N2O的排放通量,以探讨秸秆条带状覆盖对稻田CH4和N2O排放的影响。结果表明:秸秆条带状覆盖的CH4排放量是对照的2.7倍,二者的N2O排放量无明显差异;秸秆条带状覆盖的稻田CH4排放量较秸秆均匀混施减少32%,其N2O排放量是后者的5.1倍;稻田排放CH4和N2O的全球增温潜势(GWP)为:秸秆均匀混施秸秆条带状覆盖对照,且差异显著;秸秆条带状覆盖的水稻产量分别较对照和秸秆均匀混施增加27%和17%。秸秆条带状覆盖是值得推荐的稻季秸秆还田方式。  相似文献   

20.
Elevated CO2(eCO2) and rice cultivars can strongly alter CH4 and N2 O emissions from paddy fields.However,detailed information on how their interaction affects greenhouse gas fluxes in the field is still lacking.In this study,we investigated CH4 and N2 O emissions and rice growth under two contrasting rice cultivars(the strongly and weakly responsive cultivars) in response to eCO2,200 μmol mol-1 higher than the ambient ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号