首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A short-term study was conducted to investigate the greenhouse gas emissions in five typical soils under two crop residue management practices: raw rice straw (Oryza sativa L., cv) and its derived biochar application. Rice straw and its derived biochar (two biochars, produced at 350 and 500°C and referred to as BC350 and BC500, respectively) were incubated with the soils at a 5% (weight/weight) rate and under 70% water holding capacity for 28 d. Incorporation of BC500 into soils reduced carbon dioxide (CO2) and nitrous oxide (N2O) emission in all five soils by 4?40% and 62?98%, respectively, compared to the untreated soils, whereas methane (CH4) emission was elevated by up to about 2 times. Contrary to the biochars, direct return of the straw to soil reduced CH4 emission by 22?69%, whereas CO2 increased by 4 to 34 times. For N2O emission, return of rice straw to soil reduced it by over 80% in two soils, while it increased by up to 14 times in other three soils. When all three greenhouse gases were normalized on the CO2 basis, the global warming potential in all treatments followed the order of straw > BC350 > control > BC500 in all five soils. The results indicated that turning rice straw into biochar followed by its incorporation into soil was an effective measure for reducing soil greenhouse gas emission, and the effectiveness increased with increasing biochar production temperature, whereas direct return of straw to soil enhanced soil greenhouse gas emissions.  相似文献   

2.
Rice‐straw amendment increased methane production by 3‐fold over that of unamended control. Application of P as single superphosphate at 100 μg (g soil)–1 inhibited methane (CH4) production distinctly in flooded alluvial rice soil, in the absence more than in the presence of rice straw. CH4 emission from rice plants (cv. IR72) from alluvial soil treated with single superphosphate as basal application, in the presence and absence of rice straw, and held under non‐flooded and flooded conditions showed distinct variations. CH4 emission from non‐flooded soil amended with rice straw was high and almost similar to that of flooded soil without rice‐straw amendment. The cumulative CH4 efflux was highest (1041 mg pot–1) in rice‐straw‐amended flooded soil. Appreciable methanogenic reactions in rice‐straw‐amended soils were evident under both flooded and non‐flooded conditions. Rice‐straw application substantially altered the balance between total aerobic and anaerobic microorganisms even in non‐flooded soil. The mitigating effects of single‐superphosphate application or low‐moisture regime on CH4 production and emission were almost nullified due to enhanced activities of methanogenic archaea in the presence of rice straw.  相似文献   

3.
长期稻草还田对土壤球囊霉素和土壤C、N的影响   总被引:7,自引:0,他引:7  
A long-term experiment was conducted to investigate how long-term fertilization and rice straw incorporation into soil affect soil glomalin, C and N. The combined application of chemical fertilizer and straw resulted in a significant increase in both soil easily extractable glomalin (EEG) and total glomalin (TG) concentrations, as compared with application of only chemical fertilizer or no fertilizer application. The EEG and TG concentrations of the NPKS (nitrogen, phosphorus, and potassium fertilizer application + rice straw return) plot were 4.68% and 5.67% higher than those of the CK (unfertilized control) plot, and 9.87% and 6.23% higher than those of the NPK (nitrogen, phosphorus, and potassium fertilizer applied annually) plot, respectively. Application of only chemical fertilizer did not cause a statistically significant change of soil glomalin compared with no fertilizer application. The changes of soil organic C (SOC) and total N (TN) contents demonstrated a similar trend to soil glomalin in these plots. The SOC and TN contents of NPKS plot were 15.01% and 9.18% higher than those of the CK plot, and 8.85% and 14.76% higher than those of the NPK plot, respectively. Rice straw return also enhanced the contents of microbial biomass C (MBC) and microbial biomass N (MBN) in the NPKS plot by 7.76% for MBC and 31.42% for MBN compared with the CK plot, and 12.66% for MBC and 15.07% for MBN compared with the NPK plots, respectively. Application of only chemical fertilizer, however, increased MBN concentration, but decreased MBC concentration in soil.  相似文献   

4.
ABSTRACT

The influence of the long-term combination of rice straw removal and rice straw compost application on methane (CH4) and nitrous oxide (N2O) emissions and soil carbon accumulation in rice paddy fields was clarified. In each of the initial and continuous application fields (3 and 39?51 years, respectively), three plots with different applications of organic matter were established, namely, rice straw application (RS), rice straw compost application (SC) and no application (NA) plots, and soil carbon storage (0?15 cm), rice grain yield and CH4 and N2O fluxes were measured for three years. The soil carbon sequestration rate by the organic matter application was higher in the SC plot than in the RS plot for both the initial and continuous application fields, and it was lower in the continuous application field than in the initial application field. The rice grain yield in the SC plot was significantly higher than those in the other plots in both the initial and continuous application fields. Cumulative CH4 emissions followed the order of the NA plot < the SC plot < the RS plot for both the initial and continuous application fields. The effect of the organic matter application on the N2O emissions was not clear. In both the initial and continuous application fields, the increase in CH4 emission by the rice straw application exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was a positive, indicating a net increase in the GHG emissions. However, the change in the GHG balance by the rice straw compost application showed negative (mitigating GHG emissions) for the initial application field, whereas it showed positive for the continuous application field. Although the mitigation effect on the GHG emissions by the combination of the rice straw removal and rice straw compost application was reduced by 21% after 39 years long-term application, it is suggested that the combination treatment is a sustainable management that can mitigate GHG emissions and improve crop productivity.  相似文献   

5.
[目的] 探究持续性秸秆还田减施化肥对水稻产量和氮磷随径流流失的影响,为当地农业资源循环再利用和防控农业面源污染提供科学依据。[方法] 在四川省广汉市开展连续3 a (2018—2020年)的田间小区试验,设置常规施肥处理(T1)和秸秆还田+常规施肥减氮28.57%,减磷25.11%(T2)2种施肥方式,分别测定了地表径流中氮磷浓度、流失量,水稻秸秆、籽粒的产量和氮磷吸收量、水稻收获时土壤养分。[结果] 随着秸秆还田年限的增加,T2可达到显著的增产效果,其中2020年T2比T1增产16.93%。与T1相比,T2的总氮和硝态氮流失量分别增加6.25%~14.97%,6.99%~15.03%,可溶性总氮、总磷和可溶性总磷流失量分别降低0.94%~6.03%,4.66%~10.32%和5.77%~21.15%。土壤中全磷、速效磷、硝态氮和铵态氮含量的年际变化显著(p<0.05)。与T1相比,T2处理显著降低了土壤8.79%的全磷和30.56%的速效磷。[结论] 持续秸秆还田与减施化肥在保证作物产量的同时,减少了化肥投入量,降低了磷素的径流流失量,但增加了氮素径流流失的风险,在实际农业生产中应进一步优化处理。  相似文献   

6.
ABSTRACT

The influence of long-term application of different types of compost on rice grain yield, CH4 and N2O emissions, and soil carbon storage (0 ? 30 cm) in rice paddy fields was clarified. Two sets of paddy fields applied with rice straw compost or livestock manure compost mainly derived from cattle were used in this study. Each set comprised long-term application (LT) and corresponding control (CT) plots. The application rates for rice straw compost (42 years) and livestock manure compost (41 years in total with different application rates) were 20 Mg fresh weight ha–1. Soil carbon storage increased by 33% and 37% with long-term application of rice straw compost and livestock manure compost, respectively. The soil carbon sequestration rate by the organic matter application was 23% higher with the livestock manure compost than with the rice straw compost. The rice grain yield in the LT plot was significantly higher than that in the corresponding CT plot with both types of compost. Although the difference was not significant in the rice straw compost, cumulative CH4 emissions increased with long-term application of both composts. Increase rate of CH4 emission with long-term application was higher in the livestock manure compost (99%) than that in the rice straw compost (26%). In both composts, the long-term application did not increase N2O emission significantly. As with the rice straw compost, the increase in CH4 emission with the long-term application of livestock manure compost exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was positive, indicating a net increase in the GHG emissions. The increase in CH4 and net GHG emissions owing to the long-term application of the livestock manure compost could be higher than that of the rice straw compost owing to the amount of applied carbon, the quality of compost and the soil carbon accumulation. The possibility that carbon sequestration in the subsoil differs depending on the type of composts suggests the importance of including subsoil in the evaluation of soil carbon sequestration by long-term application of organic matter.  相似文献   

7.
我国水稻秸秆磷分布及其还田对土壤磷输入的贡献   总被引:2,自引:0,他引:2  
我国水稻秸秆资源丰富,水稻秸秆还田是向土壤输入磷素的重要途径之一。对我国各省区不同季别水稻秸秆还田的土壤磷输入贡献进行测算,可有针对性地为水稻秸秆还田条件下土壤磷素优化管理及平衡调控提供科学参考和指导。本研究基于《中国农村统计年鉴》中水稻生产统计资料和文献调研参数,对2013—2018年我国主要稻区不同季别水稻秸秆磷养分资源时空分布特征以及单位播种面积水稻秸秆还田的土壤磷素输入量进行分析。结果表明,2018年我国主要稻区早稻、双季晚稻和中晚稻秸秆产量分别为2327万t、2783万t和13 527万t,长江中游和长江下游稻区的水稻秸秆资源量居于全国前列,分别占33.6%和21.8%。2013—2018年我国水稻秸秆磷(P_2O_5)养分产量呈缓慢增长的趋势,从2013年的59.7万t增加到2018年的62.8万t。2018年水稻秸秆磷养分资源主要分布在黑龙江(15.0%)、湖南(12.5%)、江苏(10.0%)、湖北(9.9%)和江西(9.6%)等省份。2013—2018年我国主要稻区早稻、双季晚稻及中晚稻秸秆还田的年均土壤磷养分输入量分别为13.9~15.1kg(P_2O_5)·hm~(-2)、16.0~20.9 kg(P_2O_5)·hm~(-2)和19.3~29.3 kg(P_2O_5)·hm~(-2)。从全国范围来看,早稻、双季晚稻和中晚稻秸秆还田下的土壤磷养分输入量平均分别为14.4 kg(P_2O_5)·hm~(-2)、18.2 kg(P_2O_5)·hm~(-2)和24.4 kg(P_2O_5)·hm~(-2)。基于上述测算结果,建议我国主要稻区各省份在水稻特别是中晚稻秸秆还田条件下,基于秸秆磷素携入量适当调整磷肥投入量,以实现土壤磷养分收支平衡,控制农田磷养分盈余及流失风险。  相似文献   

8.
水稻秸秆还田对土壤溶液养分与酶活性的影响   总被引:6,自引:0,他引:6  
水稻秸秆还田对于增加土壤有机质,减少碳排放具有重要意义。试验针对寒地水稻,在连续三年水稻秸秆还田条件下,研究了秸秆还田对土壤溶液中氮、磷、钾含量和土壤酶活性的影响。结果表明:水稻生育期间,秸秆还田与不还田处理土壤溶液中无机氮含量均呈现降低升高再降低的变化动态;土壤溶液中磷、钾含量呈逐渐降低的变化趋势;秸秆还田使水稻分蘖期土壤溶液中无机氮含量和整个生育期间土壤溶液中磷含量降低,增加了钾的含量。秸秆还田处理降低了土壤脲酶的活性,提高了蔗糖酶活性,对酸性磷酸酶和过氧化氢酶无明显影响。  相似文献   

9.
王强盛  刘欣  许国春  余坤龙  张慧 《土壤》2023,55(6):1279-1288
稻田是大气温室气体甲烷(CH4)和氧化亚氮(N2O)的重要排放源, 稻田温室气体减排一直是生态农业研究的热点。目前, 采用水稻品种选择利用、水分控制管理、肥料运筹管理、耕作制度调整以及种养结合模式等方法来减少稻田温室气体排放有较好实践效应, 但不同稻田栽培环境(露地、网室)基础上的稻鸭共作对麦秸全量还田的稻田温室气体排放特征及相关土壤理化特性关联性的影响尚为少见。本研究采用裂区设计, 在两种栽培环境条件下, 以无鸭子放养的常规稻作和麦秸不还田为对照, 在等养分条件下分析麦秸全量还田与稻鸭共作模式对稻田土壤氧化还原电位、CH4排放量、产CH4潜力及CH4氧化能力、N2O排放量及N2O排放高峰期土壤反硝化酶活性、全球增温潜势、水稻产量的影响, 为稻田可持续生产和温室气体减排提供参考。结果表明, 麦秆还田增加了稻田产CH4潜力、提高了CH4排放量, 降低了稻田土壤反硝化酶活性、土壤氧化还原电位和N2O排放量, 整体上导致全球增温潜势上升96.89%~123.02%; 稻鸭共作模式, 由于鸭子的不间断活动提高了稻田土壤氧化还原电位, 降低了稻田产CH4潜力, 增强了稻田CH4氧化能力, 从而降低稻田CH4排放量, N2O排放量虽有提高, 整体上稻鸭共作模式的全球增温潜势较无鸭常规稻田下降8.72%~14.18%; 网室栽培模式显著提高了稻田土壤氧化还原电位, 降低稻田产CH4潜力、CH4氧化能力和土壤反硝化酶活性, 减少了稻田CH4和N2O排放量, 全球增温潜势降低6.35%~13.14%。本试验条件下, 稻田土壤的CH4氧化能力是产CH4潜力的2.21~3.81倍; 相同环境条件下, 稻鸭共作和麦秸还田均能增加水稻实际产量, 网室栽培的所有处理较相应的露地栽培减少了水稻实际产量1.19%~5.48%。本试验表明, 稻鸭共作和网室栽培可减缓全球增温潜势, 稻鸭共作和麦秸还田能够增加水稻实际产量。  相似文献   

10.
Purpose

This study compares the dynamic effects of straw and biochar on soil acidity and phosphorus (P) availability in the rice growth period to reveal how straw and biochar affect the availability of phosphorus in soil and utilization of P for rice crop.

Materials and methods

In the pot experiment, rice straw, canola stalk, and corresponding biochars were mixed uniformly with the Ultisol. Soil samples were collected at four stages of rice growth to analyze the dynamic changes of soil acidity and P availability. The availability of phosphate in straw/biochar-amended soils were evaluated using a combination of chemical extraction and diffusive gradients in thin films (DGT) technique.

Results

Soil pH, KCl-P, Olsen-P, DGT-P, and Al-P deceased with the rice growth, while Fe-P increased. Biochar increased soil pH and P availability more than straw returning, especially in the mature stage, while the DGT-P only increased in the tillering stage. The DGT-induced fluxes in sediments (DIFS) model revealed that all treatments increased the capacity of soil solid phase supplementing P to pore water in the filling and mature stages. The content of total P in different rice tissues followed the order of grain?>?straw?>?root, and RB350 treatment had the highest P content in rice tissues. In the mature stage, soil pH had positive correlations with KCl-P and Olsen-P, and soil Fe-P had positive correlations with total P of root and straw.

Conclusions

Application of biochar made at 550 ℃ resulted in a larger increase in available P in soil, while biochar made at 350 ℃ had more effect on the chemical forms of P. The canola stalk biochar showed a larger influence on the P availability than rice straw biochar. Biochar treatments had a larger effect on inhibiting soil acidification and improving P availability than straw returning directly.

  相似文献   

11.
Li  Honghong  Yu  Yong  Chen  Yanhui  Li  Yunyun  Wang  Mingkuang  Wang  Guo 《Journal of Soils and Sediments》2019,19(2):862-871
Purpose

This study focused on the effects and mechanisms of biochar amendment to Cd-contaminated soil on the uptake and translocation of Cd by rice under flooding conditions.

Materials and methods

Pot and batch experiments were conducted using Cd-contaminated soil collected from a field near an ore mining area and a cultivar of Oryza sativa ssp. indica. Biochar derived from rice straw under anaerobic conditions at 500 °C for 2 h was mixed with the soil at the rate of 0, 2.5, and 5%.

Results and discussion

The application of 5% biochar reduced CaCl2-extractable soil Cd by 34% but increased Cd concentration in brown rice by 451%. Biochar amendment decreased water-soluble Fe2+ in soils and formation of Fe plaques on roots and weakened the Fe2+-Cd2+ competition at adsorption sites on the root surface. Biochar increased water-soluble Cd in the soil and consequently Cd uptake by rice roots by releasing water-soluble Cl?. Biochar application also reduced the proportion of cell wall-bound Cd in the root, which caused easier Cd translocation from the cortex to the stele in the root and up to the shoot.

Conclusions

Rice straw biochar (with high concentration of water-soluble Cl?) reduced CaCl2-extractable soil Cd but increased Cd concentration in rice under flooding condition.

  相似文献   

12.
Rice is the staple food for nearly 40% of the world's population. In Malawi, rice is ranked second only to maize as a cereal food crop. In rainfed areas of Malawi, grain yields typically average 1.0–1:5 t ha‐1 while potential yield is 4–5 t ha1. To bridge the gap between current and potential yields, several novel nutrient management systems were studied. Many research reports indicate that rice responds to silicon (Si) application as well as to nitrogen (N), phosphorus (P), and potassium (K) which are commonly applied. Rice crop residues (straws and hulls) are rich in Si and K, but are not utilized currently in rice production. The effect of rice‐hull ash, rice straw, and method of N application (prilled or briquetted urea) on a transplanted rice crop was studied through field experiments in Malawi during 1995 and 1996. Application of urea in briquette form increased rice grain yield by 1056 and 122 kg ha‐1 compared to prilled urea in the 1995 winter and 1996 summer experiments, respectively. However in the 1996 winter experiment, prilled urea was superior to urea briquette and increased the rice grain yield by 307 kg ha1. Incorporation of rice straw significantly increased rice grain yields over the control in three consecutive experiments. Rice‐hull ash alone increased the rice grain yields in all three experiments up to 12%; however, the increase was not statistically significant. The combination of rice straw and rice‐hull ash along with optimum N rates (60 kg ha‐1) increased the rice grain yields significantly in 1996 winter season but the increase was not significant in the other two experiments.  相似文献   

13.
采用田间小区试验,研究稻草、猪粪、猪粪堆肥或沼渣沼液与化肥配施对双季稻田土壤养分利用与渗漏淋失的影响。结果表明,有机肥与化肥配施有利于提高稻田土壤中N、P、K养分和有机质含量,降低稻田渗漏液中TN、TP、NH4+-N、NO3--N浓度,促进水稻养分吸收与利用。其中,以20%的猪粪堆肥氮与化肥配施效果较好,与施纯化肥相比,1年后土壤中全氮、全磷、全钾和有机质含量分别提高了2.59%,0.87%,0.15%和21.45%,碱解氮、速效磷、速效钾含量分别提高3.31%,3.22%和12.24%;氮、磷、钾肥料利用率分别提高5.22%,0.55%,3.50%;水稻地上部氮、磷、钾养分累积量分别提高7.83,0.33,3.14g/kg;水稻生长期稻田渗漏液中TN、TP、NH4+-N、NO3--N浓度明显降低;早稻增产19.65%,晚稻无明显减产。  相似文献   

14.
Abstract

A field experiment was conducted on an Aerie Haplaquept soil to study the effect of phosphorus (P) deficiency in soil on the P nutrition and yield of five modern varieties of rice, viz., Purbachi, BR1, BR3, BR14, and BR29, popular with the rice farmers of Bangladesh. Soil‐available P in the different plots of the experimental field varied widely, from 2.8 to 16.4 ppm. This plot to plot variation in soil‐available P content resulted from differences in the total amounts (0 to 480 kg ha‐1) of P the plots had received over a period of 8 years in a long‐term P fertilizer trial conducted previously in the same field. Phosphorus deficiency in soil drastically reduced the grain yield of all the rice varieties. In severely P deficient plots, where soil‐available P was around 3 ppm, the yield was less than 1 ton ha‐1 while in plots containing an adequate P level, i.e., >6 ppm, the yield was more than 41 ha‐1. Rice yield increased linearly with an increase in soil P content up to 6 ppm, and the highest grain yield for any variety, obtained at 6–7 ppm of soil‐available P leveled off at this point. Soil P deficiency not only decreased rice yield severely but also decreased P content in straw and grain drastically. However, differences among rice varieties were noted in P nutrition, particularly at low soil P levels. The rice varieties differed markedly also in respect of internal P efficiency. The BR29 showed the highest internal P efficiency both at low and high soil P levels. In all the rice varieties, internal P efficiency decreased with an increase in soil P levels.  相似文献   

15.
Addition of rice straw, which is a common practice in rice agriculture, generally results in enhanced production and emission of the greenhouse gas methane (CH4). However, it is unclear whether straw addition affects only the activity or also the composition of the methanogenic microbial community. It is also unclear to what extent methanogenic archaea would be able to proliferate in the soil. Anoxic slurries of Italian rice‐field soil produced CH4 after a lag, during which ferric iron and sulfate were reduced. Addition of rice straw slightly decreased this lag and greatly enhanced the subsequent production of CH4. At the same time, addition of rice straw enhanced the intermediate production of H2 and acetate that served as the methanogenic substrates. Compared with the unamended control, the addition of rice straw resulted in an increased concentration of phospholipid fatty acids in the soil. Quantitative ‘real‐time’ PCR targeting the 16S rRNA gene also showed increased copy numbers of both Bacteria and Archaea in the straw‐amended soil at the end of the experiment. The composition of the archaeal community was followed over time by terminal restriction length polymorphism (T‐RFLP) analysis of the archaeal 16S rRNA genes extracted from straw‐amended soil and the control. Rice Cluster‐I (RC‐I) methanogens and Methanosarcinaceae were the most abundant methanogenic populations, followed by Methanobacteriales, Methanomicrobiales and Methanosaetaceae. Addition of rice straw resulted in a relative increase of Methanosarcinaceae and Methanobacteriales and a relative decrease of RC‐I methanogens and Methanomicrobiales. Our results revealed a dynamic methanogenic community in anoxic rice‐field soil and showed that addition of organic matter selectively enhanced the growth of particular methanogenic populations, which were apparently better adapted to the presence of straw than the others. The extent of archaeal growth was consistent with that expected theoretically from the ambient Gibbs free energies of hydrogenotrophic and acetoclastic methanogenesis.  相似文献   

16.
Soil physical, chemical, and biological properties in a rice field located at the Surin Rice Research Center, Thailand, were evaluated as indicators for predicting organic rice (Kao Dok Mali 105 variety) production and yield. Four treatments under different management practices were studied. They included (1) conventional farming (CF) receiving chemical fertilizer application; (2) organic plot receiving green manure (GM) addition; (3) organic plot receiving rice straw (RS) addition; and (4) control plot (CT) without any external plant nutrient source. Soil quality in the four treatments was assessed based upon selected physical, chemical, and biological parameters. Key findings are as follows: cation exchange capacity (CEC), electrical conductivity (EC), pH, soil organic matter (SOM), and essential macronutrients [nitrogen (N), phosphorus (P), and potassium (K)] were low in all plots. Soil biological properties including potential N mineralization (PMN), soil basal respiration (BR), microbial biomass carbon (MBC) and microbial biomass N (MBN) in all treatments were also low. Principal component analysis (PCA), using 15 soil properties, showed significant differences among farm management practices. Soil chemical and biological properties best related to soil quality included P, N, and SOM (for chemical properties) and MBC, MBN, and BR (for biological properties). Based on significant relationships between yield (r > 0.75) and the soil properties (r > 0.55), selected soil biological (MBC, MBN, and BR) and chemical (TOP [total organic phosphorus], TK [total potassium], TN [total nitrogen], SOC [soil organic carbon], and SOM) properties were determined to be suitable soil-quality indicators, respectively. A soil-quality indicator for predicting rice yield was computed using multiple regression analyses. The regression model (Y = ?1.685 + 0.333 (MBN) + 0.640 (TK) ? 0.282 (SOC), r2 adjusted = 0.962) was used for predicting yield. Grain yield of rice (RMSE = 0.046 t ha?1, D index = 0.45) was obtained using this regression model.  相似文献   

17.
Abstract

Biochar application has been recognized as an effective option for promoting carbon (C) sequestration, but it may also affect the production and consumption of methane (CH4) and nitrous oxide (N2O) in soil. A 1-year field experiment was conducted to investigate the effects of rice husk charcoal application on rice (Oryza sativa L.) productivity and the balance of greenhouse gas exchanges in an Andosol paddy field. The experiment compared the treatments of rice husk charcoal applied at 10, 20 and 40 Mg ha?1 (RC10, RC20 and RC40, respectively), rice husk applied at 20 Mg ha?1 (RH20), and the control (CONT). Rice straw and grain yields did not significantly differ among the treatments. The seasonal cumulative CH4 emissions were 38–47% higher from RC10, RC20 and RC40 than from the CONT. However, the increases were not in proportion to the application rates of rice husk charcoal, and their values did not significantly differ from the CONT. On the contrary, the RH20 treatment significantly increased the cumulative CH4 emission by 227% compared to the CONT. The N2O emissions during the measurement were not affected by the treatments. As a result, the combined global warming potential (GWP) of CH4 and N2O emissions was significantly higher in RH20 than in the other treatments. There was a positive linear correlation between C storage in the top 10 cm of soil and the application rate of rice husk charcoal. The increases in soil C contents compared to the CONT corresponded to 98–149% of the C amounts added as rice husk charcoal and 41% of the C added as rice husk. Carbon dioxide (CO2) fluxes in the off season were not significantly different among RC10, RC20, RC40 and CONT, indicating that C added as rice husk charcoal remained in the soil during the fallow period. The CO2 equivalent balance between soil C sequestration and the combined GWP indicates that the rice husk charcoal treatments stored more C in soil than the CONT, whereas the RH20 emitted more C than the CONT. These results suggest that rice husk charcoal application will contribute to mitigating global warming without sacrificing rice yields.  相似文献   

18.
长期减量化施肥对水稻产量和土壤肥力的影响   总被引:6,自引:0,他引:6  
为探讨减量化施肥对水稻产量及土壤肥力的影响,对巢湖流域连续10年减量化施肥和秸秆还田定位试验后的水稻产量、土壤有机质、有效氮磷钾、有效铜锌铁锰含量及土壤酶活性进行了测定和分析。结果表明:长期减氮30%或减磷50%处理对水稻产量无明显降低作用,减量+秸秆还田有增产作用,但增产不显著;减氮30%或减磷50%会降低土壤中有机质含量,增加土壤中速效钾、碱解氮含量,减磷50%土壤中的有效磷含量显著降低,减量+秸秆还田会增加土壤中的有机质、速效钾、碱解氮、有效铜锌铁锰含量,对有效磷的增加效果不显著;较不施肥相比,施肥能够明显提高土壤的酶活性,减少氮磷肥会一定程度地降低土壤中的酶活性,减量+秸秆还田对脲酶的增加效果不明显,但会显著增加土壤中性磷酸酶和蔗糖酶活性;土壤酶活性与水稻产量及土壤养分含量之间呈显著或极显著正相关关系。综合考虑减量化施肥对水稻产量和土壤肥力的影响,可提出在巢湖流域实施减量化施肥+秸秆还田处理来代替高产施肥。  相似文献   

19.
Summary The effects of incorporation and surface application of straw to a wetland rice field on nitrogen fixation (C2H2 reduction), bacterial population and rice plant growth were studied. Rice straw (5 t ha–1) was chopped (10- to 15-cm pieces) and applied to the field 2 weeks before transplanting IR42, a long-duration variety, and IR50, a short-duration variety. The acetylene-reducing activity (ARA) of IR42 and IR50 measured at heading stage for 3 consecutive days showed significantly higher ARA in IR42 as a result of the 2 straw application methods. Mostly up to 20 days after straw surface application and incorporation, the dark ARA in the soil, total and N2-fixing heterotrophs, and photoorganotrophic purple nonsulphur bacteria (POPNS) in the soil and in association with degrading straw were stimulated. Higher bacterial populations were associated with straw on the surface than with straw incorporated. The POPNS counts, in particular, were increased hundreds fold in the surface-applied straw treatment. Straw applications also increased the root, shoot and total plant biomass at heading stage and the total dry matter yield at harvest in both varieties. The data show the potentials of straw as a source of substrate for the production of microbial biomass and for the non-symbiotic N2 fixation to improve soil fertility and plant nutrition.  相似文献   

20.
张斯梅  段增强  顾克军  张传辉  许博 《土壤》2023,55(4):749-755
为了探讨不同水稻灌溉模式和氮肥减量对还田小麦秸秆腐解特性及土壤养分的影响,通过田间试验,设置了水稻灌溉模式(常规灌溉,W1;干湿交替灌溉,W2)和施氮水平(不施氮,N0;常量施氮,N1;减量20%施氮,N2)处理,采用尼龙网袋法研究了不同处理下小麦秸秆腐解动态、养分释放规律及土壤养分含量。结果表明,干湿交替灌溉和氮肥施用均可促进还田小麦秸秆的腐解,减量20%施氮处理小麦秸秆累积腐解率低于常量施氮处理。相同施氮水平下,干湿交替灌溉模式小麦秸秆碳与氮磷钾累积释放率高于常规灌溉模式;与常量施氮相比,减量20%施氮处理小麦秸秆碳与氮磷钾累积释放率降低。干湿交替灌溉和施氮使土壤有机质、全氮、碱解氮和有效磷含量提高,而减量20%施氮对土壤养分含量的影响较小。综上可见,干湿交替灌溉和氮肥施用促进了还田小麦秸秆腐解和养分释放,有利于土壤养分提升;而减量20%施氮对小麦秸秆腐解与养分释放以及土壤养分无明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号