首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cabbage plants (B. oleracea L. var. capitata L.) were grown for 37 days in culture solutions containing 4 levels (0, 0.5, 5, 25 ppm) of beryllium or strontium with a low or high supply (20 or 200 ppm) of calcium, and the effects of the cations supplied on the growth of the plants were studied.

The total dry weights of the plants decreased successively with increasing levels of Be and Sr in the culture solution, concurrfnt with an increase in the contents of each cation in the plants. The decrease in the yield (dry weight of inner leaves) was most pronounced in the Be treatment with the low Ca supply. The critical contents of Be and Sr which resulted in a 50% decrease in the yield due to the excess injury were estimated to be about 0.0006 and 0.4% on a dry basis in the outer leaves and 0.3 and 0.4% in the roots, respectively, regardless of the Ca supply.  相似文献   

2.
Bush bean plants (Phaseolus vulgaris L. cv Tacacarigua) were grown under deficient P, K or Ca nutrient solutions after seven days in sufficiency and relative growth rate, root weight ratio, specific leaf area, leaf area development and nutrient concentration profiles in the dry matter of succesive leaves, analyzed throughout ontogeny. Acute Deficiency Concentration Limits (ADCL) were defined for P (0.14%) and K (1.20%) as the concentration in the leaves able to sustain a state of marginal growth, and may indicate the physiological condition in which restoration of optimal supply may not be followed by a recovery of the plants. The continuation of growth, dry matter dilution and retranslocation within the plant are suggested as major determinants of ADCL.  相似文献   

3.
营养液中培养菜豆幼苗,缺镁菜豆植株生长受抑,生物量显著低于正常供应镁的植株,体内镁浓度和镁的积累总量均较低。严重缺镁黄化叶片中叶绿素含量下降。完整叶绿体的希尔反应值在缺镁与正常植株间无差别。缺镁菜豆植株的根和叶膜造性(以相对电导率表示)增加,叶片中丙二醛含量升高。活性氧清除酶系统:SOD、POD、CAT活性在缺镁菜豆真叶中高于正常植株,老叶中抗坏血醒过氧化物酶(AsA-POD)活性增加程度也较大。  相似文献   

4.
A long‐term field experiment on a Haplic Phaeozem, established 1949 with four levels of potassium (K) supply (5, 69, 133, and 261 kg K ha?1), was analyzed for the interaction between K supply and yield loss of five crop species by water shortage. The crop species were cultivated simultaneously side‐by‐side in the following rotation: potato (Solanum tuberosum L.), silage maize (Zea mays L.), spring wheat (Triticum aestivum L.), beet (Beta vulgaris L.), and spring barley (Hordeum vulgare L.). The treatment with 133 kg K ha?1 supply had a nearly balanced K budget. In the treatments with lower supply, the soil delivered K from its mineral constituents. On the low‐K plots (especially on those with only 5 kg K ha?1), crops suffered yield depressions of nearly all main harvest products (cereal grains, potato tubers, beet storage roots, silage maize) and by‐products (straw, beet leaves) by up to 40.7% of dry matter. Only wheat grains were an exception. Potassium concentrations in the harvested plant parts decreased nearly in parallel to the reduction of their dry matter yields, with the exception of cereal grains, which kept stable concentrations even in the treatment with only 5 kg K ha?1. A comparison of four year‐pairs with differing levels of precipitation in yield‐relevant periods showed an average water shortage‐induced depression of dry matter yields by 19.7% in the main harvest products. The severity of this yield depression was not mitigated by elevated K supply, with the exception of beet leaves, where the dry matter production was stabilized by high K supply. In this crop, the reduction of storage‐root yield was associated with a decrease in harvest index and was therefore obviously caused by an inhibition of assimilate translocation from the leaves into these organs, in contrast to cereals, where water shortage primarily affected dry matter production in vegetative organs. It is concluded that the physiological causes of yield reduction by drought stress and the possibility of its amelioration by K supply differ between plant species and organs.  相似文献   

5.
Pot-grown tomato plants (Lycopersicon esculentum Mill. cv. Maofen) was used to study the effects of three shading levels (0, 75% and 40%) for 8 days on dry matter partitioning, contents of nitrogen (N),phosphorus (P) and potassium (K) in leaves and yield at three growth stages (early flowering (EF), peak flowering (PF) and later flowering (LF)). Shading reduced the dry weight of root and stem tissues at the EF and PF stages, but the 40% shading increased root dry weight and stem dry weight by 43.2% and 21.6%,respectively, at the LF stage. The influence of shading on the dry weight of leaves was very small at most growth stages. Shading had no effects on total leaf N, P and K contents at the EF and PF stages, showing that N, P and K absorption were regulated by the carbon assimilation at these two stages. The leaf N, Pand K contents of 40% shaded plants at the LF stage were significantly increased. There were no obvious differences in leaf N and K contents between 75% and 40% shading treatments, but significant difference in leaf P contents was found between them at the LF stage. Shading significantly enhanced the friit yield of 40% shaded tomato plants at the LF stage, but failed to affect the fruit yield of shaded plants at the EF stage. These showed that tomato could grow well and a better yield could be obtained if some moderate shading (i.e., 40% shading) was applied at the LF stage at s, mmer midday.  相似文献   

6.
本试验为水培试验,研究了不同氟浓度处理(0.1、 0.2、 0.3 mmol/L F)对茶苗(平阳特早)干物质量、 相对生长量、 叶片营养元素含量、 酚类物质和香气成分的影响。结果表明,随着氟浓度的增加,茶苗的干物质积累和相对生长率显著降低。氟处理显著增加了茶苗叶片总磷和氟的含量,显著降低了总氮与碳酸氢根的含量,但对叶片氯离子含量的影响不显著。随着氟浓度的增加,叶片钾、 镁、 铁、 锌的含量显著降低,而钙含量显著增加。对茶叶儿茶素类物质而言,氟处理显著降低了茶苗叶片四种儿茶素(EGC、 EC、 EGCG、 ECG)和茶氨酸、 咖啡碱的含量。此外, 0.1 mmol/L F处理降低了茶苗叶片中醛、 醇、 酯和芳香类物质含量,而0.2 mmol/L F和0.3 mmol/L F处理增加了茶苗叶片主要的香气成分。  相似文献   

7.
Abstract

Ninety‐four sweetpotato (Ipomoea batatas L.) genotypes were compared under low potassium (K) stress (35 mg kg?1 dry soil) over two growing seasons. Potassium utilization efficiency ratio (KER), defined as the dry matter weight/K content, was significantly different among genotypes. Genotypes were divisible into four KER categories: high efficient, efficient, fairly efficient and inefficient with most of the genotypes falling in the efficient and fairly efficient groups. The K contents varied significantly within individual plants. Potassium concentration on a dry weight basis was greatest in the petioles followed by leaves, stems, and roots. On a total plant basis, K content in roots was greatest followed by stems, leaves, and petioles. Several genotypes (including 602 × 81‐3, Zhe15‐47 and Xushu18) were selected as most suitable for growth on soils low in available K due to their appreciable yields and higher KER under low K stress.  相似文献   

8.
In order to study the effect of different growth rates of the shoot apex, i.e. shoot demand, on the remobilization of iron (Fe) from mature (primary) leaves, bean (Phaseolus vulgaris L.) plants were precultured with 8x10‐5 M FeEDTA for four days. Thereafter, plants were grown for another six days at various levels of Fe (0.0, 1.0, and 10.0μM FeEDTA), and simultaneously treated with or without shading of one primary leaf. Dry weight increment of the shoot apex decreased with decreased Fe in the nutrient solution. Shading of one primary leaf decreased total dry weight of plants irrespective of Fe supply, but increased the dry weight of the shoot apex of plants supplied without Fe or with only 1.0μM Fe. In these plants, the concentration of chlorophyll and Fe in the shoot apex corresponded with the treatment effects on dry weight of the shoot apex. Shading induced senescence of the shaded leaf, decreased the content of “active Fe”; (extractable in dilute acid), and also enhanced the remobilization of Fe and copper (Cu) from the shaded leaf. The remobilization of Fe from primary leaves was not related to the severity of chlorosis in the shoot apex (the Fe demand of sink tissue), indicating that only a certain fraction of the total Fe in mature leaves can be remobilized.  相似文献   

9.
Cabbage plants were water-cultured under 4 levels of titanium (0,0,4,4,20 ppm), vanadium (0, 0.4,4, 20 ppm), chromium (0, 0.2, 2, 10 ppm), manganese (0, 0.4, 4, 20 ppm), and iron (0, 1, 10, 50 ppm), and the effects of the elements supplied on the growth of the plants and on the distribution of the elements in the plants were studied.

The dry weight of a whole plant and of inner leaves (yield) without the addition of Ti, V, and Cr did not decrease, while that without the addition of Mn and Fe decreased slightly. The addition of Ti, V, Cr, Mn, and Fe (more than 0.4, 0.4, 2, 4, and 10 ppm, respectively) decreased the yield. Slight transition element-induced chlorosis was observed in the plots at high levels of Ti, Cr, and Mn.

The contents of the elements in the plants increased with an increase in the concentration of each element in the culture solution. The critical contents of Mn and Fe in plant-tops which resulted in a slight decrease in the yield due to the deficient injury were estimated to be about 10 and l00 ppm. The contents of Ti, V, Cr, Mn, and Fe when the yield decreased by 50% due to the excess injury were 4,6, 20, 3,000, and 300 ppm in outer leaves and 3,000, l,000, 2,000, 15,000, and 50,000 ppm in roots, respectively.  相似文献   

10.
Abstract

Cabbage plants were grown at graded levels of nitrogen supply and light intensity, and the combined effects on cabbage-head development were studied during the spring and autumn seasons.

The cabbage-head yield (i.e. dry weight of inner head leaves) was the highest at 50 ppm N in the nutrient solution, followed by 500 and 5 ppm N at full light intensity, and decreased with decrease in the, light intensity by shading. The decrease in cabbage-head yield caused by the shading was greater at high nitrogen levels during the autumn (low solar energy) season than during the spring (high solar energy) season. As the nitrogen supply increased or the light intensity decreased during both the spring and autumn seasons, nitrogen, especially soluble N, accumulated and the carbohydrate (sugar and starch) content decreased in the plants. Cabbage-head development occurred efficiently when the total N content in the outer leaves remained at about 2–3% and the carbohydrate production was large at full light intensity.  相似文献   

11.
Effect of NaCl and Na2SO4 on dry matter production, mineral content and organic compounds of spinach and lettuce . In water culture experiments the effect of 2,5 meq and 25 meq NaCl and Na2SO4 respectively on dry matter production and content of mineral elements, chloroplasts pigments and carbohydrates in lettuce (salt sensitive) and spinach (salt tolerant) has been studied. With increasing Na-supply the dry matter production was decreased in lettuce and increased in spinach. With increasing Na-supply in both species the content of K, Mg and Ca in the leaves decreased. This decrease was more pronounced with sulfate as accompanying anion (Na2SO4) and induced already deficiency in Ca and Mg. This induced deficiency of Mg was reflected especially in lettuce in lower contents of chloroplasts pigments. In both plant species there was no effect of the Na salt treatments on the content of phosphorus or nitrogen in roots or leaves. The carbohydrate content in both species was strongly affected by the Na salt treatments. Irrespectively of the accompanying anion this effect occured already at the low Na supply and before the dry matter production was influenced. In leaves and roots of lettuce the contents of glucose, fructose and sucrose was considerably decreased; this decrease was less expressed in the starch content. In spinach the Na supply only decreased the carbohydrate content in the roots whereas in the leaves especially the sucrose content was increased. This different effect of Na on carbohydrate content in spinach and lettuce could be an indication of different action of Na on carbohydrate metabolism, namely inhibited synthesis in lettuce and inhibited translocation in spinach. The results demonstrate that in studies on the effect of increasing Na salt concentrations besides the osmotic effects also the ion specific effects have to be carfully considered. These ion specific effects are competition of Na+ with other cations during uptake and the influence of Na on the cell metabolism, especially on the pathway of carbohydrates. The authors thanks Mrs. Hwie Juen Tjandraatmadja for her engaged help in various laboratory works.  相似文献   

12.
The aim of this study was to determine the combined effects of boron (B) and potassium (K) on metallic cation accumulation, membrane permeability (MP) and growth of tomato (Solanum lycopersicum L.). Four levels of B (0, 5, 10 and 20 mg kg?1) and two levels of K (0 and 200 mg kg?1) were applied. B treatments, with or without K, enhanced the MP of leaves and the concentration of metallic cations except for manganese (Mn) and zinc (Zn) concentration as well B concentration. B uptake increased linearly with increasing B treatments. Metallic cation uptakes decreased at the highest B level. Excess B decreased the shoot and root biomass with and without K supply; however, K partially improved the detrimental effect of toxic B on plant growth. It was concluded that supplying K to growth media can be beneficial for alleviating plant growth reduction and imbalances of metallic cations accumulation caused by excess B.  相似文献   

13.
不同镁浓度对水稻根系生长及生理特性的影响   总被引:3,自引:1,他引:2  
在温室条件下, 采用溶液培养法研究了不同Mg2+ 浓度对水稻(Oryza sativa L.)根系生长及生理特性的影响。结果表明,水稻根系干重、根冠比、总根长、Mg吸收、根系活力、伤流速度、伤流液中游离氨基酸总量和Mg含量、Mg流入速率以及Mg2+ 吸收速率与Mg2+ 供应水平密切相关。在低Mg2+ 浓度(0.05 mmol/L)条件下,水稻植株叶片在缺Mg症状出现之前分配较大比例的干物质到根系,使总根长和根冠比增加, 这可能是水稻早期对低Mg胁迫的适应机制之一。适中的Mg2+ 浓度(1.0 mmol/L)有利于水稻生长发育,促进养分吸收,提高根系活力和伤流速度以及伤流液中游离氨基酸总量。低Mg2+ 和高Mg2+ 浓度(5.0 mmol/L)在一定程度上抑制根系活力和氨基酸合成能力。植物Mg的吸收、伤流液Mg2+ 浓度、根系平均Mg流入速率和Mg2+ 吸收速率随营养液Mg2+ 浓度的增加而相应增加。  相似文献   

14.
Salinity is one of the major environmental stressors which has deleterious effects on the growth, development, and yield of crops. Because of the gradual increase in soil and water salinity in the East Azarbaijan, Iran, Tanacetum balsamita L. cultivation in this region has always been associated with many problems. To study the effect of foliar spray of iron sulfate (FeSO4) (0, 750, and 1500 mg L?1) under sodium chloride (NaCl) salinity (0, 50, and 100 mM) on some physiological characteristics of Tanacetum balsamita L. plants, an experiment was conducted as a factorial based on complete randomized block design with three replications. Total soluble solids (TSS) and essential oil contents were significantly affected by the interaction effects of FeSO4 foliar application and salinity levels. The highest TSS and essential oil content were found in the plants under NaCl0 × FeSO4 1500 mg L?1 treatment combination. Leaf length, leaf fresh and dry weights were influenced by both Fe foliar application and salinity levels. Foliar application of iron (Fe) positively affected leaf length, leaves fresh and dry weights, root fresh and dry weights and peroxidase (POD) content, especially at 1500 mg L?1. Other traits such as leaf length, leaf fresh and dry weights, malondialdehyde (MDA), POD and catalase (CAT) contents were influenced by salinity levels. For POD, MDA, and CAT contents, the highest values were recorded with NaCl 50 and 100. The highest values of leaf length, leaf fresh and dry weights were found in the control plants.  相似文献   

15.
ABSTRACT

The objective of the present research was to study the effects of boron (B) and potassium chloride (KCl) induced salinity on growth, nutritional status, and chlorophyll content of the cherry rootstocks CAB 6P (Prunus cerasus L.) and Gisela 5 (Prunus cerasus L. × Prunus canescens L.). Plants produced the longest shoots, more leaves, and the greatest fresh weights of shoots and leaves when treated with 0.025 mM B combined with the lower level of salinity (0.75 dS m?1). CAB 6P plants retained most of their leaves until the end of the experiment, whereas Gisela 5 plants showed higher leaf shedding. Irrigation of plants with solutions containing 0.2 mM B and electrical conductivities (EC) of 4 dS m?1 resulted in lower leaf chlorophyll contents (SPAD units) when compared with all other treatments. Nitrogen (N) concentrations of leaves from both rootstocks decreased as the EC of the nutrient solution increased from 0.75 to 4 mM. Potassium (K) concentrations of leaves from both rootstocks increased as salinity levels increased.  相似文献   

16.
【目的】研究干旱胁迫下施钾量对不同生长时期甘薯碳水化合物及内源激素含量的影响,为甘薯的抗旱高产栽培提供理论依据。【方法】选用食用型甘薯品种‘泰中6号’为材料,以硫酸钾(K2SO4)为供试肥料,水分处理设土壤最大持水量的60%~70%和30%~40%,依次代表正常供水(W1)和干旱胁迫(W0);钾肥设K0、K1、K2、K3四个水平,K2O用量分别为0、120、240和360 kg/hm2。分析了不同生长时期甘薯干物质含量、淀粉和可溶性糖含量、内源激素含量及收获期块根产量。【结果】干旱胁迫下甘薯植株干物质含量、块根和淀粉产量显著降低,施钾有利于甘薯植株干物质含量的提高、块根的膨大和淀粉的生成和积累,甘薯植株和块根干物质含量、块根淀粉含量和积累量最大均为K2处理,较K0提高幅度最大分别达到31.7%、43.6%、10.6%和50.6%。相同钾用量条件下,干旱胁迫下块根单薯重显著高于正常灌水,单株结薯数显著低于正常灌水。正常灌水条件下施钾后甘薯叶片可溶性糖含量降低,而块根可溶性糖含量升高,干旱胁迫下施钾使甘薯叶片和块根可溶性糖含量增大,较K0提高幅度最高分别达到31.4%和36.0%。干旱胁迫下施钾后甘薯叶片和块根IAA、ABA、ZR和GA含量显著增大,较K0提高幅度最高分别达到12.7%、15.7%、12.0%、10.4%和21.4%、15.6%、65.7%、13.0%,促进了甘薯植株碳水化合物含量和干重的提高,块根淀粉积累速率增大。【结论】干旱胁迫下施钾促进了干物质向块根的分配,提高了甘薯块根单薯重,从而增加了单位面积甘薯块根产量。干旱胁迫下钾素提高甘薯块根和叶片内源激素(ABA、IAA、ZR、GA)含量,块根内源激素含量的增加促进了块根淀粉的合成和积累,叶片内源激素含量的增加促进了地上部茎叶生长、茎叶干物质积累和叶片可溶性糖含量的增加,增强了甘薯的抗旱性。  相似文献   

17.
The response of tomato (Lycopersicum esculentum Mill, cultivar Marmande) plants to different levels of arsenic (As) in nutrient solution was investigated—the processes of uptake, distribution and accumulation of As, and the effect of arsenite on yield and plant growth (plant height, diameter of stem, stem and root length, fresh and dry weight of root, stems, leaves, and fruit). The experiment was performed at three levels of As: 2, 5 and 10 mg/L [added as sodium arsenite (NaAsO2)] in a nutrient solution, together with the corresponding control plants. Arsenic uptake depended on the As concentration in solution and As content in the roots increased as the time of treatment increased. The most important finding was the high toxicity of arsenite to roots. The concentration in stems, leaves, and fruit was correlated with the As level in the nutrient solution. Although the As level of 10 mg/L damaged the root membranes, resulting in a significant decrease in the upward transport of As. Arsenic exposure resulted in a drastic decrease in plant growth parameters (e.g., maximum decrease of 76.8% in leaf fresh weight) and in tomato fruit yield (maximum reduction of 79.6%). However, it is important to note that the As concentration in the fruits was not toxic or harmful for human consumption.  相似文献   

18.
Sunflower broomrape (Orobanche cumana Wallr.) is a parasitic plant that infects sunflower (Helianthus annuus L.) plants. In this work, sunflower plants were grown under greenhouse conditions in pots with the substrate infested or non-infested with broomrape seeds. At different numbers of days after sowing, plant height, internode lengths, number of leaves, head diameter, mineral composition of leaves, and potassium (K) concentration in stem were measured. The negative effects of broomrape parasitism were assessed from 57 d after sowing, when broomrape started to emerge. Parasitized plants exhibited lower shoot dry weight, height, and head diameter than control plants. The reduction in internode lengths was associated with a decrease in the gradient of K concentration from basal to apical stem. The mineral composition of leaves was also affected in parasitized plants. The concentrations of calcium (Ca), magnesium (Mg), manganese (Mn), and zinc (Zn) in leaves of parasitized plants were lower than those of the control plants, while there were few differences for K, phosphorus (P), iron (Fe), and copper (Cu). The effects of parasitism are discussed in relation to their competition for resources and to perturbations of the host physiology such as hormonal and water balance.  相似文献   

19.
Interactive effects of water stress and potassium (K) on some physiological attributes and nutritional status of melon (Cucumis melo L. cv. ‘Tempo F1’) plants were assessed in a pot experiment. Treatments used were: (1) control or well-watered (WW) + K1, (2) WW + K2, (3) WW + K3, (4) water stress (WS) + K1, (5) WS + K2, and (6) WS + K3. Water stress (WS) was imposed by maintaining the moisture level equivalent to 50% pot capacity, whereas well-watered (WW) pots (control) were maintained at full pot capacity (100% PC). Hoagland's nutrient solution was modified to supply K as potassium sulfate (K2SO4) at 6, 9, and 12 mM for K1, K2, and K3 treatments, respectively. Water stress reduced fruit yield, total dry matter, chlorophyll content and relative water content (RWC), but increased proline accumulation in the melon plants. However, additional supply of K as 3 or 6 mM significantly enhanced all the earlier mentioned physiological parameters, but the values were still not the same as the levels of the control treatment. Water stress also reduced leaf calcium (Ca) and K of the melon plants, but additional supply of K to the root zone increased the levels of both nutrients much higher than those at the control (C) treatment. Our study revealed that additional supply of K improved water stress tolerance in melon plants by enhancing chlorophyll, relative water content and concentrations of some essential nutrients in leaves.  相似文献   

20.
The interactive effect of applied zinc (Zn) and soil moisture on early vegetative growth of three alfalfa (lucerne) (Medicago sativa L.) varieties was investigated in a sand‐culture pot experiment to test whether there is link between Zn nutrition and soil moisture stress or excessive moisture tolerance in alfalfa plants. Three varieties (Sceptre, Pioneer L 69, and Hunterfield) with differential Zn efficiency (ability of a variety to grow and yield well in a Zn deficient soil is called a Zn‐efficient variety) were grown at two Zn levels (low Zn supply: 0.05 mg Zn kg‐1 of soil, adequate Zn supply: 2.0 mg Zn kg‐1 of soil) and three levels of soil moisture (soil moisture stress: 3% soil moisture on soil dry weight basis; adequate soil moisture: 12% soil moisture on soil dry weight basis; excessive soil moisture: 18% soil moisture on soil dry weight basis) in a Zn deficient (DTPA Zn: 0.06 mg kg‐1 soil) siliceous sand. Zinc treatments were applied at planting, while soil moisture treatments were applied three weeks after planting and continued for two weeks. Plants were grown in pots under controlled temperature conditions (20°C, 12 h day length; 15°C, 12 h night cycle) in a glasshouse. Plants grown at low Zn supply developed Zn deficiency symptoms, and there was a severe solute leakage from the leaves of Zn‐deficient plants. Adequate Zn supply significantly enhanced the leaf area, leaf to stem ratio, biomass production of shoots, and roots, succulence of plants and Zn concentration in leaves. At low Zn supply, soil moisture stress and excessive moisture treatments significantly depressed the shoot dry matter, leaf area and leaf to stem ratio of alfalfa plants, while there was little impact of soil moisture treatments when supplied Zn concentration was high. The detrimental effects of soil moisture stress and excessive soil moisture under low Zn supply were less pronounced in Sceptre, a Zn‐efficient alfalfa variety compared with Hunterfield, a Zn‐inefficient variety. Results suggest that the ability of alfalfa plants to cope with water stress and excessive soil moisture during early vegetative stage was enhanced with adequate Zn nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号