首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil humus plays a significant role in the cation exchange of a soil. YOSHIDA (1) showed that, as a general rule, divalent ions such as calcium and magnesium were adsorbed more strongly onto humus than monovalent ions such as ammonium and potassium in an ion-exchange reaction. He did not, however, describe the behavior of heavy metal ions. BREMNER et al. (2) first suggested that soil organic matter forms complexes with polyvalent cations. HIMES and BARBER (3) found that soil organic matter reacts with divalent metal ions in a manner similar to the chelation reaction. Reviews of the soil organic matter-metal complex have been written by BREMNER et al. (2) and KAWAGUCHI, MATSUO and KYUMA (4).  相似文献   

2.
Most reports of the studies on solubilisatioh of phosphate in liquid culture and soil suggested that organic acids produced by microorganisms are responsible for promoting the dissolution of phosphate. Sperber (11, 12), Louw and Webley (7) and Duff, Webley and Scott (2) studied the production of acids by cultures of some phosphate dissolving fungi. actinomycetes and bacteria and observed that among the acids produced in liquid medium, hydroxy carboxylic acids such as lactic and 2-ketogluconic acids were responsible for solubilisation of phosphates. In the present studies, apart from the culture of Bacillus megaterium var. phosphaticum isolated from phosphobacterin which had been obtained from USSR. Indian strains of Bacillus megaterium, Bacillus circulans and Escherichia freundii isolated and identified by Sundara Rao and Sinha (13) were used. These studies were undertaken to find out different types of nonvolatile acids produced in Pikovskaya's (9) liquid medium.  相似文献   

3.
Investigations on the extraction and determination of organic acids in flooded soil have been reported by TAKAI (1) and TAKIJIMA (2). TAKAI applied water to extract acids from soil and determined them by BULLEN's method (3). However, TAKIJIMA reported that organic acid could not be completely extracted by TAKAI's procedure, especially in soil with a high organic matter content such as muck and peaty soils, and proposed an extraction procedure with 0.5 N sulfuric acid. He also discussed the absorption of acids by soil.  相似文献   

4.
Abstract

Several silicon (Si) extractants are being employed in different countries mostly for lowland acidic soils. Present investigation was conducted to evaluate suitable extractants for upland paddy grown on alkaline soils. Available Si was extracted by using ten different extractants. Tris buffer pH 7.0 (1:10) in Inceptisols showed positively highest and significant correlation with grain yield (r?=?0.870), grain Si uptake (r?=?0.887), straw yield (r?=?0.852), and straw Si uptake (r?=?0.919). However, 0.5?M acetic acid (1:2.5) in Vertisols showed positively highest and significant correlation with grain yield (r?=?0.810), grain Si uptake (r?=?0.852), straw yield (r?=?0.850), and straw Si uptake (r?=?0.929). The application of Si @ 200?kg ha?1 along with chemical fertilizers significantly increased yield and nutrient uptake of upland paddy on Vertisols. Tris buffer pH 7.0 (1:10) and 0.5?M acetic acid (1:2.5) were suitable extractant for Inceptisols and Vertisols, respectively based on its correlation with yield and nutrient uptake.  相似文献   

5.
The concept of productive efficiency of nutrients has been discussed at length by Kimura and Chiba (1943)1). Considering that the effect of a nutrient for the production of grain and straw may be divided into several growing periods of plant.life, Kimura and Chiba (1943) conducted water culture experiments to study the effect of nitrogen absorbed at a definite period on the production of grain and straw. The total productive efficiency was divided into several partial efficiencies based upon the growing period of the rice plant. The following is a summary of their findings.  相似文献   

6.
Barley plants were grown hydroponically at two levels of K (3.0 and 30 mm) and Fe (1.0 and 10 μm) in the presence of excess Mn (25 μm) for 14 d in a phytotron. Plants grown under adequate K level (3.0 mm) were characterized by brown spots on old leaves, desiccation of old leaves, interveinal chlorosis on young leaves, browning of roots, and release of phytosiderophores (PS) from roots. These symptoms were more pronounced in the plants grown under suboptimal Fe level (1.0 p,M) than in the plants grown under adequate Fe level (10 μm). Plants grown in 10 μm Fe with additional K (30 mm) produced a larger amount of dry matter and released less PS than the plants grown under adequate K level (3.0 mm), and did not show leaf injury symptoms and root browning. On the other hand, the additional K supply in the presence of 1.0 μM Fe decreased the severity of brown spots, prevented leaf desiccation, and increased the leaf chlorophyll content, which was not sufficient for the regreening of chlorotic leaves. These results suggested that the additional K alleviated the symptoms of Mn toxicity depending on the Fe concentration in the nutrient solution. The concentration (per g dry matter) and accumulation (per plant) of Mn in shoots and roots of plants grown in 10 μm Fe and 30 mm K were much lower than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that additional K repressed the absorption of Mn. The concentration and accumulation of Fe in the shoots and roots of the plants grown in 10 μm Fe and 30 mm K were higher than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that the additional K increased the absorption of Fe under excess Mn level in the nutrient solution. The release of PS, chlorophyll content, and shoot Fe concentration were closely correlated.  相似文献   

7.
A greenhouse experiment was conducted at Land Resources Research Institute, NARC, Islamabad to examine the impact of humic substances (HSs) coating on potassium fertilizers use efficiency. Tomato variety “Rio Grande” was used. The treatments applied were T1= Control (N, P at 250 and100?mg kg?1 respectively), T2?=?N, P?+?K at 200?mg kg?1 as SOP, T3?=?N, P?+?K at 200?mg kg?1 as NPK blend, T4?=?N, P?+?K at 200?mg kg?1 HSs coated SOP) and T5?=?N, P?+?K at 200?mg kg?1 HSs coated NPK blend. Results indicated a positive impact of sole and HSs coated products on agronomic traits, nutrient concentration, fruit quality traits, flower number, fruit umber, fruit weight, chlorophyll contents, fresh and dry biomass, tissue water contents, diameter and fruit mineral composition. The response of afore said traits to applied treatment varied.  相似文献   

8.
Abstract

The presence of 4-MeGln in the tulip plant was discovered by ZACHARIUS et al. (1954), and it was found that this amide generally occurred in the leaves of almost all the species of genus Tulipa (FOWDEN and STEWARD 1957a). The 4-MeGln compound has been detected in every part of the tulip plant, i.e., bulb scales, roots, basal plate, young shoots, leaves, stern, and flower (FOWDEN and STEWARD 1957a, b; OHYAMA 1986; OHYAMA et al. 1985, 1988a, b; ZACHARIUS et al. 1954, 1957). Especially 4-MeGln was found to be a major soluble N constituent in the leaves and stem of tulip of the flowering stage (OHYAMA et al. 1985; OHYAMA 1986).  相似文献   

9.
In a previous communication from this laboratory it has been indicated that mint plants respond typically to different environmental conditions (day length and temperature) by marked alterations in growth, and synthesis of essential oil (SINGH and SINGH, 1968a (1)). Similar work on M. piperita L. carried out by several workers clearly shows that the mineral nutrition and metabolism of this plant are equally affected by environmental changes (CRANE and STEWARD, 1962 (2) ; RABSON, 1965 (3) ; STEWARD et al. 1959 (4)), and the metabolic consequences which flow from deficiencies of nutrient elements are greatly influenced by these factors, e. g., lack of phosphorus under short days is accompanied by greater accumulation of amides than under long days and, therefore, causes decrease in other soluble constituents, viz. amino acids (CRANE and STEWARD, 1962).  相似文献   

10.
There have been several papers dealing with the difference in chemical composition between callus tissue and normal parent tissue. WEINSTEIN, TULECKE, NICKELL, and LAURENCOT (1–3) revealed, in a series of papers, that the contents of amino acids, sugars, and nucleic acids often differed strikingly between callus and normal tissue of Agave toumeyana Trel. (1), Ginkgo biloba, L. (2), and PAUL's scarlet rose (3). STEWARD, THOMPSON, and POLLARD (4) also reported that the content of some amino acids of rapidly growing and randomly proliferating tissue is outstandingly different from that of normal tissue.  相似文献   

11.
Nonexchangeable potassium (K-ne), i.e. 1 M NH4OAc-nonexchangeable K, often contributes significantly to plant nutrition. However conventional extraction methods often extract much more K-ne than plants even after intensive cropping, suggesting the difficulty in evaluating the amount of readily available soil K-ne. In this study, we used a milder extraction method (0.01 M HCl method) to examine its applicability to evaluate the amount of readily available K-ne in soil. In the first experiment, the concentration of K-ne in twenty surface soils sampled from agricultural fields in Japan and K-bearing minerals was determined by the 0.01 M HCl method, i.e. sequential extraction with 0.01 M HCl over a period of 10 d after removal of exchangeable K, and by conventional methods. The average percentage of the soil K-ne extracted by the 0.01 M HCl method amounted to 0.66% of the total K amount, and was much lower than that by a single extraction with 1 M HNO3 (2.0%) or with 0.2 M sodium tetraphenylboron for 2 d (22%). In the second experiment, the amount of K-ne removed by chemical extractions was compared with that of K-ne removed by maize plants grown for 29 d in five of the above soils. The amount of the K-ne evaluated by the 0.01 M HCl method gave the highest correlation (p < 0.05) with that of the K-ne utilized by plants among the extraction methods applied. The amount of soil K-ne extracted by the 0.01 M Hel method could therefore become a suitable index of the amount of readily available K-ne in soil. Extraction of K-ne in soils after maize planting further indicated that plants had removed K-ne more intensively than the 0.01 < HCl method probably only from the rhizosphere, although a high correlation was observed between the amount of K-ne removed by the 0.01 M Hel method and that by plants. This implies that the estimation of the amount of K-ne utilized by plants requires not only soil chemical analysis but also the evaluation of the percentage of the soil volume where the plant-induced release of K-ne actually occurs.  相似文献   

12.
Laminar opaline silica was first found in the 0.2 to 5 μ fraction and most abundant in the 0.4 to 2 μ fractions of young Japanese Andosols by Shoji and Masui (1969a, b). It was noted that the A horizon of a profile tends to be relatively rich in opaline silica whereas the B or C horizon, in allophane (Shoji and Masui, 1972a, b). They (I972a) distinguished four types of opaline silica particles such as circular, elliptical, rectangular, and rhombic, of which the circular and elliptical types predominate. It has been suggested that the formation of opaline silica is favored by a plentiful supply of soluble silica in the early weathering stage of Andosols, the supersaturation of silica by surface evaporation of soil solution, and the suppression of aluminum activity in the soil solution by the accumulation of soil organic matter (Shoji and Masui, 1972b; Wada and Harward, 1974). The purpose of the present short communication is to describe the occurrence of laminar opaline silica particles in some Oregon Andosols, U.S.A.  相似文献   

13.
Phosphorus in soils is found to be present in organic combinations, inorganic form or in adsorted form on clay complex. Different forms of soil phosphorus have different solubilities and consequent availability in soils. A knowledge about the content and types of soil phosphorus enables one to understand the organic behaviour and predict the response of added phosphatic material to crops (Parker 1953). The form in which phosphorus is present in soil is directly related to pH and CaCO3 in the soil as well as the intensity of the development of the soil. Williams (1950) has found that in calcareous soils of South Australja most of the phosphorus was in combination with calcium, whereas in acid soils it forms compounds with alumina and iron. Hibbard (1931) concluded that in alkaline and calcareous soils, phosphorus exists mostly in the form of hydroxyapatite, chloroapatite, and the like. Kanwar and Grewal (1959) studied fractionation of phosphorus in Punjab soils and reported that differences in the nature and amounts of the phosphorus present in acid and alkaline soils of the State explain the causes of different phosphatic fertilizer responses to the crops. A similar report has been given by Goel and Agarwal (1959) who studied the fractionation of phosphorus in Kanpur soils and concluded that the mature soils are rich in iron and aluminium bound phosphorus and respond better to phosphatic fertilizer than the immature soils rich in Ca2+ and Mg2+ bound phosphorus. Chai Moo Cnoo and Caldwell (1959) reported that Fe3+ and Al3+ bound phosphorus was abundant in acid soils while Ca2+ and Mg2+ bound phosphorus content in alkaline soils, and organic phosphorus agreed, in general, with the content of organic matter, with some deviations.  相似文献   

14.
In the past several years, the occurrence of vermiculite-type clay minerals and the problem of the formation of Al-interlayers have attracted the intensive attention of soil clay mineralogists. A number of papers have appeared in Japan, in Which the identification data of the vermiculite-type minerals with stable 14 Å spacing were given. (Matsui 1959, 1960; Kanno 1961b, Kato 1961, 1962a, 1962b; Egawa 1963).  相似文献   

15.
Recent studies have shown that the incorporation of ammonium nitrogen into amino acids in the leaves is strictly dependent on light (1-4). It is speculated that the effect of light on ammonium assimilation may be through the synthesis of the precursors of amino acids, or by the supply of the energy required for amination and amidation with organic acids. In the Vicia faba chloroplasts Givan et al. (1) exhibited that the synthesis of glutamic acid from a-ketoglutarate was linked with the generation of reduced pyridin nucleotide by photosynthetic electron transport. Mitchell and Stocking (2) suggested the direct coupling of glutamine formation with photophosphorylation in the pea chloroplasts. On the other hand. the processes of nitrate assimilation are more indebted to light than those of ammonium assimilation, because the former ones involve the reduction of nitrate to ammonium which is believed to be light-dependent (5). Canvin and Atkins (6). and Atkins and Canvin (7) reported that the incorporation of 15N-labeled ammonium and nitrate into amino acid fractiom was depressed by the dark treatment and by photosystem inhibitors; 3-(3′,4′-dichlrophenyl)-1-1-dimethylurea (DCMU) and carbonyl-cyanide-m-chlorophenyl-hydrazone(CCCP).  相似文献   

16.
The soils of Rajasthan vary from desert sand to heavy clay with all intermediate stages like sandy loam, loam and clay loam. The last two textural groups are more prevalant on the eastern, northeastern and southeastern part of the Aravallies which run almost in the middle of the State from southeast to northeast. The latter groups of soils have more potential from the point of agricultural development in the State. These soils are widely termed as alluvial soils which is a general term to indicate the nontaxonomic group of soils that have parent material of alluvial origin, Riecken 17, Kelloog 8 has referred to the soils developed from the alluvium as classified under variety of world soil groups. In our country many of the alluvial soils have not yet been studied from the soil genesis point of view as a measure to classify the soils under taxonomic groups. Ray Chawdhary and Mukerji 15, concluded that the alluvial soil groups of our country are ill defined and the classification of these soils need more study. Basu 3 was able to distinguish the genetic characteristics of the soils of Deccan. Agrawal and Mukherji 1) established that distinct genetic soil types have come into expression under Gangetic alluvium. Agarwal 2 has concluded about the three types of soils in the toposequence with precipitated calcium throughout, zone of calcium accumulation in the bottom of the profile and soils free of calcium, and suggests that the soils of Gangetic plain be called as derived from alluvium. A process of reclassifying the alluvial soil series into taxonomic groups is a common trend in the United States since the last two decades.  相似文献   

17.
It is well known that methyl mercaptan is porduced by the microbiological decomposition of methionine1),2),3). According to Kondo 4) and Onitake 1)not only hydrogen sulfide, but also methyl mercaptan were produced from cystine by E. coli and Proteus vulgaris in the medium containing one of glucose, lactose, sucrose, glycerin or histidine. Moreover, Onitake 1) found that methyl mercaptan was produced by the action of E. coli in the medium containing hydrogen sulfide and a trace of ethyl alcohol, and that evolution of methyl mercaptan began only 5 minutes after the start of experiment in the medium containing methionine, but it began after 12hrs in the medium containing 1-cystine and glucose. According to Birkinshaw, Findlay and Webb5) methyl mercaptan was found in the medium containing glucose, sulfate and other mineral salts, inoculated by Schizophyllum commune. In the same cultural condition as given above, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide were detected by Challenger and Chartons 5) from the data presented above, in addition to microbiological formation of methyl mercaptan from methionine, the possibility cannot be excluded of methyl mercaptan formation by microbes from cystine, sulfate or hydrogen sulfide in the medium containing one of organic compounds such as sugars, glycerin, histidine and ethyl alcohol, etc.  相似文献   

18.
Abstract

Studies on nutrient interactions in aromatic rice are needed for proper understanding of impact of imbalanced use of nutrients in the era of multi and micro-nutrient deficiencies. A pot experiment was conducted during the rainy/wet season (June–October) of 2013 at New Delhi, to study the interaction effects of two levels each of nitrogen (N) (0 and 120?kg?ha?1), phosphorus (P; 0 and 25.8?kg?ha?1), and zinc (Zn; 0 and 5?kg?ha?1) in two aromatic rice (Oryza sativa L.) varieties, viz. Pusa Rice Hybrid 10 and Pusa Basmati 1121. Application of N, P, and Zn resulted in increase of dry matter (0.91, 0.32, and 0.24?g plant?1, respectively) 60?days after sowing (DAS) and grain yield of rice (3.68, 1.67, and 1.17?g plant?1). The increase in yield of rice owing to N application was relatively higher by 0.98, 0.22, and 1.05?g plant?1, respectively, when either P or Zn or both were applied with N than alone application of N, indicating synergetic effect of P and Zn application with N. The higher concentration and uptake of K in grain (0.25% vs 0.10%) and straw (1.32% vs 0.94%) were observed in the treatment received N than no N, though K was applied uniformly in all the treatments. It indicates positive interaction of N and K. The higher uptake of P in grain and straw was observed when P was applied with N and Zn (3.34 and 2.15?mg plant?1), or with N (3.26 and 2.11?mg plant?1) signifying positive effect of N on P uptake in rice.  相似文献   

19.
The central districts of Japan are mountainous areas rising to 3,000 metres which are predominantly covered with forest vegetation. A comprehensive and systematic classification of the soils in this region has not yet been made, but the following soil types have been reported to occur: - 1. 1. Brown forest soils, podzolic soils, black soils and red soils. [Described by OHMASA (14)]

2. 2. Alpine grassland soils and alpine meadow soils. [Described by KUMADA et al. (9)]

3. 3. A series of randzina-like soils with a very restricted distribution. These are derived mainly from limestone and show various degrees of maturity. [Described by KUMADA et al. (8)]

4. 4. Red-yellow soils. These sometimes show a close resemblance to OHMASA's red soils and are found on diluvial plateaux and hills. [Described by KANNO (1)]

5. 5. Paddy soils.

  相似文献   

20.
With the increased use of ammonium fertilizers a study of the absorption, retention and release of NH+ 4 by soil is gaining considerable importance. An ammonium saturated soil may hold NH+ 4 in three different forms, the free, the exchangeable and the fixed ammonium ion. The free NH+ 4 can be extracted from soil by water or alchohol; the exchangeable NH+ 4 may be replaced by simple cation exchange process using 2N-KCl whilst the fixed ammonium can not be removed even after the application of drastic treatments. Only absorbed ammonium is usually available to the plants either directly or through nitrification while free ammonium is likely to be lost through leaching with rain or irrigation water and less than 10% of the fixed ammonium is only slightly available to nitrifying bacteria or nitrate formation (ALLISON et al. 1951, HANWAY and SCOTT 1956).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号