首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of ammonium nitrate fertilization on ureide synthesis, xylem transport and assimilation was examined in four week old nodulated soybean plants. In nodules the activity of 5‐phosphoribosylpyrophosphate amidotransferase, a key enzyme of ureide biosynthesis, declined 75%, while enzymes of purine oxidation (xanthine dehydrogenase and uricase) showed no response to nitrogen treatment. Xylem sap concentrations of allantoin and allantoate, as compared to untreated controls, were reduced by about 85% and 65%, respectively. Despite the substantial decline in ureide synthesis and transport, allantoate concentration in leaves of ammonium nitrate treated plants increased by about three‐fold. No ureide accumulation was observed in leaf tissue following a suppression of ureide formation in nodules by allopurinol, an inhibitor of xanthine dehydrogenase. In the pathway of ureide assimilation in leaves, application of inorganic nitrogen had no effect on activity of allantoinase, but caused a 50% drop in activity of allantoate amidohydrolase. Therefore, the observed accumulation of allantoate in soybean leaves in response to nitrogen fertilization was due to new ureide synthesis in plant tissues other than nodules, or to retardation of ureide degradation in leaves caused by the alternative source of nitrogen.  相似文献   

2.
Abstract

Effect of the treatment of soybean nodules with nitrate on the permeability of the outer membrane of bacteroids of Bradyrhizobium japonicurn strain 138NR was examined using the hydrophobic fluorescent probe N-phenyl-1-naphthylamine (NPN). The incorporation of NPN into the outer and inner membranes of the bacteroid cells isolated from nodules of soybean (Glycine max L. Merro cv. Tamahomare) was followed by the measurement of fluorescence at 30°C. The NPN-uptake activity of the bacteroids was expressed by two parameters, the initial rate of NPN-uptake, k, and the final fluorescence intensity, F max. Acetylene reduction activity (ARA) of nodules, k, and F max decreased exponentially during three weeks following the 20 d period after planting (DAP), resulting in high correlations between logarithmic transforms of k-values or F max per bacteroid and those of ARA per bacteroid. Application of 20 mM KNO3 to the nodulated roots at 24 DAP inhibited ARA of the roots by 85% of the control after 4 d of treatment. There were concomitant decreases in k and F max by 75% and 65% of the control, respectively. These results suggest that treatment of soybean nodules with nitrate results in some changes in the permeability of the outer membrane of bacteroids with a concomitant decline of N2-fixing activity of bacteroids.  相似文献   

3.
Rhizobitoxine (2-amino-4-(2-amino-3-hydropropoxy)-trans-but-3-erioic acid) is a phytotoxin produced by some strains of Bradyrhizobium species. Rhizobitoxine-producing strains often induce chlorosis in new leaves of soybean as a result of the synthesis of the toxin in nodules (Owens and Wright 1964; Owens et al. 1972). Some of the B. japonicum bacteroids possessing the hydrogen uptake (Hup) system are capable of ATP production by recycling H2 evolved from nitrogenase (Evans et al. 1987). Adequate uptake hydrogenase activity in soybean bacteroids often enhances plant growth, as well as the efficiency of energy utilization during nitrogen fixation (Evans et al. 1987).  相似文献   

4.
The intact nodules attached to the upper part of soybean roots were exposed to 15N2 and the incorporation of 15N into various soluble nitrogen constituents was investigated. Results indicated that ammonia, a primary product of N2 fixation, was located in more than two compartments. Ammonia reduced from N2 gas seemed to be incorporated firstly into glutamine especially amido-group nitrogen. Newly fixed nitrogen was secondly incorporated into glutamic acid and alanine in this sequence. These results suggested that fixed ammonia was assimilated by glutamine synthetase/glutamate synthase pathway. Turn-over rate of allantoin plus allantoic acid and serine was relatively high, although apparently these compounds were not primary products of newly fixed ammonia. 15N content of allantoin was always higher than that of allantoic acid. 15N incorporation to aspartic acid and asparagine was relatively slow, especially in early period. In bacteroid fraction there is much amount of ammonia comparing with other compounds, while allantoin and asparagine were presented exclusively in cytosol. 15N was incorporated into nitrate within a few minutes especially in bacteroids.  相似文献   

5.
In leguminous root nodules, bacteroids are differentiated from rhizobia and are surrounded by a peribacteroid membrane (PBM) forming an intracellular structure designated as symbiosome. Through the peribacteroid space (PBS) between the PBM and bacteroids, metabolic substances and signal compounds are exchanged between two symbionts. In this study, organic compounds with low molecular weight in the PBS were collected from isolated symbiosomes of soybean (Glycine max L.) root nodules, and their composition was analyzed and compared with that of the organic compounds in whole root nodules and bacteroids. Major differences were detected in the molar percentages of amino and organic acids, and sugars, to the total low molecular weight organic compounds among whole root nodules, PBS, and bacteroids. The PBS composition was characterized by abundant sugars and poor amino acids. Also the composition of the amino acids, organic acids, and sugars in the PBS was clearly different from that in whole root nodules and bacteroids. The PBS sugar composition was characterized by the predominance of inositols, especially myo-inositol at the 5th and 7th weeks of the host plant growth stages. Changes in the myo- and D-chiro- inositol balance at the host plant growth stages occurred and a syntony was observed between the PBS and bacteroids. The localization of myo-inositol in the PBS accounted for almost 70% of the total myo-inositol in root nodules. A small difference in the PBS composition between two soybean cultivars was recorded but it varied with the growth stages. It was tentatively concluded that the PBS sugar composition affected the bacteroidal sugar composition in soybean plants, and that inositol utilization in the bacteroids could be a factor controlling the bacteroidal function level which varied with the host plant growth stages.  相似文献   

6.
Abstract

15N assimilation was studied in bacteroid and cytosol fractions of soybean nodules. In the first experiment, after exposing the intact nodules to 15N2 for 5 min and 10 min, most of the fixed 15N was detected in cytosol fraction. In cytosol fraction, 15N content of glutamine was the highest and followed by glutamic acid, alanine, and allantoin in this sequence, whereas, in bacteroid fraction, glutamic acid showed the highest 15N content and alanine and glutamine followed. In the second experiment, 15N assimilation of various 15N-labeled compounds in the separated bacteroid and cytosol fractions was investigated. In the separated bacteroid fraction which was fed with 15NH4, 15N was incorporated very rapidly into glutamic acid, alanine, and aspartic acid, but very slowly into glutamine.

From these results, it was suggested that most of the fixed ammonia was exported to cytosol and assimilated via glutamine synthetase to glutamine, then via glutamate synthase to glutamic acid, and from these compounds various nitrogenous compounds were formed, but in bacteroids glutamate dehydrogenase and alanine dehydrogenase played an important role in the assimilation of fixed ammonia though quantitatively the contribution to ammonia assimilation in nodules was much less compared with cytosol.  相似文献   

7.
The total nitrogen of root nodules of yellow lupins (Lupinus luteus) and soybeans (Glycine max), when grown with N2 of air as the sole source of nitrogen, became progressively enriched with 15N relative to other parts of the plants. Nodules of subterranean clover (Trifolium subterraneum) and lucerne (Medicago sativa) were not enriched with 15N. Analysis of the distributions of 15N amongst nodule fractions showed highest specific enrichment in coarse plant cell fragments and bacteroids in soybean and in lupins the soluble protein was also highly enriched. In terms of the total μg of 15N excess, the bacteroids contained most in soybean nodules and the soluble protein contained most in lupin nodules.  相似文献   

8.
Field experiments were conducted on a volcanic ash soil with low available Mo and moderate acidity for 4 years to determine thfc responses of soybeans and soybean nodules to Mo application with seed treatment.

Mo application resulted in a 15.7% increase in the average yield of the nodulated varieties over 4 seasons. However, the genetically controlled non-nodulating variety did not respond to Mo under the same experimental conditions. Nodulated plants treated with Mo became increasingly greener from the pre-bloom stage and contained much more N in their tops during the later period of growth and accumulated considerably larger amount of N in seeds produced per unit area. These results are in agreement with the enhancement of N, fixing activity per plant basis during a long period covered from the stage of 2nd trifoliate leaf unfolding to that of seed development. The increase of yield obtained by the Mo application is ascribed to the improvement of N, fixing activity of the root nodules, The enhancement of N, fixing activity was mainly due to a higher activity per unit nodule weight at early itaget and was due to better growth of nodules during the latter half of growth. Nodules on Mo-created plants were characteristically larger size, had lower water contcnt and higher Mo content.

Referring to the data presented by the authors and several other investigators on available Mo in soils, soil pit, and other related factors, discussion is made that the yield response of soybeans to Mo application is expected in a good number of fields in Japan as a result of nodule response leading to the enhancement of symbiotic N, fixation throughout growth.  相似文献   

9.
三叶草、豌豆和快生型大豆根瘤菌类菌体繁殖研究的进展   总被引:1,自引:0,他引:1  
采用单个原生质体分离和微室培养技术研究了三叶草、豌豆和快生型大豆根瘤菌在根瘤中的分化和繁殖。结果表明:快生型大豆根瘤菌体的分化和繁殖特性与慢生型大豆根瘤菌类似,多个杆状类茵体包含在一个共同的类菌体周膜中,可区分出未成熟的细小杆状类菌体和成熟的杆状类菌体;其繁殖率在刚现瘤时<0.01%,到10周瘤龄时增加到40%以上。而三叶草和豌豆根瘤菌在根瘤中的分化过程是从小杆菌→未成熟细长杆状类菌体→成熟的棒状或Y状类菌体。在一般条件下,只有小杆菌才能繁殖,其繁殖率也随瘤龄而增加。在根瘤发育后期,少数成熟的三叶草和豌豆根瘤类菌体,在含水量较多时,可以转化为活跃运动的大杆菌,然后在分裂过程中逐次缩小并最终转变为正常的根瘤小杆菌;含水量较少时,大杆菌继续生长形成假丝状体,最后再断裂为大杆菌或停止生长。渗透压保护不是根瘤类菌体或小杆菌繁殖的必要条件,除对幼小根瘤的未成熟类菌体外,它妨碍成熟类菌体或小杆菌的生长和繁殖。  相似文献   

10.
The degradation of xanthine was studied in young and aged leaves and in immature and mature fruits of Coffea arabica and Coffea dewevrei, which differ with respect to caffeine catabolism. Radioisotope feeding experiments showed that leaves degraded xanthine more readily than fruits but that mature fruits and aged leaves were less efficient than younger tissues. In all cases, a significant part of the recovered radioactivity was in the ureides. Xanthine dehydrogenase was characterized as the enzyme responsible for xanthine degradation, and its activity and that of uricase were consistent with the results obtained in the radioisotope feeding experiments. Activities of allantoinase and allantoate amidohydrolase could not be detected. Considerable levels of endogenous allantoin and allantoic acid were found in fruits and leaves. Therefore, ureide accumulation might be a consequence of low enzyme activity. There was no positive correlation between urease activity and the data from the radioisotope feeding experiments.  相似文献   

11.
Homogenates were prepared from the leaves of hydroponically cultivated sunflowers (Helianthus annuus, L.) under deficient, normal and toxic B conditions and the polyphenol oxidase activity together with the ortho‐diphenolic and micronutrient content was measured every week from one month to flowering.

B deficiency slightly depressed polyphenol oxidase activity and B toxicity decreased it significantly at all times, the response fitting a line versus the logarithm of the B concentration in solution. We found a positive correlation between polyphenol oxidase activity and the B content in leaves.

B action on enzymatic activity seemed not to be caused by direct interaction with substrates as the infiltration of B into deficient leaves did not restore the normal activity

According to our results we suggest that polyphenol oxidase activity may be a valid functional parameter to indicate the nutritional status of B in sunflower plants, if its specificity for B can be demonstrated.

The ortho‐diphenolic content did not change with the B levels used in our experiments. Neither did we find any correlation between enzymatic activity and the o‐diphenolic content of the leaves.  相似文献   

12.
Abstract

The effects of P and Zn rates on soybeans were investigated on Njala upland soil. There was a moderate positive linear effect of rates of P upon number of nodules. Also, there was a highly significant linear effect of P upon nodule weight and the quadratic effect was moderately significant. There was a significant negative effect of Zn upon nodule weight. Statistically significant linear and curvilinear trends associated with P rates affected dry matter at 50% flowering.

Seed yield was significantly affected by rate of P and there was a highly significant positive linear effect of P upon seed yield. Percent protein in seed was not affected by either P or Zn rates. Rates of Zn did not significantly affect number of nodules, dry matter, pods per plant and seed yield. There were highly significant correlations among number of nodules, nodule weight, dry matter, pods per plant and seed yield.  相似文献   

13.
Abstract

Bacteroids are defined as the symbiotic forms of Rhizobium or Bradyrhizobium cells in the root nodules of their legume host. The differentiation to bacteroids involves various physiological changes and may be associated with some genetical changes. Single-colony isolates from a nodule formed by a Bradyrhizobium strain often differed in their effectiveness and intrinsic antibiotic resistance (Weaver and Wright 1987; Ozawa unpublished data). Detailed analysis of the changes in the gene structure requires the isolation of individual bacteroids from a nodule. However it has been reported that the viability of bacteroids in culture is very low and only a small fraction of a bacteroid population could produce colonies on yeast extract-mannitol (YEM) agar (Sutton et al. 1977). Bergersen (1974) concluded that the reversion of bacteroids to the vegetative, growing form is very rare.  相似文献   

14.
Abstract

The supply of sulfur (S) fertilizers, such as phosphogypsum, to new agricultural frontiers has been hindered by the high cost of freight. However, this problem could be resolved by utilizing deposits of rock in the affected regions. Accordingly, a greenhouse study was designed to evaluate the effect of S source and rate on soybean yield. Five S rates (0, 50, 100, and 200?mg kg?1) and five S sources (S-phosphogypsum, S-Niquelândia rock, S-Araripina rock, S-Grajaú rock, and S-Sulfurgran [90% S0?+?10% bentonite]) were applied to soybean grown in two soil types (Typic Ultisol and Typic Oxisol), which differ in clay content. Regardless of soil type, the application of P-phosphogypsum resulted in a higher grain yield. However, application of the other S sources also improved grain yield as well as total dry weight; S application, in general, improved soybean yield components (number of grains per pod, number of pods per pot, and weight of pods per pot), photosynthetic rate, chlorophyll content, and the S levels of leaves and grains as well as the available sulfate (SO42-) levels in the soil. Therefore, for soybean grown in Typic Ultisol and Typic Oxisol, different S sources effectively improve a variety of variables that ultimately improve grain yield.  相似文献   

15.
Prolonged flooding of soybean [Glycine max(L.) Merrill] reduce yields. One explanation for lower yields in legumes has been the reduction in N fixation associated with the reduction in 02 supply in the flooded soil. This work investigated the effects of prolonged flooding at the initiation of reproductive growth on the dry matter and N and P accumulation in soybean. The field study was conducted on a Crowley silt loam (Typic Albaquaif). Forrest soybean were flooded at R2 for 7 consecutive days at a flood height of 2.5 cm. Dry matter accumulation and concentrations of N and P of the stems, leaves, branches, and pods were determined by nodes on both flooded and non‐flooded plants for six sampling periods of 0, 7, 14, 21, 36, and 62 days after flooding. The results showed that, in terms of concentration and total amounts accumulated, flooding at R2 adversely affected N nutrition in soybean. The soybean recovered from this effect two weeks after the flood was removed. As compared to the non‐flooded soybean, flooding improved P nutrition. The flooded soybean had greater P concentrations and total amounts of P accumulated. Flooding also prolonged vegetative growth in the upper portion of the canopy.  相似文献   

16.
Summary Hydrogenase activities and N2-fixing capacities of soybean nodules (Glycine max. cv. Hodgson), inoculated with strains ofBradyrhizobium japonicum andRhizobium fredii from different geographical regions, were measured after 35 days of culture under controlled conditions. Of the strains tested, 47% induced nodules with bacteroids which recycled H2. The data obtained suggest that H2-recycling ability is not a major factor influencing early N2-fixation which depends essentially on the precocity and intensity of the initial nodulation.  相似文献   

17.
大豆豆荚光合物质转运与分配对籽粒发育的影响   总被引:1,自引:1,他引:1  
运用透射电镜放射自显影技术、液体闪烁计数仪和相关生理指标测定研究了大豆生长过程中不同时期豆荚光合产物对籽粒发育的影响。结果如下:在鼓粒初期、鼓粒中期、鼓粒后期豆荚都向籽粒转运光合产物;豆荚和叶片在鼓粒中期14C-同化物的转运量达到最大;叶绿素、可溶性碳水化合物的含量也达到最高。鼓粒中期豆荚的转运量可达叶片转运量的35.6%;鼓粒后期豆荚、叶片的转运量都有所下降,但叶片下降幅度大于豆荚,此时期豆荚对籽粒的转运量达到叶片的59.6%。可见在鼓粒后期,当叶片光合功能开始衰退时,豆荚的光合产物对籽粒的贡献起到不容忽视的作用。  相似文献   

18.
A large quantity of an unidentified compound was detected by a fluorogenic method in the soybean nodules formed with H2-uptake negative Rhizobium japonicum strains. The unidentified compound (compound X) reacted with o-phthalaldehyde in the presence of 2-mercaptoethanol giving rise to a fluorescent compound, and was not hydrolyzed in strong acid and strong base. Therefore, the compound X was considered to be one of amines and amino acids. The content of the compound X in the nodules formed with H2-uptake positive strains was remarkably lower than that in the nodules formed with H2-uptake negative strains. It was suggested that the compound X may be involved in the process of hydrogen metabolism in soybean nodules. The compound X was not detected in leaves, stems, petioles, and roots of soybean plants, but detected in H2-uptake negative strains of free-living R. japonicum. In nodules, a great portion of the compound X was distributed into cytosol fraction.  相似文献   

19.
ABSTRACT

A pot experiment was implemented to study effects of sulfur (S) fertilization on soybean root and leaf traits and soil microbial activity in 2004 and 2005. In this experiment, three different treatments were established: 0 mg· kg? 1(CK), 30 mg· kg? 1(A), and 60 mg· kg? 1(B). The results showed that an application of elemental sulfur significantly increased the number of soybean side roots by 8.6% to 33.2% and dry weight by 6.6% to 34.3%, increased the root nodules number by 2.7% to 35.9%, and dry weight by 13.0% to 75.7%, increased chlorophyll content in leaves by 0.4 to 3.9 unit, and increased soybean yield per plant by 7.3% to 12.8%, compared with the control. The application of elemental sulfur also increased the amount of soil microorganism (bacterium, fungi and actinomycete), activity of catalase, urease, neutral phosphatase, and polyphenoloxidase in the same growth stage significantly. The above results showed sulfur supply could promote the growth of soybean, increase the yield, and enhance soil microbial activity. Thirty mg· kg? 1 was the suitable rate of sulfur for achieving the highest yield.  相似文献   

20.
Soil moisture is a principal environmental factor limiting legume productivity in the tropics and sub-tropics. A pot experiment was conducted at the wire house of National Research Centre, Cairo, Egypt to study how potassium (K) fertilizer can mitigate the adverse effect of water stress. Three Japanese soybean (Glycine max L.) genotypes, non-nodulating (NN) (En 1282), nodulating (N) (Eneri) and super-nodulating (SN) (En-b0-1) were grown under two potassium fertilizer levels (25 and 150 mg kg?1 soil as K1 and K2, respectively). The water stress (WS) was conducted for eight days. WS significantly reduced nodules numbers and weights, shoot dry weight, relative water content, seed yield, oil, total carbohydrate contents while protein was significantly increased in the three soybean genotypes compared with well-watered (WW). Water stress and/or K treatments caused significant increase in both free amino acids and proline as well as shoot nitrogen in the three soybean genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号