首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[目的]探究红松(Pinus koraiensis)凋落物和氮(N)磷(P)沉降量、小气候因子、降水化学成分和地形对各层凋落物生态化学计量的影响,为红松林管理提供科学依据.[方法]本研究对阔叶红松混交林(天然林)和红松纯林(人工林)进行了为期712天的原位观测试验,模拟氮磷沉降与凋落物添加处理后,测定不同凋落物层次和林...  相似文献   

2.
鼎湖山季风常绿阔叶林土壤酸度对土壤养分的影响   总被引:13,自引:0,他引:13  
通过在鼎湖山季风常绿阔叶林的研究发现 :( 1 )季风常绿阔叶林土壤整个剖面 ( 0~ 60cm)pH值都较低 ,小于 4 5。 ( 2 )土壤养分含量随着土壤剖面层次 ( 0~ 2 0cm、2 0~ 40cm、40~ 60cm)的降低而下降。养分除水解性N外 ,有效P、速效K以及交换性Ca、Mg含量都很少。 ( 3 ) 0~ 2 0cm土壤养分比其它层的土壤养分更容易受到土壤酸度的影响。 40~ 60cm土壤养分除了交换性Ca外 ,其它养分的含量与土壤酸度无显著关系。就不同月份来说 ,1月份和 4月份土壤养分比 7月份和 1 0月份土壤养分容易受到土壤pH值的影响。不同养分比较 ,交换性Ca和Mg以及有效P含量比其它养分更容易受到土壤酸度的影响。  相似文献   

3.
吉林省东部低山丘陵区4种林分类型林地的土壤肥力分析   总被引:5,自引:2,他引:5  
根据吉林省东部低山丘陵区汪清林业局金仓林场中4种主要林分类型(长白落叶松天然林、长白落叶松人工林、天然针阔混交林和天然阔叶混交林)的土壤肥力调查数据,分析和比较了4种林分类型林地的土壤物理和化学性质,并采用主成分分析评价了其土壤肥力状况。(1)随土壤深度增加,土壤容重和土壤pH值增大,而土壤含水量、阳离子交换量和养分含量减少,但其在不同林分下的变化程度不同;(2)林分类型对部分土壤化学性质(如土壤CEC、有机质、全氮和速效钾)影响显著。其中,天然针阔混交林的土壤含水量、土壤pH值、阳离子交换量、有机质含量及全氮、磷、钾含量均为最高;(3)采用主成分分析法对不同林分类型的林地土壤肥力状况进行了评价,结果发现土壤肥力状况为:天然针阔混交林>长白落叶松天然林>长白落叶松人工林>天然阔叶混交林。建议在经营现有的林分时,考虑近自然育林,及时进行林下补植更新,并营造针阔混交林,以改善该区林地土壤的肥力状况。  相似文献   

4.
长白山东部4种林分类型土壤有机碳及养分特征研究   总被引:4,自引:0,他引:4  
以长白山东部长白落叶松天然林、长白落叶松人工林、天然阔叶混交林、天然针阔混交林4种林分类型为研究对象,对比分析了土壤有机碳(SOC)的垂直分布特征,以及与土壤理化性质的相关性.结果表明,4种林分下土壤有机碳含量及其差异程度随土壤深度增加均呈现逐渐减小的趋势.0-60 cm土层土壤有机碳含量大小依次为天然针阔混交林(33.64士17.48 g/kg)>长白落叶松天然林(25.30±15.09 g/kg)>天然阔叶混交林(22.13±13.74 g/kg)>长白落叶松人工林(19.23±12.35 g/kg);天然针阔混交林0-60 cm土壤有机碳密度为21.44±8.31 kg/m2,显著高于其他3种林分类型,长白落叶松人工林最小,为14.29±1.59 kg/m2.对不同土层土壤有机碳和土壤理化性质进行相关分析,结果表明,整个土壤剖面有机碳含量与自然含水率、全N、全P、全K、速效K均呈极显著或显著正相关,与土壤密度呈极显著负相关;不同林分类型土壤有机碳含量和碳密度与全N均呈显著或极显著正相关,与土壤理化性质相关性存在较大差异.  相似文献   

5.
Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This study investigated how SWC, SOM, and SEC were influenced in forests along a successional gradient, including a regional climax (monsoon evergreen broad-leaved forest, or MEBF), a transitional forest (coniferous and broad-leaved mixed forest, or MF), and a pioneer forest (coniferous Masson pine (Pinus rnassoniana) forest, or MPF) of the Dinghushan Biosphere Reserve in the subtropical region of southern China. SWC, SOM, and SEC excluding Ca^2+ were found to increase in the soil during forest succession, being highest in the top soil layer (0 to 15 cm depth) except for Na^+. The differences between soil layers were largest in MF. This finding also suggested that the nutrients were enriched in the topsoil when they became increasingly scarce in the soil. There were no significant differences (P = 0.05) among SWC, SOM, and SEC. A linear, positive correlation was found between SWC and SOM. The correlation between SOM and cation exchange capacity (CEC) was statistically significant, which agreed with the theory that the most important factor determining SEC is SOM. The ratio of K^+ to Na^+ in the topsoil was about a half of that in the plants of each forest. MF had the lowest exchangeable Ca^2+ concentration among the three forests and Ca^2+:K^+ in MPF was two times higher than that in MF. Understanding the changes of SWC, SOM, and CEC during forest succession would be of great help in protecting all three forests in southern China.  相似文献   

6.
Methods to calculate nutrient budgets in forest and grassland ecosystems are analyzed on the basis of a large number of published materials and original data. New estimates of the belowground production in forest ecosystems with due account for the growth of fine roots are suggested. Nutrient retranslocation from senescent plant tissues to growing plant tissues and nutrient leaching from the forest canopy are discussed. The budgets of major nutrients (N, P, K, and Ca) in tundra, forest, and steppe ecosystems are calculated. Nutrient cycles in two forest ecosystems—a coniferous stand dominated by Picea abies and a broad-leaved stand dominated by Quercus robur—are analyzed in detail. It is shown that the more intensive turnover of nutrients in the oak stand is also characterized by a more closed character of the nutrient cycles.  相似文献   

7.
Summary Tephra and underlying litter and soil were sampled in 1980, 1982, and 1987 beneath subalpine forests where 4.5 and 15 cm of tephra fell during the 1980 eruption of Mount St. Helens, Washington State, USA. Coarse pumice had a higher initial pH and less total N, less exchangeable K, Ca, and Mg, and less extractable B and S than finer textured layers. Tephra pH and concentrations of cations and S decreased rapidly with time, especially during the first 2 years in the finer layers. Total N, Bray-Kurtz P, and organic C concentrations in the tephra increased with time. Changes within a site in total N, pH, organic C, P, Ca, Mg, and S from 1980 to 1987 exceeded the differences among sites at any one time. By 1987 a forest floor covered much of the tephra surface, and differences in Ca associated with site vegetation and seepage had developed in tephra layers of a similar depth. In 15 cm deep tephra at one site in 1987, the tephra crust beneath the forest canopy was thicker and had higher concentrations of coarse particles, organic C, total N, and cations than beneath forest openings. In concave microsites the crust was thicker, with higher pH, organic C, and total N but lower S than in adjacent convex microsites. Spatial and temporal chemical differences are sufficient to affect patterns of vegetation recovery.  相似文献   

8.
Soil chemical properties were investigated under four types of forest to evaluate the effect of replacement of tree species on soil chemical properties in the north of Japan. Two sites had undergone a vegetation switch around 1960 from broadleaved to coniferous trees (BC) and coniferous to broadleaved trees (CB), while the other two sites had had no vegetation change and carried broadleaved trees (BB) and coniferous trees (CC). Soil samples from the four sites were analyzed for pH (water, H2O), electrical conductivity (EC), total carbon (C) and nitrogen (N) content, exchangeable cations [Ex. calcium (Ca), magnesium (Mg), potassium (K) and sodium (Na)], inorganic nitrogen (Inorg-N), nitrogen mineralization potential, total phosphorus (P), and available phosphate. Most of the soil chemical properties in both the upper (0–5?cm) and lower (5–10?cm) layers at the BC site had lower values than those at the BB site. Values of soil chemical properties in the upper and lower soil layers were similar at the BC and CC sites. pH, Inorg-N, EC, Ex.Ca and Ex.Mg in the upper layer at the CB site were significantly higher than those at CC site, whereas all soil properties at the CB site except for Inorg-N were similar to those at the BB site. In the lower layer at the CB site, values of soil chemical properties except for the C/N ratio were almost the same as those at the CC site, but lower than those at the BB site. The upper soil layer at sites where a vegetation switch had occurred was affected by the current tree species, whereas in the lower soil layer, the effects differed between the different vegetation switch patterns. At the CB site, where the vegetation switch was from coniferous to broadleaved trees, the soil chemical properties in the lower layer remained similar to those at the coniferous site (CC) 50 years after the vegetation switch, while changes in soil properties have occurred following the switch from broadleaved to coniferous trees. The change in soil nutrient content by vegetation switch was considerably affected by change in not only litter quality but also composition of earthworm community. In particular, a combination of epigeic and endogeic earthworms exhibited important roles for nutrient dynamics to the deeper soil layer.  相似文献   

9.
川西亚高山针叶林植物群落演替对生物学特性的影响   总被引:13,自引:0,他引:13  
通过对川西亚高山针叶林人工重建过程中土壤微生物数量、酶活性及其与土壤养分性状的关系研究表明,云杉人工成熟林土壤微生物数量、酶活性明显低于云杉人工幼林地,也低于同龄的次生阔叶林地,人工云杉林随着林龄的增加土壤肥力严重退化。土壤微生物数量、酶活性与土壤有机质、全N、全P和碱解N等养分指标呈显著相关关系,土壤生物学指标能较好地反映土壤肥力状况。解决当前人工成熟云杉林土壤退化的主要措施应因地制宜地进行抚育间伐,改善林地的微生态条件,尽量避免营造针叶纯林,建议营造针阔混交林。  相似文献   

10.
针叶林混交阔叶树是改善土壤肥力、增强林地养分循环的重要措施,而混交效应受到针叶树种自身特性的影响,马尾松(Pinus massoniana)和湿地松(P.elliottii)是亚热带地区广泛种植的针叶树种,但目前2种针叶林对阔叶树混交的响应特征还不清楚。选取马尾松、湿地松纯林以及木荷(Schima superba)补植后形成的马尾松—木荷和湿地松—木荷混交林为研究对象,采集剖面土壤样品,测定土壤容重、有机碳(OC)、全氮(TN)和全磷(TP)含量,计算碳氮磷储量及化学计量特征,比较不同森林类型间的异同。混交阔叶树显著增加了马尾松林0—60cm各土层OC含量,而湿地松纯林与其混交林间OC含量无显著差异。同时,混交增加了2种针叶林土壤TN含量。马尾松林混交后0—60cm土层碳储量显著增加95.8%,而混交阔叶树对湿地松林土壤碳储量无显著影响。混交阔叶树后马尾松和湿地松林0—60cm土壤总氮储量分别增加了15.8%和28.4%,但混交对土壤磷储量无显著影响。混交显著增加了马尾松林0—40cm各土层C/N,而降低了湿地松林0—10cm土层C/N。混交阔叶树后马尾松林0—20cm土层C/P和0—10cm土层N/P显著增加,而混交仅增加湿地林0—10cm土层N/P。混交阔叶树增加了针叶林土壤氮储量,但对磷储量无显著影响,同时混交改变了土壤碳氮磷生态化学计量特征。与湿地松林相比,马尾松林土壤养分含量、储量及其化学计量特征对混交的响应更敏感。  相似文献   

11.
马尾松纯林改造成针阔混交林后土壤化学性质的变化   总被引:24,自引:0,他引:24  
在25 a生的马尾松林下分别套种火力楠、闽粤栲、苦槠、格氏栲、青栲和拉氏栲等阔叶树种的1 a生幼苗,16年后形成郁闭的针阔混交异龄林。土壤化学分析结果显示,在马尾松林下套种阔叶树(除青栲外)明显增加了林下表层土壤(0~20 cm)的有机质含量。各林分下土壤全K、全M g、全C a、全N和全P的平均含量分别为11.41,6.64,4.33,1.45,0.46 g/kg,表明土壤K、M g、C a的含量比较丰富,而N和P则相对缺乏,营造混交林在一定程度上增加了土壤N、P含量。所有混交林深层土壤(20~60 cm)的有效N、P含量均大于马尾松纯林,而有效K的含量则相反。混交林下0~20 cm,20~40 cm和40~60 cm土壤的平均pH值分别为4.40,4.61和4.68,而马尾松纯林下各土层的pH值则依次为4.39,4.41及4.42,说明在马尾松林下套种阔叶树在一定程度上降低了20 cm以下土层的活性酸度。套种阔叶树(除苦槠外)后由于降低了土壤交换性酸度,增加了土壤盐基离子浓度,从而明显提高了土壤盐基饱和度。  相似文献   

12.
13.
黄土高原西部针叶林植物器官与土壤碳氮磷化学计量特征   总被引:3,自引:1,他引:2  
为了系统地比较分析黄土高原西部针叶林植物器官与土壤内碳(C)、氮(N)、磷(P)化学计量变化特征,选取位于黄土高原西部的甘肃省天水市、甘南州、定西市、兰州市和武威市5个地区的针叶林为研究对象,通过对乔木各器官及土壤不同深度的C、N、P元素含量及其化学计量比的分析,探讨了5个调查区针叶林生态系统化学计量特征及其相互间的相关性。结果表明:植物叶的C、N、P含量较其他器官稍高,其中C含量达到511.97~538.66g/kg;5个调查区中武威地区的植物干、枝、根的C含量显著低于其他4个地区,分别为425.0,400.58,400.55g/kg。针叶林干中C∶N在地区间差异达到显著水平(p0.05),其他各器官内差异不显著;甘南和兰州地区的针叶林各器官间C∶N差异显著;针叶林干和根中N∶P在地区之间存在显著性差异,兰州和武威地区各器官间N∶P的差异达到显著性水平。5个调查区土壤C、N、P含量及其计量特征的差异主要存在于上层土壤(0—30cm),而较深层次土壤在各地区之间的差异较小。针叶林干中C、N、P含量两两之间均存在显著相关关系,而在针叶林叶中仅N与P含量之间存在显著相关关系;土壤表层(0—20cm)中C与N含量之间存在极显著的正相关关系。  相似文献   

14.
Summary The decomposition of beech (Fagus sylvatica L.) leaf litter was investigated in a calcareous beech forest using mesh cages containing two layers, fresh leaf litter (O layer), and partly decomposed leaf litter (F layer). C loss was monitored, together with the changes in the contents of total N, hexosamines, ash, Na, K, Mg, Ca, Fe, Mn, Al, Cl, Sulphate, and Phosphate.In 1-mm mesh cages, which excluded access to the macrofauna, the mean annual loss rates for C were 28% in the O leaf litter and 17% in the F leaf litter, totalling approximately 23% for the two layers. The mean loss rates from the 12-mm mesh cages were 54% in the O leaf litter and 58% in the F leaf litter. Degradation processes and feeding activities caused increased contents of ash, total N, and hexosamines in the O layer of both treatments. This increase was greater for the ash and smaller for N, glucosamine, and galactosamine in the 12-mm mesh cages. The sum of ions (Na+K+Mg+Ca+Fe+Mn+Al+Cl+SO4+PO4) and also the contents of most single ions were not markedly affected, despite the much higher ash content in the O leaf litter of the 12-mm mesh cages. The ash content increased mainly as a consequence of contamination by soil, which increased the contents of Fe and Al in the ash.  相似文献   

15.
针对陕北半湿润黄土丘陵区的侧柏、油松和落叶松等针叶纯林,在前期关于土壤极化研究的基础上,通过采集林地腐殖质层土壤与7种不同牧草枯落物进行混合分解培养,研究不同牧草枯落物对针叶纯林土壤的修复效应,以此作为选择适宜修复牧草种的依据。结果表明:(1)针对侧柏纯林土壤,苜蓿等7种牧草对于速效钾含量,苜蓿、胡枝子、沙打旺、小冠花和草木樨对于蛋白酶活性的负向极化具有显著缓减作用。(2)针对油松纯林土壤,7种牧草对于碱解氮含量,毛苕子、苜蓿和草木樨对于有效磷含量,苜蓿对于蔗糖酶活性的负向极化均有显著缓减作用。(3)针对落叶松纯林土壤,胡枝子和红豆草对于碱解氮含量,苜蓿、红豆草、小冠花和毛苕子对于有效磷含量,除苜蓿和毛苕子外的其他牧草对于有机质含量,苜蓿以外其他牧草对于磷酸酶活性的负向极化均具有显著缓减作用。(4)综合主成分分析表明,对侧柏纯林土壤综合修复效果较好的依次是沙打旺、小冠花、胡枝子和毛苕子;对于油松纯林土壤综合修复效果较好的依次是苜蓿、小冠花和草木樨;对于落叶松纯林土壤综合修复效果较好的依次是苜蓿、草木樨和红豆草。  相似文献   

16.
文春玉  徐明  聂坤  杨雪  唐雪娅  魏珊  张健 《土壤》2023,55(6):1244-1250
为了掌握亚热带山地针阔混交林土壤养分空间分布特征,本研究选取黔中地区的马尾松-甜槠针阔混交林和马尾松纯林(对照)为研究对象,相邻网格调查并采集土壤样品,结合描述统计和地统计学分析的方法,分析了各土壤养分指标的空间分布特征。结果表明:(1)马尾松纯林与马尾松-甜槠针阔混交林土壤pH、有机碳、全氮、全磷、有效氮、有效磷和有效钾均存在显著性差异(P<0.05);(2)相较于马尾松纯林,马尾松-甜槠针阔混交林土壤养分的空间异质性分布特征更为明显;(3)交叉验证分析结果表明,马尾松-甜槠针阔混交林和马尾松纯林的合理采样面积分别为600 m2和425 m2。亚热带山地针阔混交林土壤养分空间分布具有较高的异质性。  相似文献   

17.
Production and chemical composition of municipal wastewater of Wolfsburg and Braunschweig In two german communities (Wolfsburg 100.000 and Braunschweig 240.000 inhabitants) the production of municipal wastewaters was studied. The elements N, P, S, Cl, Na, K, Ca, Mg, Al, Fe, Mn, Cd, Co, Cu, Cr, Ni, Pb and pH were analysed. The nutrients N, P and S reached high concentrations (mean values 55 and 66, 16 and 18 and 46 mg/l); Na and Cl are considered as high contaminants (mean values 73 and 108 and 142 mg/l); heavy metals yielded low concentrations. Calculations of yearly element output for the villages and each inhabitant were carried out.  相似文献   

18.
The chemical composition of organic layers of forest soils shows a high spatial variability and fast methods may be required for its study at a landscape level. The objective was to assess the applicability of near infrared spectroscopy (NIRS) to measure several chemical and biological properties of organic layers in spruce, beech, and mixed spruce‐beech stands. Spectra in the VIS‐NIR region (400—2500 nm) were recorded for 406 samples representing Oi, Oe, and Oa layers of forest soils from Solling (Germany), 195 of them were used for calibration and 211 for validation. The calibration equations for each constituent were developed using the whole spectrum (0th to 3rd derivative). Humus samples were analyzed for contents of C and N and contents of P, S, Na, K, Ca, Mg, Mn, Fe, and Al after pressure digestion in HNO3. Additionally, basal respiration and microbial C (Cmic) were measured. NIRS predicted well the contents of C, N, P, S, Ca, Na, K, Fe, and Al and C/N and C/P ratios: the regression coefficients (a) of a linear regression (measured against predicted values) ranged from 0.9 to 1.1, and the correlation coefficients (r) were greater or equal 0.9. Cmic (a = 0.87, r = 0.83) was predicted satisfactorily, whereas the prediction of the basal respiration (a = 0.74, r = 0.87) was less satisfactory. Due to liming of some of the plots NIRS failed to predict contents of Mg (a = 1.27, r = 0.68). For all chemical and biological characteristics the best prediction performances were achieved using the whole sample population. Splitting the samples into smaller groups according to a dominant tree species or an organic layer did not improve the predictions.<?show $6#>  相似文献   

19.
川西3种亚高山针叶林的养分和凋落物格局分析   总被引:4,自引:0,他引:4  
LIN Bo  LIU Qing  WU Yan  HE Hai 《土壤圈》2006,16(3):380-389
Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.  相似文献   

20.
Soil moisture changes, arising from seasonal variation or from global climate changes, could influence soil nitrogen (N) transformation rates and N availability in unfertilized subtropical forests. A 15?N dilution study was carried out to investigate the effects of soil moisture change (30–90 % water-holding capacity (WHC)) on potential gross N transformation rates and N2O and NO emissions in two contrasting (broad-leaved vs. coniferous) subtropical forest soils. Gross N mineralization rates were more sensitive to soil moisture change than gross NH4 + immobilization rates for both forest soils. Gross nitrification rates gradually increased with increasing soil moisture in both forest soils. Thus, enhanced N availability at higher soil moisture values was attributed to increasing gross N mineralization and nitrification rates over the immobilization rate. The natural N enrichment in humid subtropical forest soils may partially be due to fast N mineralization and nitrification under relatively higher soil moisture. In broad-leaved forest soil, the high N2O and NO emissions occurred at 30 % WHC, while the reverse was true in coniferous forest soil. Therefore, we propose that there are different mechanisms regulating N2O and NO emissions between broad-leaved and coniferous forest soils. In coniferous forest soil, nitrification may be the primary process responsible for N2O and NO emissions, while in broad-leaved forest soil, N2O and NO emissions may originate from the denitrification process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号