首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decomposition of organic matter with previous Cd adsorption (thereafter referred to as OMACd) in soils and in water was studied in order to clarify the mechanism of Cd-induced inhibition of organic matter decomposition in soil. Two types of organic materials (sludge, rice straw) with or without previous Cd adsorption were mixed with a Gley soil or a Light-colored Andosol in a proportion of 1%. In the soils amended with the Cd-free organic materials, a CdCl2 solution was added to the soils. The decomposition of the organic matter was examined by measuring the CO2 evolution for 4 weeks at 28°C. Although the same amount of Cd was added to the soils, the decomposition of OMACd was inhibited to a greater extent than that in the soils to which a CdCl2 solution had been added.

Furthermore the decomposition of sludge with previous Cd adsorption (thereafter referred to as SACd) in water after inoculation of soil microorganisms was investigated. Although the control sludge without Cd was markedly decomposed at 30°C during 4 weeks, SACd was not appreciably decomposed. These results suggest that OMACd cannot be readily decomposed by microorganisms.  相似文献   

2.
姚贤良  于德芬 《土壤学报》1985,22(3):241-250
对稻草、紫云英有机物料不同用量和混施、单施或沤制后施用等不同施用方式对土壤结构的影响进行了四年模拟试验。四年培育期中的水分条件和其他物理条件均控制一致。测定表明,有机物料能明显改善土壤的结构性和孔隙性,降低原状土核的破裂系数。有机质、重组有机质、无定形氧化铁、氧化铁的活度与团聚体的稳定性呈正相关;而与原状土的破裂系数呈负相关。看来,无定形氧化铁的含量可以作为高产水稻土具有良好结构性的一个间接指标。施加有机物料的土壤,当脱水时其中大孔隙显著增多,这对粘质水稻土回旱种旱作十分有利。稻草直接施入土中的改土效果优于沤制后施入土中,且不亚于高用量稻草和紫云英混施的效果。可见,如绿肥施用量减少时,只要保持一定量的稻草回田,亦能改善土壤的结构。  相似文献   

3.
A long-term experiment on combined inorganic fertilizers and organic matter in paddy rice (Oryza sativa L.) cultivation began in May 1982 in Yamagata, northeastern Japan. In 2012, after the 31st harvest, soil samples were collected from five fertilizer treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)], at five soil depths (0–5, 5–10, 10–15, 15–20 and 20–25 cm), to assess the changes in soil organic carbon (SOC) content and carbon (C) decomposition potential, total nitrogen (TN) content and nitrogen (N) mineralization potential resulting from long-term organic matter addition. The C decomposition potential was assessed based on the methane (CH4) and carbon dioxide (CO2) produced, while the N mineralization potential was determined from the potassium chloride (KCl)-extractable ammonium-nitrogen (NH4+-N), after 2, 4, 6 and 8 weeks of anaerobic incubation at 30°C in the laboratory. Compared to NPK treatment, SOC in the total 0–25 cm layer increased by 67.3, 21.0 and10.8%, and TN increased by 64.2, 19.7 and 10.6%, in CM3, RS and CM1, respectively, and SOC and TN showed a slight reduction in the PK treatment by 5.2 and 5.7%, respectively. Applying rice straw compost (10 Mg ha?1) instead of rice straw (6 Mg ha?1) to rice paddies reduced methane production by about 19% after the soils were measured under 8 weeks of anaerobic incubation at 30°C. Soil carbon decomposition potential (Co) and nitrogen mineralization potential (No) were highly correlated with the SOC and TN contents. The mean ratio of Co/No was 4.49, lower than the mean ratio of SOC/TN (13.49) for all treatments, which indicated that the easily decomposed organic matter was from soil microbial biomass and soil proteins.  相似文献   

4.
ABSTRACT

The influence of long-term application of different types of compost on rice grain yield, CH4 and N2O emissions, and soil carbon storage (0 ? 30 cm) in rice paddy fields was clarified. Two sets of paddy fields applied with rice straw compost or livestock manure compost mainly derived from cattle were used in this study. Each set comprised long-term application (LT) and corresponding control (CT) plots. The application rates for rice straw compost (42 years) and livestock manure compost (41 years in total with different application rates) were 20 Mg fresh weight ha–1. Soil carbon storage increased by 33% and 37% with long-term application of rice straw compost and livestock manure compost, respectively. The soil carbon sequestration rate by the organic matter application was 23% higher with the livestock manure compost than with the rice straw compost. The rice grain yield in the LT plot was significantly higher than that in the corresponding CT plot with both types of compost. Although the difference was not significant in the rice straw compost, cumulative CH4 emissions increased with long-term application of both composts. Increase rate of CH4 emission with long-term application was higher in the livestock manure compost (99%) than that in the rice straw compost (26%). In both composts, the long-term application did not increase N2O emission significantly. As with the rice straw compost, the increase in CH4 emission with the long-term application of livestock manure compost exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was positive, indicating a net increase in the GHG emissions. The increase in CH4 and net GHG emissions owing to the long-term application of the livestock manure compost could be higher than that of the rice straw compost owing to the amount of applied carbon, the quality of compost and the soil carbon accumulation. The possibility that carbon sequestration in the subsoil differs depending on the type of composts suggests the importance of including subsoil in the evaluation of soil carbon sequestration by long-term application of organic matter.  相似文献   

5.
Is the composition of soil organic matter changed by adding compost? To find out we incubated biowaste composts with agricultural soils and a humus‐free mineral substrate at 5°C and 14°C for 18 months and examined the products. Organic matter composition was characterized by CuO oxidation of lignin, hydrolysis of cellulosic and non‐cellulosic polysaccharides (CPS and NCPS) and 13C cross‐polarization magic angle spinning nuclear magnetic resonance (CPMAS 13C‐NMR) spectroscopy. The lignin contents in the compost‐amended soils increased because the composts contained more lignin, which altered little even after prolonged decomposition of the composts in soil. A pronounced decrease in lignin occurred in the soils amended with mature compost only. Polysaccharide C accounted for 14–20% of the organic carbon at the beginning of the experiment for both the compost‐amended soils and the controls. During the incubation, the relative contents of total polysaccharides decreased for 9–20% (controls) and for 20–49% (compost‐amended soils). They contributed preferentially to the decomposition as compared with the bulk soil organic matter, that decreased between < 2% and 20%. In the compost‐amended agricultural soils, cellulosic polysaccharides were decomposed in preference to non‐cellulosic ones. The NMR spectra of the compost‐amended soils had more intense signals of O–alkyl and aromatic C than did those of the controls. Incubation for 18 months resulted mainly in a decline of O–alkyl C for all soils. The composition of the soil organic matter after compost amendment changed mainly by increases in the lignin and aromatic C of the composts, and compost‐derived polysaccharides were mineralized preferentially. The results suggest that decomposition of the added composts in soil is as an ongoing humification process of the composts themselves. The different soil materials affected the changes in soil organic matter composition to only a minor degree.  相似文献   

6.
In Egypt, recycling rice straw and organic wastes is of great concern as well as improvement of soil properties. Rice straw compost could improve both organic waste recycling and soil quality. The aim of this study was to evaluate the effect of the rice straw compost, with or without water treatment residuals (WTR), on soil chemical properties and dry weight of canola. The results showed that the addition of rice straw compost and WTR decreased soil salinity and increased Ca+2, K+ and organic matter. The addition of compost and WTR (2:1 wet weight ratio) at level of 10 g dry weight kg?1 dry soil gave the best reduction in soil salinity compared to compost or WTR only or for level 10 g dry weight kg?1 dry soil. The results also showed that the available P decreased with the application of WTR while it increased with the application of compost. The study demonstrated that the dry weight and relative increase (R.I %) of dry weight of canola plants increased with the application of WTR and compost to soil. Combinations of WTR and compost to soils had a greater effect on increasing yield and improved the efficiency of WTR on soil properties.  相似文献   

7.
Understanding of dynamics of N derived from organic N sources in soil is required for the development of sustainable agricultural systems. The aim of this paper is to compare, using pot experiments, the fate of N from urea (UF) and organic N sources such as rice straw compost (RC) and cattle compost (CC) using 15N labeled materials in paddy soil planted with rice. Two soils with a history of long-term applications of chemical fertilizers (LTCN) and organic N sources, i.e. straw compost +soybean cake, (LTON), were also compared. Nitrous oxide emissions were monitored during the growing period. Yield and N uptake of rice were higher in LTON soil than LTCN soil with no significant interaction with N applications. Chemical fertilizer increased yield and N uptake with a recovery rate by rice of 36 to 45%. Nitrogen recovery from RC and CC by rice was less than 10%. When recovery of N in soil was included with that recovered in the plant, 70% and 61% of applied N in the UF treatment was recovered from the LTCN and LTON soils, respectively. In comparison, more than 95% of applied N was recovered in the plant and soil for the RC and CC treatments. There was a sharp increase in N2O emission during the aerated period in nonplanted pots regardless of whether supplemental N was added, and this was associated with the increase in NO3- in soil solution at 0.5 cm depth. There was a much lower N2O emission in planted pots than nonplanted pots with no significant difference among the LTCN and LTON soils or the N treatments. The results indicated that the application of organic N source provided lower N supply to the plant than urea, but also could reduce N loss because of higher retention in the soil. Long-term continuous application of organic N sources enlarged the labile N pool without increasing N2O emission. Nitrous oxide emission was important during the mid-season aerated period from pot experiments and was partly related to the concentration of NO3- and the rate of nitrification.  相似文献   

8.
ABSTRACT

Hot-water- and water-extractable organic matter were obtained from soil samples collected from a rice paddy 31 years after the start of a long-term rice experiment in Yamagata, Japan. Specifically, hot-water-extractable organic carbon and nitrogen (HWEOC and HWEON) were obtained by extraction at 80°C for 16 h, and water-extractable organic carbon and nitrogen (WEOC and WEON) were obtained by extraction at room temperature. The soil samples were collected from surface (0–15 cm) and subsurface (15–25 cm) layers of five plots that had been treated with inorganic fertilizers alone or with inorganic fertilizers plus organic matter, as follows: PK, NPK, NPK plus rice straw (RS), NPK plus rice straw compost (CM1), and NPK plus a high dose of rice straw compost (CM3). The soil/water ratio was 1:10 for both extraction temperatures. We found that the organic carbon and total nitrogen contents of the bulk soils were highly correlated with the extractable organic carbon and nitrogen contents regardless of extraction temperature, and the extractable organic carbon and nitrogen contents were higher in the plots that were treated with inorganic fertilizers plus organic matter than in the PK and NPK plots. The HWEOC and WEOC δ13C values ranged from ?28.2% to ?26.4% and were similar to the values for the applied rice straw and rice straw compost. There were no correlations between the HWEOC or WEOC δ13C values and the amounts of HWEOC or WEOC. The δ13C values of the bulk soils ranged from ?25.7% to ?23.2% and were lower for the RS and CM plots than for the PK and NPK plots. These results indicate that HWEOC and WEOC originated mainly from rice plants and the applied organic matter rather than from the indigenous soil organic matter. The significant positive correlations between the amounts of HWEOC and HWEON and the amount of available nitrogen (P < 0.001) imply that extractable organic matter can be used as an index for soil fertility in this long-term experiment. We concluded that the applied organic matter decomposed more rapidly than the indigenous soil organic matter and affected WEOC δ13C values and amounts.  相似文献   

9.
Li  Honghong  Yu  Yong  Chen  Yanhui  Li  Yunyun  Wang  Mingkuang  Wang  Guo 《Journal of Soils and Sediments》2019,19(2):862-871
Purpose

This study focused on the effects and mechanisms of biochar amendment to Cd-contaminated soil on the uptake and translocation of Cd by rice under flooding conditions.

Materials and methods

Pot and batch experiments were conducted using Cd-contaminated soil collected from a field near an ore mining area and a cultivar of Oryza sativa ssp. indica. Biochar derived from rice straw under anaerobic conditions at 500 °C for 2 h was mixed with the soil at the rate of 0, 2.5, and 5%.

Results and discussion

The application of 5% biochar reduced CaCl2-extractable soil Cd by 34% but increased Cd concentration in brown rice by 451%. Biochar amendment decreased water-soluble Fe2+ in soils and formation of Fe plaques on roots and weakened the Fe2+-Cd2+ competition at adsorption sites on the root surface. Biochar increased water-soluble Cd in the soil and consequently Cd uptake by rice roots by releasing water-soluble Cl?. Biochar application also reduced the proportion of cell wall-bound Cd in the root, which caused easier Cd translocation from the cortex to the stele in the root and up to the shoot.

Conclusions

Rice straw biochar (with high concentration of water-soluble Cl?) reduced CaCl2-extractable soil Cd but increased Cd concentration in rice under flooding condition.

  相似文献   

10.
Repeated air drying and rewetting of three soils followed by incubation at 20°C resulted in an increase in the rate of decomposition of a fraction of 14C labeled organic matter in the soils. The labeled organic matter originated from labeled glucose, cellulose and straw, respectively, metabolized in the soils during previous incubation periods ranging from 1.5 to 8 years.Air drying and rewetting every 30th day over an incubation period of 260–500 days caused an increase in the evolution of labeled CO2 ranging from 16 to 121 per cent as compared to controls kept moist continuously. The effect of the treatment was least in the soil which had been incubated with the labeled material for the longest time.Additions of unlabeled, decomposable organic material also increased the rate of decomposition of the labeled organic matter. The evolution of labeled CO2 during the 1st month of incubation after addition was in some cases 4–10 times larger than the evolution from the controls. During the continued incubation the evolution decreased almost to the level of the controls, indicating that the effect was related to the increased biological activity in the soils during decomposition of the added material.Three additions of organic material during the period of incubation resulted totally in an increase over the controls ranging from 36 to 146 per cent.  相似文献   

11.
有机物料对土壤中外源镉形态与生物有效性的影响研究   总被引:7,自引:0,他引:7  
盆栽试验研究稻草与紫云英对土壤中外源Cd形态及其生物有效性的影响结果表明 ,添加稻草与紫云英可降低水稻分蘖期潮土和红壤交换态镉含量 ,且二者在不同土壤的影响不同。 2种有机物料在水稻分蘖期固定作用并不稳定 ,随时间的推移 ,氧化锰结合态和紧有机质结合态吸附的镉将随紧有机质的分解和活性锰的还原被释放出来 ,并向交换态镉转化 ,提高Cd的生物有效性。水稻对外源Cd吸收与Cd在土壤中形态密切相关 ,水稻分蘖期稻草与紫云英均可抑制水稻根和茎叶对外源Cd的吸收 ,至成熟期水稻根、茎叶和糙米中Cd含量迅速增加 ,其根本原因是由于土壤中交换态镉含量提高和紧有机质结合态镉含量降低所致  相似文献   

12.

Purpose

The objective of this study was to determine the changes in the main soil chemical properties including pH, electrical conductivity (EC), available phosphorus (P), soil organic carbon (SOC) and total nitrogen (TN) stocks after long-term (31 years) additions of two types of organic matters—rice straw and rice straw compost, combined with NPK fertilizers in single rice paddy in a cold temperate region of Japan.

Materials and methods

A long-term experiment on combined inorganic fertilizers and organic matters in paddy rice cultivation began in May 1982 in Yamagata, northeastern Japan. After the 31st harvest, soil samples were collected from five treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)] at five soil depths (0–5, 5–10, 10–15, 15–20, and 20–25 cm). Soil chemical properties of pH, EC, available P, SOC, and TN were analyzed.

Results and discussion

The pH decreased significantly only at the higher compost rate of 30 Mg ha?1, while EC increased in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock increased by 67.2, 21.4, and 8.6 %, and soil TN stock by 64.1, 20.2, and 8.5 % in CM3, RS, and CM1, respectively, compared to NPK treatment.

Conclusions

Significant changes in soil properties were observed after 31 years of organic matter applications with reference to PK- and NPK-fertilized rice paddy soils. A significant decrease in pH was observed with the application of a high rate (30 Mg ha?1) of rice straw compost but not with the conventional rate of 10 Mg ha?1. However, EC increased significantly relative to that of the PK- and NPK-fertilized plots in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock expressed as a percentage of total C applied to the soil were higher from 10 Mg ha?1 compost (28.7 %) than that from 6 Mg ha?1 rice straw (17.4 %), indicating a more effective soil organic C accumulation from rice straw compost than that from original rice straw.
  相似文献   

13.
Rice fields are intensively managed, unique agroecosystems, where soil flooding is general performance for rice cultivation. Flooding the field results in reductive soil conditions, under which decomposition of organic materials proceeds during the period of rice cultivation. A large variety of organic materials are incorporated into rice soils according to field management. In this review, the kind and abundance of organic materials entering carbon cycling in the rice field ecosystem are evaluated first. Then, decomposition of plant residues and soil organic matter in rice fields is reviewed quantitatively. Decomposition of plant residues is shown to be the active process in carbon cycling in rice fields. Rice releases photosynthates into the rhizosphere (rhizodeposition), and they follow a different avenue of decomposition in soil from that of plant residues. Incorporation of rhizodeposition into microbial biomass and soil organic matter during the period of rice cultivation, and their fates after harvesting are evaluated quantitatively from 13C pulse labeled experiments. Percolating water transports inorganic and organic carbon from the plow layer to the subsoil layer. The amounts of their transport and accumulation in the subsoil layer are evaluated in relation to the amounts of soil organic C in the plow layer. Not only CO2 but also CH4 are produced in the decomposition process of organic materials in flooded rice fields. CH4 evolution from rice fields is of global concern from the viewpoint of global warming. Origins of CH4 evolved from rice fields are estimated first, followed by the fates of CH4 in rice field ecosystems. Rhizodeposition is shown to be the main origin of CH4 evolved from rice fields. Evolution to the atmosphere is not the sole pathway of CH4 produced in rice fields. The amounts of CH4 retained in soil, percolated to the subsoil layer and decomposed in soil are evaluated in the context of the amounts of CH4 efflux. Thus, this review focuses on carbon cycling in the rice field ecosystem from the viewpoints of input, decomposition, and translocation of organic materials and the fates of their end products (CO2 and CH4).  相似文献   

14.
The effect of three organic materials(rice straw,Chinese milk vetch and pig manure)on the fractionation of cadmium added into two soils(a red soil and a fluvo-aquic soil) was studied using submerged incubation experiment.The organic materials increased soil soild organic carbon(SOC),pH value,the concentration of active Si in all the treatments and active Fe and Mn in some treatments.Accumulated SOC caused directly the increase of Cd bound to solid organic matter and consequently the decrease of exchangeable Cd.Higher active Si and pH,as well as lower Eh,were also responsible for the reduction of exchangeable Cd.Cd bound to mn oxide was positively correlated with pH values and rose significantly after one-month incubation,but decreased after three-month incubation.Cd bound to amporphous Fe oxide increased with the incubation time,but was not affected significantly by adding organic materials.  相似文献   

15.
Rice (Oryza sativa) in Asia is typically grown on submerged soils in intensive cropping systems with only a brief interval between harvest of one crop and planting of the next. Incorporation of crop residues can be challenging because the fallow period between crops is often too short to allow sufficient decomposition. During early stages of anaerobic residue decomposition in flooded soils, plant growth may be inhibited by nutrient immobilization or by the production of potentially toxic organic acids. Straw from a brittle stem mutant of rice (Oryza sativa L. var. IR68) was tested in a 30-d incubation experiment under continuously flooded conditions in a greenhouse to determine if it would decompose more rapidly than the non-brittle phenotype, thereby allowing shorter fallow time between crops. Brittle straw decomposed faster, as indicated by 51% total C loss as CO2 or CH4 within 3 weeks of incorporation, compared with 28% for non-brittle straw. However, brittle straw also produced a significantly higher (P<0.0001) amount of formic, acetic, aconitic, propionic, and butyric acids than non-brittle straw. There was no difference in soil N immobilization pattern between the two straw types, or in P or K availability in the soil, perhaps due to the short duration of the experiment. To maximize the potential advantage of faster decomposition of brittle straw in intensive rice cropping systems, it may be helpful to manage water for sufficient soil aeration to mitigate the negative organic acid and methane production effects.  相似文献   

16.
Abstract

This study was undertaken to assess the mineralization of sulfur (S) in laboratory conditions of three rice soils (Joydebpur, Faridpur, and Thakurgaon), receiving the following treatments: 1) control, 2) rice straw (Oryza sativa L.), and 3) pea vine (Pisum sativum L.). The organic residue (25 mg g‐1) was added and mixed with soil and glass beads (1:1, soil to bead ratio) and placed into a Pyrex leaching tube. The soils were flooded and incubated at 35°C, after which they were leached with deionized water at 1, 2,4, 8, and 12 weeks for analysis of SO4 and other chemical properties in the leachates. Potentially mineralizable S (So) and C (Co) pools and first‐order rate constants (Ks for S and Kc for C) in soils amended with rice straw and pea vine under flooded conditions were estimated using an exponential equation. The So and Ks varied considerably among the soils and types of added organic residues, and their values in rice straw and pea vine ranged from 8.70 to 29.55 and 0.124 to 0.732 mg S kg‐1 wk‐1, respectively. Except for the Thakurgaon soil, the So and Ks values in Joydebpur and Faridpur soils were higher in the unamended treatments. Higher So values in the unamended soils were probably due to less microbial activity to mineralize organic S from organic residues. The results indicate that the amount of SO4 in flooded soils amended with organic residues are dependent on soil type, nature of organic residues, and time of incubation. The Co and Kc values under flooded incubation were higher in residue amended soils than in unamended soils. Pea vine treated soils had higher Co and Kc values than the soils treated with rice straw.  相似文献   

17.
Abstract

Long-term temporal changes in natural 15N abundance (δ15N value) in paddy soils from long-term field experiments with livestock manure and rice straw composts, and in the composts used for the experiments, were investigated. These field experiments using livestock manure and rice straw composts had been conducted since 1973 and 1968, respectively. In both experiments, control plots to which no compost had been applied were also maintained. The δ15N values of livestock manure compost reflected the composting method. Composting period had no significant effect on the δ15N value of rice straw compost. The δ15N values increased in soils to which livestock manure compost was successively applied, and tended to decrease in soils without compost. In soils to which rice straw compost was successively applied, the δ15N values of the soils remained constant. Conversely, δ15N values in soils without rice straw compost decreased. The downward trend in δ15N values observed in soils to which compost and chemical N fertilizer were not applied could be attributed to the natural input of N, which had a lower δ15N value than the soils. Thus, the transition of the δ15N values in soils observed in long-term paddy field experiments indicated that the δ15N values of paddy soils could be affected by natural N input in addition to extraneous N that was applied in the form of chemical N fertilizers and organic materials.  相似文献   

18.
ABSTRACT

The influence of the long-term combination of rice straw removal and rice straw compost application on methane (CH4) and nitrous oxide (N2O) emissions and soil carbon accumulation in rice paddy fields was clarified. In each of the initial and continuous application fields (3 and 39?51 years, respectively), three plots with different applications of organic matter were established, namely, rice straw application (RS), rice straw compost application (SC) and no application (NA) plots, and soil carbon storage (0?15 cm), rice grain yield and CH4 and N2O fluxes were measured for three years. The soil carbon sequestration rate by the organic matter application was higher in the SC plot than in the RS plot for both the initial and continuous application fields, and it was lower in the continuous application field than in the initial application field. The rice grain yield in the SC plot was significantly higher than those in the other plots in both the initial and continuous application fields. Cumulative CH4 emissions followed the order of the NA plot < the SC plot < the RS plot for both the initial and continuous application fields. The effect of the organic matter application on the N2O emissions was not clear. In both the initial and continuous application fields, the increase in CH4 emission by the rice straw application exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was a positive, indicating a net increase in the GHG emissions. However, the change in the GHG balance by the rice straw compost application showed negative (mitigating GHG emissions) for the initial application field, whereas it showed positive for the continuous application field. Although the mitigation effect on the GHG emissions by the combination of the rice straw removal and rice straw compost application was reduced by 21% after 39 years long-term application, it is suggested that the combination treatment is a sustainable management that can mitigate GHG emissions and improve crop productivity.  相似文献   

19.
The aim of this study was to determine the effects of heavy metal pollution on the structure and functioning of detritivore soil communities that consist of isopods, millipedes and earthworms, in 15 heavily polluted flood plain soils, located in the delta area of the rivers Rhine and Meuse, in the Netherlands. The 15 study sites represent a gradient in Zn, Cu and Cd concentrations. The structural attributes of the detritivore community, which were assessed, were the species richness and densities in the field sites. The functioning of the detritivore community was studied by determining organic matter decomposition using litter bags and feeding activity with the bait-lamina method. Concentrations of Cd, Cu and Zn were measured in soil, pore water and 0.01 M CaCl2 extracts of the soil, in adult earthworms and plant leaves. Results show that metal pollution is not a dominating factor determining the species richness and densities of the selected detritivore groups, although the biomass of the earthworm Lumbricus rubellus was positively and significantly correlated to Zn concentrations in pore water and 0.01 M CaCl2 extracts. Litter decomposition was significantly and positively correlated to detritivore biomass and 0.01 M CaCl2 extractable Cd concentrations in soil and negatively to pH-CaCl2, although the range of pH values was very small. It can be concluded that in spite of high metal levels in the soil, bioavailable concentrations are too low to result in clear negative effects on the structure and functioning of detritivores in the Biesbosch, the Netherlands.  相似文献   

20.
秸秆及其生物炭对土壤碳库管理指数及有机碳矿化的影响   总被引:6,自引:0,他引:6  
以河南省粮食主产区壤质潮土和砂土为研究对象,通过盆栽试验和室内恒温培养试验,研究了生物炭与不同腐殖化程度的传统有机物料(秸秆和腐熟鸡粪)单施及配施对壤质潮土和砂土有机碳储量、活性及碳库管理指数的影响,并进一步比较了小麦秸秆直接还田和制炭还田对土壤有机碳矿化的影响,以及生物炭对土壤原有有机碳矿化的调控作用。结果表明:相同添加量下,生物炭对土壤有机碳含量的提升效果优于秸秆和腐熟鸡粪,在壤质潮土和砂土上分别较对照提升了63.15%和115.62%。另外,生物炭显著增加了土壤稳态碳含量和土壤碳库指数(CPI),但降低了土壤碳素有效率(SC)和碳库活度指数(AI),对土壤易氧化有机碳(POXC)和碳库管理指数(CMPI)无显著影响,添加秸秆显著增加了2种土壤POXC含量、基础呼吸和CPMI。进一步通过室内恒温培养试验发现,秸秆可在培养前期(0~37天)大幅度提升2种类型土壤有机碳矿化速率和累积矿化量,秸秆制炭还田对土壤有机碳矿化无显著影响。此外生物炭对土壤原有有机碳矿化的调控作用受其施用量、外源活性有机碳输入和土壤类型的影响,高量生物炭(2%)对非秸秆还田土壤有机碳矿化表现出较强的负激发效应,而低量生物炭(0.55%)对秸秆还田土壤有机碳矿化表现出较明显的负激发效应。因此,从"固碳减排"角度考虑,秸秆制炭还田是更合理的利用方式,且应根据土壤施肥管理措施和土壤类型考虑生物炭的施用量,添加质量比为2%的生物炭可显著抑制土壤原有有机碳矿化,降低CO_2排放,但应避开秸秆快速腐解期施用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号