首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The lowland rice depends comparative1y more on the nitrogen supply by the soil resources than the other upland crops. Usually, the rice plant utilizes much more native soil nitrogen than the applied fertilizer nitrogen(1). Accordingly, the paddy soil fertility is usually regarded as a nitrogen supplying potentiality of the soil in a narrow sense. Many studies(2) on the soil fertility proplems have been focused on the availability and the recovery of this organic nitrogen. Decause the yield of rice are primarily determined by the liberation of this organic nitrogen.  相似文献   

2.
The effect of different levels of nitrogenous fertilizer application on plant growth, grain yield, and both the amount of soil nitrogen and applied fertilizer nitrogen utilized by plants was investigated in the Bangkhen paddy field. The results furnished clear evidence that the recoveries of added fertilizer nitrogen by plants were increased along with an advance in plant growth, and that the plant uptake of soil nitrogen was independent of the nitrogen level applied. A linear relation was found between total nitrogen absorbed by plants and the levels of nitrogen applied indicating that the extrapolated yield of the nitrogen value could be used for the evaluation of the soil nitrogen supply. The present study demonstrated also the importance of examining the proportion of two kinds of nitrogen in plants, one derived from fertilizer and the other from soil nitrogen, in the evaluation of the fertilizer effect, and made it clear that the evaluation of fertilizer effect based only on the quantity of fertilizers absorbed by plants represents only a part of the whole picture.  相似文献   

3.
Although tropical wetlands are rapidly being developed for the needed increase in rice (Oryza sativa L.) production, knowledge is still limited concerning the optimum soil and crop management practices. A study was thus carried out to evaluate the effects of different tillage systems on the growth and yield of paddy rice, grain yield response to N applications, and weed control. Five experiments were conducted for three consecutive seasons on hydromorphic soils (loamy and sandy loamy, mixed, isohyperthermic Aeric Tropaqualfs) at the International Institute of Tropical Agriculture, Ibadan, comparing the effects of zero tillage (without dry tillage and puddling) and conventional tillage (dry tillage and puddling) at two or more N levels. In two of the above experiments the effects of either two moisture regimens or chemical versus manual weed control were also evaluated.In four experiments there were no statistically significant differences in grain yield between zero-tillage plots sprayed with paraquat and conventional-tillage plots. Only in Experiment 2 did zero-tillage (with paraquat) plots give a significantly lower yield than conventional-tillage plots (5200 versus 5580 kg ha?1, respectively) but the difference could be explained by greater rat damage in the former. The highly significant response in grain yield to N applications in all five experiments was statistically similar under both tillage systems. The continuous flooding treatment (Experiment 1) gave better weed control and higher grain yield than the saturation moisture regime (6150 versus 5420 kg ha?1 grain yield). In zero-tillage plots where weeds were slashed before transplanting (Experiment 2), grain yield was lower and the weed growth greater than in zero-tillage and low N level. Satisfactory weed control was obtained with paraquat and continuous flooding.  相似文献   

4.
To investigate the current available nitrogen (N) and chemical properties of paddy soils affected by crop rotation between irrigated paddy rice (Oryza sativa L.) and upland soybean [Glycine max (L.) Merr.] (paddy-upland rotation), topsoils were collected from 22 fields of four different farmers in the northeastern region of Japan. Regardless of organic material application, a significant negative correlation was found between available soil N and an increase in the proportions of upland seasons to total crop seasons after the initiation of paddy-upland rotation. Soil total N and total carbon (C) also tended to decrease with an increase in upland frequency. In fields with repeated applications of cattle manure compost, the soil available N was higher than in fields where only crop residue was applied. A significant negative correlation was also found between the soil available N:total N ratio and upland frequency. This indicates that the part of soil N related to available N was notably lost by the use of paddy fields as upland fields. In order to sustain available soil N over the minimum suitable level of 80?mg?kg?1, upland frequency should not exceed 65% when only crop residues and no other organic materials are applied. The upland frequency can be raised by the repeated application of organic materials which maintain a higher level of available soil N. The results imply that care should be taken to maintain the N fertility of paddy soil at a suitable level in paddy-upland rotation, and that upland frequency and organic materials applied are important factors to do this.  相似文献   

5.
Abstract

The effect of cultivar and rate of N application on nitrate accumulation in cabbage (Brassica oleracea capitata, L.) was investigated in a field study. At harvest, significant differences in nitrate accumulation among cultivars occurred, with the greatest differences occurring at the highest rate of N applied, 450 kg N/ha. Two of three straight‐leaved varieties, Market Prize and Market Victor, accumulated more nitrate than three savoy‐leaved varieties, Savoy Ace, Savoy King, and Chieftain Savoy. The third straight‐leaved variety studied, Harris Resistant Danish, accumulated the least nitrate. Pattern of nitrate accumulation was closely correlated with date of maturity, with the earliest‐maturing variety, Market Victor, accumulating the highest levels of nitrate, and the latest‐maturing variety, Harris Resistant Danish, accumulating the least nitrate. For all six varieties, outer wrapper‐leaf samples showed higher nitrate levels than head samples.

In a second study, the effect of cultivar, N source, and nitrapyrin on yield and nutritional status of cabbage was studied under greenhouse conditions. The six cabbage cultivars showed no significant differences in nitrate accumulation after 65 days. The presence of 10 ppm of nitrapyrin, 2‐chloro‐6‐(trichloromethyl) pyridine, resulted in a restriction in fresh and dry weight production in cabbage. No visual, foliar symptoms of nitrapyrin toxicity were evident. Calcium levels were reduced in the presence of nitrapyrin regardless of N source. Adding nitrapyrin had no sign:ficant effect on Mg concentration, and highest Mg levels occurred under ammonium nutrition. Potassium levels were increased in the presence of nitrapyrin when the soil was not supplemented with K, whereas differences in K content due to the inhibitor were insignificant when KNO3 was supplied.  相似文献   

6.
It is well known that an increase of and better grain can be obtained by the application of an adequate amount of quick-acting nitrogen fertilizers such as ammonium sulphate, thirty to twenty five days before heading, and this is a common practice of top-dressing, being called “Hogoe” in Japanese. It is also well known that excess of nitrogen supplied at this time makes plants weak against mechanical injury, insects and disease. For the application of “Hogoe”, therefore, an accurate diagnosis of the nitrogen nutrient condition of rice is required. In a series of investigations on the nitrogen metabolism, the author found that asparagine appeared in parallel with the increase of nitrogen concentration in rice plants, and considered that the detection of asparagine would be a good indicator for assessing the nitrogen requirement of rice lantstl).  相似文献   

7.
8.
长期施用化肥和秸秆对水稻土碳氮矿化的影响   总被引:5,自引:0,他引:5  
闫德智  王德建 《土壤》2011,43(4):529-533
以长期定位试验的土壤为供试材料,通过室内培养试验,研究了长期施用化肥和秸秆对水稻土?C、N矿化和微生物生物量的影响。结果表明长期施用化肥和秸秆增加了土壤?C?矿化量,但降低了可矿化?C?在土壤有机?C?中的比例。长期施用化肥能够增加土壤?N?矿化量,而且增加了可矿化?N?在土壤全?N?中的比例,但配施秸秆不能继续增加?N?矿化量。长期施用化肥和秸秆能够显著增加土壤微生物生物量?C、N?含量,但微生物量在土壤中的比例变化不大。  相似文献   

9.
钙质紫泥田水稻氮磷钾施肥效应研究   总被引:1,自引:0,他引:1  
研究了钙质紫泥田水稻氮磷钾的施肥效应,分析了肥料的因素效应及合理施用量。结果表明:(1)在试验施肥量范围内,水稻产量与肥料用量呈二次多项式函数关系;(2)磷和氮的效应高,钾肥效应低;(3)棕紫泥夹砂田水稻合理施肥量为每公顷N 125~130 kg、P2O570 kg、K2O 0~30 kg,下湿紫泥田为N 85~90 kg、P2O555 kg、K2O 0~20 kg;(4)地下水位高、湿害严重,是下湿紫泥田生产水平低、施肥效果差的根本原因,改造途径是深沟排水、脱潜治理。  相似文献   

10.
土壤氮素矿化对烤烟产量和尼古丁含量的影响   总被引:3,自引:0,他引:3  
Nitrogen (N) supply is the most important factor affecting yield and quality of flue-cured tobacco (FCT). A field experiment and an in situ incubation method were used to study the effects of soil N mineralization in the later stages of growth on yield and nicotine content of FCT in Fenggang and Jinsha, Guizhou Province. The yield and market value of FCT at Fenggang were much lower than those at Jinsha. However, the nicotine content of middle and upper leaves was much higher at Fenggang than at Jinsha when the same rate of fertilizer N was applied, which might be due to a higher N supply capacity at the Fenggang site. At later stages of growth (7-16 weeks after transplanting), the soil net N mineralization at Fenggang (56 kg N ha^-1) was almost double that at Jinsha (30 kg N ha^-1). While soil NH4-N and NO3-N were almost exhausted by the plants or leached 5 weeks after transplanting, the N taken up at the later growth stages at Fenggang were mainly derived from soil N mineralization, which contributed to a high nicotine content in the upper leaves. The order of soil N contribution to N buildup in different leaves was: upper leaves 〉 middle leaves 〉 lower leaves. Thus, soil N mineralization at late growth stages was an important factor affecting N accumulation and therefore the nicotine content in the upper leaves.  相似文献   

11.

Purpose

The area of cadmium (Cd)-contaminated soil in China is increasing due to the rapid development of the Chinese economy. To ensure that the rice produced in China meets current food safety and quality standards, the current soil quality standards for paddy soils urgently need to be updated.

Materials and methods

We conducted a pot experiment with 19 representative paddy soils from different parts of China to study the effects of soil properties on bioaccumulation of Cd in rice grains. The experiment included a control, a low treatment concentration (0.3 mg kg–1 for pH?<?6.5 and 0.6 mg kg–1 for pH?≥?6.5), and a high treatment concentration (0.6 mg kg–1 for pH?<?6.5 and 1.2 mg kg–1 for pH?≥?6.5) of Cd salt added to soils.

Results and discussion

The results showed that the Cd content in grains of the control and low and high Cd treatments ranged from 0.021 to 0.14, 0.07 to 0.27, and 0.12 to 0.33 mg kg–1, respectively. Stepwise multiple regression analysis indicated that soil pH and organic carbon (OC) content could explain over 60 % of the variance in the (log-transformed) bioaccumulation coefficient (BCF) of Cd in grains across soils. Aggregated boosted trees analysis showed that soil pH and OC were the main factors controlling Cd bioavailability in paddy soils. Validation of the models against data from recent literature indicated that they were able to accurately predict the BCF in paddy soils.

Conclusions

These quantitative relationships between the BCF of Cd in grains and soil properties are helpful for developing soil-specific guidance on Cd safety threshold value for paddy soils.  相似文献   

12.
The effect of rice straw on the composition of volatile soil gas and microflora in the tropical paddy field was studied with and without fertilizer application.

The volatile soil gas most abundantly found in plots with rice straw was methane followed by other gases, nitrogen, oxygen and carbon dioxide during the early stage of rice growth, while nitrogen predominated in later stages.

The loss of soil nitrogen through volatilization increased following phosphorus application as well as rice straw application as compared with that in the control plot. In the former case, the enhancement of decomposition of organic-N was assumed to be due to the increase in population of cellulose decomposer.

Rice straw application with or without N-fertilizer increased methane gas formation by 27 to 63 times as compared with the phosphorus plot and the peak of its formation was found 5 to 7 weeks after rice straw application. However methane formation in the control plot was very low and was found only 5 to 9 weeks after flooding.

Rice straw application usually increased the number of various groups of microorganisms along with contributing to the transformation of organic-N to N2 gas. But the stimulating effect was chiefly observed in the population of Azotobacter.  相似文献   

13.
粳稻硅素积累与分配对氮素的反应及其基因型差异   总被引:1,自引:0,他引:1  
以15个常规粳稻品种为材料,设置0 、150、225、300 kg/hm2四种氮素水平,研究水稻硅素积累与分配对氮素的反应及其基因型差异。结果表明,不同生育时期,硅在水稻各器官、全株中的积累量均随氮素水平的提高而增加。随氮素水平的提高,水稻在移栽-拔节和抽穗-成熟阶段的积累比例增加而拔节-抽穗阶段的积累比例减少,在茎鞘中的分配比例减少而叶片和穗中的分配比例增加。不同生育时期,硅在茎鞘、叶片和全株中的含量均随氮素水平的提高而下降,抽穗和成熟期,穗中的硅素含量随氮素水平的提高而下降,至中肥最低,高肥条件下略有回升。不同氮素条件下,水稻硅素的积累与分配特性存在显著的基因型差异,同时各基因型硅素积累与分配对氮素的反应也存在差异。其中,武育粳7号、华粳3号、武香粳9号、香粳20-18、武育粳3号、晚粳4003、早丰9号、华粳2号的硅素积累效率具有随氮素水平的提高保持稳定或相对提高的特性,对于氮肥用量不断增加条件下水稻植株的抗逆性改良具有较好的遗传潜力。  相似文献   

14.
Abstract

Iron (Fe) toxicity is a major nutrient disorder affecting the production of wetland rice in the humid zone of West Africa. Little attention has been given to determining the macro‐ and micronutrient composition of rice plants grown on wetland soils where Fe toxicity is present although results from such study could provide useful information about the involvement of other nutrients in the occurrence of Fe toxicity. A field experiment was conducted in the 1997 dry season (January‐May) at an Fe toxic site in Korhogo, Ivory Coast, to determine the elemental composition of Fe tolerant (CK 4) and susceptible (Bouake 189) lowland rice varieties without and with application of nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn). For both Fe‐tolerant and susceptible varieties, there were no differences in elemental composition of the whole plant rice tops, sampled at 30 and 60 days after transplanting rice seedlings, except for Fe. All the other nutrient element concentrations were adequate. Both Fe‐tolerant and susceptible cultivars had a high Fe content, well above the critical limit (300 mg Fe kg‐1 plant dry wt). These results along with our observations on the elemental composition of rice plant samples collected from several wetland swamp soils with Fe toxicity in West Africa suggest that “real”; iron toxicity is a single nutrient (Fe) toxicity and not a multiple nutrient deficiency stress.  相似文献   

15.
通过田间试验,利用15N自然丰度法,研究了太湖地区水稻土冬季绿肥的固氮量,以及绿肥还田后配施氮肥对水稻产量、稻田土壤供氮能力及土壤氮素淋失特征的影响。试验结果表明,紫云英和蚕豆当季分别能固定氮约32.8和68.8 kg km-2进入稻田生态系统以培肥土壤和供下季水稻利用。蚕豆秸秆还田后基本能满足水稻生长所需的氮,紫云英和蚕豆还田施氮120 kg km-2时,既可保证水稻较高产量,又节约当季化学氮肥45%~55%。紫云英和蚕豆还田不施氮肥处理,整个生长期耕层土壤溶液NH+4-N、NO-3-N和TN浓度均低于配施氮肥的处理;蚕豆还田处理土壤溶液TN浓度高于紫云英还田处理。随氮肥用量增加,NH+4-N、NO-3-N和TN浓度有增加趋势,不同施氮量间差异不显著。绿肥-水稻轮作,紫云英和蚕豆还田土壤氮素淋溶显著降低。配施氮肥增加了土壤氮的淋失量,尤其施氮300 kg km-2处理,土壤淋溶液NH+4-N、TN浓度显著高于施氮0~240 kg km-2的处理。  相似文献   

16.
A field experiment was conducted to study yield and soil N dynamics in an irrigated, intermittently submerged rice field at New Delhi, India, where chemically synthesized as well as neem derived urea coating nitrification inhibitors with prilled urea were applied. Rice (var. IR-32) was grown on a Typic Ustochrept alluvial soil. No nitrogen (control), prilled urea alone, prilled urea mixed with dicyandiamide (DCD), neem (powdered Azadirachta indica Juss. seeds) coated urea and Nimin (commercial derivative of neem) coated urea were tested for their efficacy in regulating yield and conservation of N. None of the inhibitors could increase biomass or grain yield over urea. But all the inhibitors were able to conserve soil ammonium and DCD was the most efficient nitrification inhibitor followed by Nimin coated urea. N-uptake, recovery, physiological and agronomic efficiencies were highest in urea treated plots. The performances of all the inhibitors were against the popular trend where crop yield and N-uptake were enhanced by their application. But, more studies are required on the performance of these inhibitors in rice fields to come to a stronger conclusion.  相似文献   

17.
该文以嘉善县陶庄农场内一块3.34 hm2农田为试验区,研究样点土壤养分(土壤全N、全P、有机质、速效N、速效K)与水稻各生长期水稻冠层光谱的关系,并将光谱指数作为协因子,进行土壤养分的Cokriging插值研究。结果表明,正常施肥区各生长期根据TM、SPOT波段组合计算的某些冠层光谱指数,特别是比值光谱指数RSI、归一化光谱指数NDSI,与土壤速效N、有机质等土壤养分具有显著的相关性,可以作为协因子参与这些土壤养分的估算;选择正常施肥区分蘖期TM、SPOT组合中与速效N相关性最高的比值光谱指数TM4/TM3、B3/B2作为协因子,参与土壤速效N的Cokriging插值,与普通Kriging相比,插值精度有一定程度的提高,并且,当采样点越少,或土壤养分与协因子的相关性越高时,插值精度提高更明显。  相似文献   

18.
High rice (Oryza sativa L.) yields are closely related to plant absorption of a large amount of nitrogen (N). However, there is little information on the fate of N applied at the middle growth stages of rice. Labeled 15N ammonium sulfate was applied at the panicle formation stage in Experiment I, and 10 d after heading in Experiment II. Zeolite was also added at the concentration of 0, 0.01, and 0.1 kg kg-1 to increase the cation exchange capacity (CEC) of the soil. The amount of 15N fertilizer in the soil surface water decreased exponentially and the fertilizer disappeared within 2 d after application. The soil that received zeolite at 0.1 kg kg-1 exhibited significantly less 15NH4 +-N in the surface water and in the soil solution than the soil without the zeolite amendment. A significantly larger amount of exchangeable 15NH4 +-N was observed in the high zeolite-treatment of soil compared to the low zeolite-treatment of soil. The amount of exchangeable 15NH4 +-N increased initially, and thereafter decreased to traces 4 d after application in Experiment I, while 6 or 9 d after application in Experiment II. The disappearance of exchangeable 15NH4 +-N could be attributed mainly to the uptake by plants. The zeolite amendment or the time of N application did not significantly affect the amount of immobilized N. The rate of N adsorption was inhibited with increasing zeolite application. Moreover, zeolite application did not increase the recovery percentage of ammonium sulfate by rice plants. The total recovery of applied N ranged from 65 to 75%, irrespective of the zeolite treatments or the time of N application.  相似文献   

19.
Tillage practices can potentially afect soil organic carbon (SOC) accumulation in agricultural soils. A 4-year experiment was conducted to identify the influence of tillage practices on SOC sequestration in a double-cropped rice (Oryza sativa L.) field in Hunan Province of China. Three tillage treatments, no-till (NT), conventional plow tillage(PT), and rotary tillage(RT), were laid in a randomized complete block design. Concentrations of SOC and bulk density(BD) of the 0-80 cm soil layer were measured, and SOC stocks of the 0-20 and 0-80 cm soil layers were calculated on an equivalent soil mass(ESM) basis and fixed depth (FD) basis.Soil carbon budget(SCB) under diferent tillage systems were assessed on the basis of emissions of methane(CH4) and CO2 and the amount of carbon (C) removed by the rice harvest. After four years of experiment, the NT treatment sequestrated more SOC than the other treatments. The SOC stocks in the 0-80 cm layer under NT (on an ESM basis) was as high as 129.32 Mg C ha 1,significantly higher than those under PT and RT (P < 0.05). The order of SOC stocks in the 0-80 cm soil layer was NT > PT > RT,and the same order was observed for SCB; however, in the 0-20 cm soil layer, the RT treatment had a higher SOC stock than the PT treatment. Therefore, when comparing SOC stocks, only considering the top 20 cm of soil would lead to an incomplete evaluation for the tillage-induced efects on SOC stocks and SOC sequestrated in the subsoil layers should also be taken into consideration. The estimation of SOC stocks using the ESM instead of FD method would better reflect the actual changes in SOC stocks in the paddy filed, as the FD method amplified the tillage efects on SOC stocks. This study also indicated that NT plus straw retention on the soil surface was a viable option to increase SOC stocks in paddy soils.  相似文献   

20.
Systematic studies on the genesis, properties, and distribution of natural nanoparticles(NNPs) in soil remain scarce. This study examined a soil chronosequence of continuous paddy field land use for periods ranging from 0 to 1 000 years to determine how NNPs in soil changed at the early stages of soil genesis in eastern China. Soil samples were collected from coastal reclaimed paddy fields that were cultivated for 0, 50, 100, 300, 700, and 1 000 years.Natural nanoparticles were isolated and characterized along with bulk soil samples( 2-mm fraction) for selected physical and chemical properties. The NNP content increased with increasing soil cultivation age at 60 g m-2 year-1, which was related to decreasing soil electrical conductivity(172–1 297 μS cm-1) and NNP zeta potentials(from-22 to-36 m V) with increasing soil cultivation age. Changes in several NNP properties, such as pedogenic iron oxide and total organic carbon contents, were consistent with those of the bulk soils across the soil chronosequence. Notably, changes in NNP iron oxide content were obvious and illustrated active chemical weathering, pedogenesis, and potential impacts on the microbial community. Redundancy analysis demonstrated that the soil cultivation age was the most important factor affecting NNP properties, contributing 60.7% of the total variation. Cluster and principal component analysis(PCA) revealed splitting of NNP samples into age groups of 50–300 and 700–1 000 years, indicating rapid evolution of NNP properties, after an initial period of desalinization(approximately 50 years). Overall, this study provides new insights into NNP evolution in soil during pedogenesis and predicting their influences on agriculture and ecological risks over millennial-scale rice cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号