首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The distribution of pedogenic oxides of Fe, Mn, and Al was described for rice soils of Saga polder lands and its relationship to soil development with time was investigated. The distribution of Mn largely parallelled that of Fe and in response to the soil development their accumulation occurred in the B horizons of the profiles. Manganese was the clement most susceptible to downward movement, which lad to a pronounced lowering of extractable Mn content in the surface horizons in well-developed soil morphology. By contrast, this is not the case for Al which, in general, had little change in extractable Al and a slight increase in total Al with depth as the time increased. Apparently the distribution of Mn was largely governed by the extent of reduction processes, whereas in the Al distribution clay migration may be a principal controlling factor. The distribution of Fe may be due chiefly to the reduction processes, with some contribution from the clay migration.  相似文献   

2.
Abstract

An attempt was made to estimate the degree of maturity of city refuse composts by measuring their cation-exchange capacity (CEC).

The CEC of the city refuse compost increased for the first 7 days after commencement of the fermentation process, decreased for the next 2 days, and then increased again gradually up to the end of the piling period.

A highly significant negative correlation was noted between the CEC and C/N ratio of the city refuse composts (r=-0.903***). Regression analysis yielded the relationship: In CEC=7.02-1.02 In C/N

The CEC values of the city refuse composts, which were considered to have been sufficiently matured for application, were greater than about 60 me/ 100 g of ash-free material.  相似文献   

3.
在黄土旱塬区长期试验(1985-1997年)中,选取对照(不施肥,CK)、磷肥(P2O5.60.kg/hm2,P)、氮肥(N.120kg/hm2,N)、氮磷(N,120.kg/hm2,P2O5,60.kg/hm2,NP)、氮磷有机肥(N.120.kg/hm2,P2O560.kg/hm2,有机肥75.t/hm2,NPM),种植方式为冬小麦连作的5种有代表性的施肥处理,研究了石灰性土壤磷素吸附特性的演变及其与土壤磷素形态、土壤有机碳(SOC)含量的关系。结果表明,P素的最大吸附量(Qm),1997年对照(CK)、N处理比1985年分别提高了18%和14%;而P、NP和NPM处理分别降低了26%、13%和24%。吸附能常数(k值)随时间延长,对照和N处理相对稳定,P和NP处理呈升高趋势,而NPM处理有降低趋势。土壤磷素吸附饱和度(DPS)和零净吸附磷浓度(EPC0)对照和N处理随时间延长呈降低趋势,P、NP和NPM处理呈升高趋势。Qm与Ca8-P、Al-P存在极显著相关关系(P0.001),与Ca2-P、Pe-P存在显著相关关系(P0.05)。Ca2-P、有机磷含量变化与土壤DPS的相关性达到显著水平(P0.05)。EPC0只与有机磷间存在显著的相关关系(P0.05)。Qm、DPS和EPC0变化与SOC存在显著或极显著的线性相关关系(P0.001)。  相似文献   

4.
The concept and some definitions of sustainable agriculture are reviewed. Most of these definitions include economic, environmental and sociological aspects. The finite area of land emphasizes the need for consideration of soil conservation and of soil quality in relation to sustainability. An important element of soil quality is rooting depth. Therefore loss of soil by erosion is a dominant factor in long-term sustainability. The effects of tillage on soil parameters in minimum data sets that have been proposed to describe soil quality are reviewed. Soil organic matter may be one of the most important soil quality characteristics in relation to tillage because of its influence on other soil physical, chemical and biological properties. Conservation tillage practices can increase the organic matter content, aggregate stability and cation exchange capacity (CEC) of the topsoil. However, bulk density and penetrometer resistance are also increased, especially with zero tillage. Although such soil quality parameters may form a basis for describing some of the consequences of particular tillage practices, they do not provide a basis for predicting the outcome in terms of crop growth and yield. This is both because critical values of soil quality parameters have not been defined and because in some soils biopore formation in zero or minimally tilled land can modify the soil for water movement and for root growth and function.

The effects of tillage on crop growth and yield in long-term experiments are reviewed. The review only includes experiments in North America, Europe and New Zealand that have lasted 10 years or more to allow for seasonal variation in weather, possible progressive changes in soil conditions and the learning phase often experienced when new tillage methods are used. While there is a good deal of variation in the results of these tillage experiments some patterns have emerged. In long-term experiments, yields of maize in Europe and the US and soybeans in the US have been similar after ploughing and no-tillage, especially on well-drained soils. In Europe, yields of winter cereals have also been similar after traditional and simplified tillage but yields of spring cereals have sometimes been less after direct drilling than ploughing.

Trends in tillage practices are reviewed. Conservation tillage in the US is increasing and is used on about 30% of cropland, including no-till on about 10% of cropland. This increase in use of conservation tillage is mainly attributed to the legal requirement for farmers who are in government price support programs to adopt conservation plans which may involve conservation tillage. However, the allowable rates of erosion in these plans are likely to be in excess of rates of erosion for long-term sustainability. Survey information on tillage practices needs to be considered in relation to predictions on suitability of conservation tillage based on experimental results. In the semi-arid prairies of Canada there is a trend toward fewer cultivation operations, but in eastern Canada the mouldboard plough is still the dominant tillage method. In Europe although erosion is less obvious it is believed to be increasing, but minimum tillage is not widely used. This is because of the need to remove at least some straw for successful minimum tillage in sequential winter wheat and barley crops, but there are few economic uses for straw, and burning is illegal in many countries. In the more moist cooler conditions of Europe grass weed proliferation is another constraint, at least with present technology. So far, the overall success of conservation tillage has not been limited by the growing problem of genetic resistance of weeds to herbicides. Societal attitudes to the continued use of herbicides may pose longer-term problems for some conservation tillage practices.  相似文献   


5.
我国烤烟生产中的氮素管理及其与烟叶品质的关系   总被引:44,自引:6,他引:44  
在诸多营养元素中,氮素既是土壤中最不稳定的元素,也是影响烟叶产量和品质最为重要的元素。为追求产量,在我国目前的烤烟生产中氮肥施用过量的现象较为普遍。施氮量过高往往造成烟叶品质下降。生产中普遍推荐的肥料施用技术所提供的氮素与烟株生长的需氮规律不吻合。生长后期土壤氮素矿化使得烟株生长过程中的氮素营养难以控制,并缺乏有效的检测手段。目前对于造成烟叶中烟碱含量升高的真正原因没有正确认识。结合我们的研究,本文就我国烤烟生产中存在的上述问题进行分析与讨论。旨在通过努力达到烤烟生产中的氮素营养平衡,烟叶的化学成分趋于协调,并达到提高氮肥利用率、减少环境污染的目的。  相似文献   

6.
【目的】研究旱地高产小麦品种籽粒含磷量差异,明确籽粒含磷量与农艺性状、营养品质的关系,以期为旱地小麦科学施肥与高产优质品种选育提供理论依据。 【方法】设置施肥 (N 150 kg/hm2、P2O5 100 kg/hm2) 与不施肥两个处理,以123个小麦品种为试验材料,于2013—2016年在渭北旱塬连续三年进行田间试验,研究旱地高产小麦品种籽粒含磷量差异与生物量累积、产量构成及氮磷钾吸收利用的关系。 【结果】小麦籽粒产量每增加1000 kg/hm2,籽粒含磷量降低0.28 g/kg,两者呈显著负相关。高产品种的产量平均为6.9 t/hm2,品种间籽粒含磷量差异显著,介于2.5~3.7 g/kg,变幅为51.1%。高磷组和低磷组产量及构成要素差异均不显著,高磷组品种的籽粒含氮量显著高于低磷组,含钾量与低磷组无显著差异;高磷组的籽粒与营养器官氮磷吸收量均高于低磷组,向籽粒转移氮、磷的能力无显著差异,转移钾的能力却低于低磷组品种。施肥后,两组品种籽粒与营养器官氮、磷、钾吸收量均增加,高磷组品种的增幅高于低磷组;氮磷钾向籽粒转移的能力均降低,高磷组品种转移钾的能力降幅更大。 【结论】高产小麦品种中,高磷品种的籽粒含氮量与氮吸收量也更高,对施肥的响应也更显著。施肥后,高磷组的生物量与营养器官氮磷钾吸收量增幅均高于低磷组的,而养分收获指数降幅更大。因此,在选育高产小麦时,应选择籽粒含磷量适中的品种并提高养分收获指数。在小麦生产中,也要依据籽粒含磷量的高低,调整施肥方案,同步提高籽粒含氮量,实现旱地小麦高产优质。  相似文献   

7.
Soil organic carbon (SOC) is an important component in agricultural soil, and its stock is a major part of global carbon stocks. Estimating the SOC distribution and storage is important for improving soil quality and SOC sequestration. This study evaluated the SOC distribution different land uses and estimated the SOC storage by classifying the study area by land use in a small watershed on the Loess Plateau. The results showed that the SOC content and density were affected by land use. The SOC content for shrubland and natural grassland was significantly higher than for other land uses, and cropland had the lowest SOC content. The effect of land use on the SOC content was more significant in the 0-10 cm soil layer than in other soil layers. For every type of land use, the SOC content decreased with soil depth. The highest SOC density (0-60 cm) in the study area was found in shrublandII (Hippophae rhamnoides), and the other land uses decreased in the SOC density as follows: natural grassland > shrublandI (Caragana korshinskii) > abandoned cropland > orchard > level ground cropland > terrace cropland > artificial grassland. Shrubland and natural grassland were the most efficient types for SOC sequestration, followed by abandoned cropland. The SOC stock (0-60 cm) in this study was 23,584.77 t with a mean SOC density of 4.64 (0-60 cm).  相似文献   

8.
The application of biosolids to agricultural fields is becoming increasingly common. The effect of biosolids on the behavior of metals in different plants has been reported to be variable and ambiguous. A greenhouse experiment was conducted on a soil spiked with four rates of copper (Cu) (0, 50, 100, and 150 mg kg?1) and zinc (Zn) (0, 150, 300, and 450 mg kg?1) in lettuce culture. When Cu and Zn were spiked to anaerobically-digested biosolids, their availability in lettuce increased. Root and shoot fresh weight decreased due to a decrease in photosynthetic rate. superoxide dismutase (SOD) and peroxidases (POD) activity increased after the application of Cu and Zn. The bioavailability of Zn in lettuce was greater than that of Cu because of a higher transfer factor in plants and due to a higher endogenous Zn concentration.These results will allow for better fertilization management when biosolids are applied to tomato culture.  相似文献   

9.
选取稻草、油菜秸秆和食用菌渣作为猪粪堆肥的有机辅料,研究三种堆肥体系中氨气挥发释放规律及其影响因素。结果表明,经过65 d的堆腐,稻草-猪粪、油菜秸秆-猪粪和菌渣-猪粪堆肥氨气挥发量分别为5.084、6.483和3.013 g/kg,是对照(纯猪粪)处理(7.836g/kg)的64.88%、82.74%和38.45%。从氨气的释放量和释放速率看,菌渣是一种较好的有机辅料。从氨气释放的时间变化特征看,稻草对猪粪堆肥氨气排放高峰期影响最为明显,主要表现为氨气前期猛烈释放且持续时间短,是猪粪快速腐熟技术优选的高效有机辅料。堆腐完成后,三种有机辅料均能减少水溶性NH4+-N的累积,增加水溶性NO3--N的含量,引起pH和EC值下降,提高堆肥全氮含量,促进堆肥有机物和粗纤维的降解,且以稻草和菌渣处理效果最为显著。  相似文献   

10.
Soil organic carbon (SOC) has an important role in improving soil quality and sustainable production. A long-term fertilization study was conducted to investigate changes in SOC and its relation to soil physical properties in a rice paddy soil. The paddy soils analyzed were subjected to different fertilization practices: continuous application of inorganic fertilizers (NPK, N–P–K = 120–34.9–66.7 kg ha−1 yr−1 during 1967–1972 and 150–43.7–83.3 kg ha−1 yr−1 from 1973 to 2007), straw based compost (Compost, 10 Mg ha−1 yr−1), a combination of NPK + Compost, and no fertilization (control). Soil physical properties were investigated at rice harvesting stage in the 41st year for analyzing the relationship with SOC fraction. Continuous compost application increased the total SOC concentration in plough layers and improved soil physical properties. In contrast, inorganic or no fertilization markedly decreased SOC concentration resulting to a deterioration of soil physical health. Most of the SOC was the organo-mineral fraction (<0.053 mm size), accounting for over 70% of total SOC. Macro-aggregate SOC fraction (2–0.25 mm size), which is used as an indicator of soil quality rather than total SOC, covered 8–17% of total SOC. These two SOC fractions accumulated with the same tendency as the total SOC changes. Comparatively, micro-aggregate SOC (0.25–0.053 mm size), which has high correlation with physical properties, significantly decreased with time, irrespective of the inorganic fertilizers or compost application, but the mechanism of decrease is not clear. Conclusively, compost increased total SOC content and effective SOC fraction, thereby improving soil physical properties and sustaining production.  相似文献   

11.
生物炭生产与农用的意义及国内外动态   总被引:47,自引:18,他引:47       下载免费PDF全文
近年来,生物炭作为土壤改良剂、肥料缓释载体及碳封存剂备受重视。生物炭在土壤中能够保持数百年至数千年,实现碳的封存固定,生物炭还可以改善土壤理化性质及微生物的活性,培肥土壤肥力,延缓肥料养分释放,降低肥料及土壤养分的损失,减轻土壤污染。生物质的热裂解及气化均可产生生物炭,但是慢速热裂解和热水炭化工艺的生物炭产率最大,同时还可获得生物油及混合气,生物油及混合气可升级加工为氢气、生物柴油或化学品,这有助于减轻对化石能源或原料的依赖。生物炭的生产及农用是碳减排的过程,废弃生物质生产生物炭及其农用的效益是多赢的。国外在废弃生物质热裂解生产生物炭及农用方面做了许多研究工作。中国在生物质热裂解获得生物能源方面做了较多工作,但对生物炭的生产及农用重视不够。今后,中国应以废弃生物质生产生物炭,并将生物炭农用作为生物能源、环境及农业可持续发展的战略。  相似文献   

12.
In forest soils where a large fraction of total phosphorus (P) is in organic forms, soil micro-organisms play a major role in the P cycle and plant availability since they mediate organic P transformations. However, the correct assessment of organic P mineralization is usually a challenging task because mineralized P is rapidly sorbed and most mineralization fluxes are very weak. The objectives of the present work were to quantify in five forest Spodosols at soil depths of 0-15 cm net mineralization of total organic P and the resulting increase in plant available inorganic P and to verify whether net or gross P mineralization could be estimated using the C or N mineralization rates. Net mineralization of total organic P was derived from the net changes in microbial P and gross mineralization of P in dead soil organic matter. We studied very low P-sorbing soils enabling us to use lower extractants to assess the change in total inorganic P as a result of gross mineralization of P in dead soil organic matter. In addition, to enable detection of gross mineralization of P in dead soil organic matter, a long-term incubation (517 days) experiment was carried out. At the beginning of the experiment, total P contents of the soils were very low (19-51 μg g−1) and were essentially present as organic P (17-44 μg g−1, 85-91%) or microbial P (6-14 μg g−1; 24-39%). Conversely, the initial contents of inorganic P were low (2-7 μg g−1; 9-15%). The net changes in the pool size of microbial P during the 517 days of incubation (4-8 μg g−1) and the amounts of P resulting from gross mineralization of dead soil organic matter (0.001-0.018 μg g−1 day−1; 0.4-9.5 μg g−1 for the entire incubation period) were considerable compared to the initial amounts of organic P and also when compared to the initial diffusive iP fraction (<0.3 μg g−1). Diffusive iP corresponds to the phosphate ions that can be transferred from the solid constituents to the soil solution under a gradient of concentration. Net mineralization of organic P induced an important increase in iP in soil solution (0.6-10 μg g−1; 600-5000% increase) and lower increases in diffusive iP fractions (0.3-5 μg g−1; 300-2000% increase), soil solid constituents having an extremely low reactivity relative to iP. Therefore, soil micro-organisms and organic P transformations play a major role in the bioavailability of P in these forest soils. In our study, the dead soil organic matter was defined as a recalcitrant organic fraction. Probably because gross mineralization of P from this recalcitrant organic fraction was mainly driven by the micro-organisms’ needs for energy, the rates of gross mineralization of C, N and P in the recalcitrant organic fraction were similar. Indirect estimation of gross mineralization of P in dead soil organic matter using the gross C mineralization rate seems thus an alternative method for the studied soils. However, additional studies are needed to verify this alternative method in other soils. No relationships were found between microbial P release and microbial C and N releases.  相似文献   

13.
Abstract. Farm livestock typically retain 5–23% of dietary nitrogen, and consequently excrete large amounts of nitrogen, mainly in urine. Areas affected by cattle urine may receive the equivalent of several hundred kg nitrogen per hectare. Urea is usually hydrolysed to ammonium carbonate within a few days. This increases the soil pH and thereby assists volatilization of ammonia. Volatilization is also increased by soil warmth and by small soil cation exchange capacities. Over the grazing season in lowland UK about 15% of the nitrogen in urine is likely to be volatilized as ammonia, but only 1–5% of the nitrogen in dung is lost in this way.
Substantial volatilization of ammonia probably occurs from animal houses and after spreading of slurry in the field. About 3–4% of fertilizer nitrogen used in the UK is lost as gaseous ammonia. Cut grass herbage also loses ammonia by volatilization, if allowed to remain in the field in wet conditions. Total annual emissions of nitrogen as ammonia from grassland and livestock in UK are probably 320 000–420 000 tonnes.  相似文献   

14.
15.
Algae have an indisputable role in coastal ecosystems, but their accumulation and uncontrolled proliferation cause severe damage for the local municipalities. Fertilization with seaweed has been shown to increase soil fertility and crop production reducing ultimately the need for inorganic fertilizers. However, contradictory results of the compost effect have been reported. In the present work, we aimed at testing the suitability of three composted algae materials obtained in a previous study as soil amendments for vines. The composted materials consisted of pruning waste (P) and seaweed (S) mixed (henceforth, P2S1, P1S1 and P1S2, referring the number to the ratio of P to S). Overall, we observed an increase in soil organic matter, phosphorus (P) and potassium (K) in the soil treated in comparison with soils with inorganic fertilization. A moderate N soil enrichment (ca. 20%) was also detected. The leaf analysis reflected generally the greatest concentrations of NPK for the organic treatments, but this was remarkable only during the first year after seaweed application. A noticeable improvement in grape production was detected especially with the P1S1 compost without compromising grape quality although a decrease in sucrose content was noted with the compost with higher productivity (e.g. P2S1 and P1S1). This slight sucrose drop could be attributable to a greater water availability mediated by the compost or to a dilution factor of the sucrose content caused by a greater number of berries in those vines. These findings suggest that although monitoring of the long-term effects is needed, the use of seaweed amendments for agriculture could offer a cost-effective method for coastal municipalities to reduce excessive algae debris while also minimizing the impacts of inorganic fertilization.  相似文献   

16.
【目的】针对我国黄土高原旱地小麦低产田块多、分布范围广、农户地块间产量差异大的问题,探索影响旱地小麦产量的关键因素,为缩小产量差异、提高旱地小麦产量提供理论依据。【方法】对分布在我国黄土高原的山西、陕西旱地小麦主产区的282个农户麦田0—100 cm土壤和小麦植株取样分析。将小麦产量分为高、中、低三组,分析了小麦产量差异与产量构成、氮磷钾吸收利用的关系。【结果】调查农户冬小麦产量平均为3815 kg/hm2,中、低产组分别比高产组低32%和57% (P < 0.05);高产组籽粒平均含氮量较低产组低7%,但磷钾含量和茎叶氮磷钾含量差异不显著。与高产组相比,中、低产组生物量分别低27%和50%,收获指数低5%和13%,穗数低15%和31%,穗粒数低19%和41% (P < 0.05);地上部吸氮量低28%和51%,吸磷量低32%和55%,吸钾量低28%和50% (P < 0.05)。低产组氮收获指数分别比高、中产组低5%和4%,磷收获指数低4%和3%,钾收获指数低13%和8%。高产组小麦的需氮量较中、低产组分别低5%和12% (P < 0.05),需磷量没有显著差异;高、中产组小麦的需钾量亦无显著差异,但分别较低产组显著低5%和15%。高产组小麦的氮生理效率较中、低产组分别高4%和11%,产量分组间小麦的磷生理效率同样没有显著差异;高、中产组小麦的钾生理效率无显著差异,分别较低产组显著高16%和10%。【结论】黄土高原旱地农户田块小麦产量存在显著差异,其中由氮素营养不同引起的干物质累积转移、产量构成和养分吸收分配的变化是导致产量差异的重要原因。缩小旱地小麦产量差异的切入点在于氮素调控。基于作物产量形成的养分需求优化肥料投入,结合改进栽培,促进小麦干物质累积,提高穗数和穗粒数,从而实现产量普遍提升。  相似文献   

17.
采用化学和萌发两种预处理方法,对多粘芽孢杆菌SQR21芽孢进行荧光原位杂交(FISH),结合扫描电镜比较不同预处理芽孢表面结构和形态变化。结果表明,两种预处理均可在2 h内完成SQR21芽孢的荧光原位杂交,且萌发预处理比化学预处理杂交效率高,荧光信号强。扫描电镜结果显示,萌发预处理芽孢无裂解,而化学预处理芽孢有不同程度的裂解。将萌发预处理荧光原位杂交用于检测猪粪有机肥中二次发酵的SQR21芽孢,发现在37℃,含水量50%的条件下,2 h后芽孢开始生长,4 h后营养体细胞出现,12 h后营养体细胞有显著优势。本研究建立的芽孢荧光原位杂交检测技术,比平板计数更能准确反映多粘芽孢杆菌芽孢的数量和生长动态,在生物有机肥中芽孢杆菌的检测方面有良好的应用前景。  相似文献   

18.
In order to ensure sustainable agriculture, and for evaluating the effects of management practices on soil processes, tools for assessing soil quality are required. The development and use of a multiparameter index, which includes a wide range of soil properties, have been tested and found useful by several studies. However, soil quality measurements are ‘stand-alone’ tools unless they are either linked to important soil functions, used to characterize (agro)ecosystems or used to predict sustainability or productivity. In our study, the relationship between crop production and soil quality was assessed in a six year old field experiment studying the effect of farm compost (FC) amendment in a crop rotation of potato, fodder beet, forage maize and Brussels sprouts. To justify the hypothesis that repeated FC amendment results in both improved soil quality and consequently higher crop yields, a wide range of chemical, biological and physical soil properties were measured and integrated into a soil quality index (SQI). Next, crop yields were used as a functional goal to verify the causal relationship between SQI and crop production. Our results showed that there were significant changes in chemical, physical and biological soil quality as a result of repeated FC amendment. This was evidenced for example by a remarkable increase in both soil organic carbon (SOC) and total N content. Microbial biomass, the relative amount of bacterivorous nematodes and earthworm number were significantly increased as well and, together with SOC and total N, indicated as the dominant factors in assessing soil quality. The integration of these key indicators into the SQI revealed higher SQI values when FC was applied. In addition, crop yields were increased in all FC treated plots by which SOC was pointed out as the most important indicator influencing crop production. Finally, a causal relationship was observed between soil quality and the yield of potato and fodder beet. We conclude that our SQI may be a promising and useful tool to compare different (soil) management practices in relation to a strategic, regional goal, e.g., sustainable high yields. Before generalizing, we recommend a thorough validation of our SQI in other long-term field experiments.  相似文献   

19.
东北地区黑土硫的分布特征及其与土壤性质的关系   总被引:3,自引:1,他引:3  
在兼顾土壤样点空间分布相对均匀的前提下,采集了中国东北地区具有代表性的黑龙江省北安市、海伦市和吉林省公主岭市的黑土样,对这些地区的黑土中硫素含量进行了分析。结果看出,不同地区黑土中全硫含量存在明显差异,其全硫含量依次为北安(北部黑土)海伦(中北部黑土)公主岭(南部黑土)。随剖面的加深,自上而下土壤全硫都呈下降的趋势,但在145cm深处升高。全硫在开垦前期呈下降趋势,随着开垦年限的增加,土壤全硫含量下降逐渐趋于平稳。相关分析表明,土壤全硫与土壤有机质等指标都达到了显著或极显著相关水平。黑土中三种形态有机硫含量占全硫含量的78%。  相似文献   

20.
Soil tillage may increase vulnerability to water erosion, whereas no tillage and other conservation cultivation techniques are viewed as strategies to control soil erosion. The objective of this research was to quantify runoff and soil losses by water erosion under different soil tillage systems at the Santa Catarina Highlands, southern Brazil. A field study was carried out using a rotating-boom rainfall simulator with 64 mm h−1 rainfall intensity on a Typic Hapludox, between April 2003 and May 2004. Five rainfall tests were applied along successive cropstages. Surface cover was none (fallow) or soybean (Glycine max, L.). Five treatments were investigated, replicated twice. These treatments were conventional tillage on bare soil (BS) as a control treatment and the following treatments under soybean: conventional tillage (CT), no tillage over burnt crop residues on never before cultivated land (NT-B), no tillage over desiccated crop residues, also on never before cultivated land (NT-D) and traditional no tillage over desiccated crop residues on a soil tilled 4 years before this experiment (NT-PT). Water losses by surface runoff seemed to be more influenced by vegetative crop stadium than by tillage system and consequently a wide range of variation in surface runoff was found, following successive cropstages. The most efficient tillage system in reducing surface runoff and soil losses was no tillage, particularly the NT-PT treatment. Sediment losses were more influenced by tillage system than water losses. In the NT-B, NT-D and NT-PT treatments the rate of sediment losses along the crop vegetative cycle showed a tendency to increase from the first to the second cropstages and later to decrease from the third cropstage onwards. In the conventionally tilled treatment (CT) soil losses were greater than in any of the no tillage treatments (NT-D, NT-B and NT-PT) during the initial growth periods, but at the end of the vegetative period differences in sediment rates between tilled and non-tilled treatments tended to be smaller. In the BS control treatment, soil losses progressively increased following the vegetative growth season of soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号