首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The length of time from sowing to harvest of rice plants differs greatly and depends upon the genetic characteristics of the varieties and the environmental conditions under which the plants grow.  相似文献   

2.
水稻脱粒破碎率与脱粒元件速度关系研究   总被引:13,自引:9,他引:4  
脱粒元件的冲击是水稻脱粒谷粒损伤的主要原因。该文基于碰撞理论和能量平衡原理对单个、多个谷粒和脱粒元件的碰撞过程进行了理论分析。建立了圆形截面脱粒元件线速度和脱粒破碎率之间的数学模型。在自制的脱粒分离性能试验台上对水稻进行了脱粒性能试验,通过试验确定了数学模型中的待定系数,验证了数学模型的正确性。为脱粒装置的设计、优化提供了理论依据。  相似文献   

3.
[目的]阐明不同水氮管理模式下水稻根际内外氧环境变化特征及其对土壤碳氮转化和水稻氮吸收利用的影响,以期从稻田"根际氧环境"调控角度揭示适宜水氮耦合促进水稻生长和提高氮素利用效率的内在机制.[方法]在长期定位试验基础上,采用根箱模拟培养以及Unisense微电极系统和15N同位素示踪相结合的研究方法,以常规粳稻日本晴和常...  相似文献   

4.
不同施氮量对水稻氮素吸收与分配的影响   总被引:24,自引:8,他引:24  
运用15N示踪法研究了不同施氮量对两个品种水稻(4007和武运粳15)干物质积累量与其对15N吸收及分配的影响。结果表明,当施氮量超过N 150 kg/hm2时, 两个品种水稻子粒产量均不再显著增加。4007在4个施氮量下(N 100,150,200和 250 kg/hm2)分别比无氮区增产22.3%,36.9%,43.2%和38.1%;武运粳15分别增产10.6%,18.8%,27.1%和21.5%。同一施氮量下,4007子粒中15N累积量显著高于武运粳15,但茎叶和根中没有差异。增加施氮量降低了15N在水稻子粒中的分配比例,但提高了茎叶中15N的分配比例。15N在根中的分配比例不受施氮量和品种的影响。研究结果还表明,同一施氮量下,4007对肥料氮的总体利用率要比武运粳15高3~6个百分点。  相似文献   

5.
On examining the changes in lamellae and stroma nitrogen during leaf development, it is demonstrated that the lamellae and stroma fractions ofrice chloroplasts develop in quite different ways. In the case of stroma, the stroma materials existing in the leaf section which has just emerged from a leaf sheath are quite limited and the major part of this fraction is derived from the successive protein synthesis, i.e., the synthesis of this fraction was markedly increased during leaf expansion. This developmental pattern of the stroma coincided with the changes in the high-molecular-weight water soluble leaf protein, which seemed to be mainly composed of Fraction I protein. A rapid increase in stroma nitrogen was found to be a major cause for an increase in the leaf nitrogen content during leaf development.

On the other hand, the developmental pattern of the lamellae fraction was characterized by the fact that a considerable amount of this fraction had already been prepared when a leaf emerged from a leaf sheath and thereafter, no outstanding increase was seen compared to that of the stroma. This developmental pattern of the lamellae fraction resulted in a lowering of the proportion of lamellae nitrogen to the total leaf nitrogen during leaf development.

A great change in the lamellae-stroma composition of chloroplasts was observed. The proportion of stroma nitrogen to the total chloroplast nitrogen tended to increase as a leaf develops. Since the developmental stage varied according to the regions of a leaf, variation of the lamellaestroma composition was seen even within a leaf, i.e., the proportion of stroma nitrogen increased from base to tip.

In order to compare the synthetic rate of chlorophyll with those of the stroma and lamellae fractions, the changes in the ratios of stroma nitrogen/chlorophyll and lamellae nitrogen/chlorophyll were examined. The lamellae nitrogen/chlorophyll ratio decreased as a leaf developed, whereas the stroma nitrogen/chlorophyll ratio increased. Then the synthetic rates of these fractions during leaf development turned out to be of the same order as the stroma fraction, chlorophyll, lamellae fraction.  相似文献   

6.
We aimed to clarify the effectiveness of polyaspartic acid (PASP)-urea on nitrogen (N) accumulation and N use efficiency in rice. We compared PASP-urea with conventional urea with two N management methods (farmer’s fertilizer practice and optimized N management) in Wenjiang, Sichuan Province, China, in 2014 and 2015. N recovery efficiency (NRE), N agronomic efficiency (NAE), and N partial factor productivity (PFP) decreased with increasing N uptake by the shoot and the stem plus sheath at 14 days after transplanting (DAT), while they were positively related to N uptake of the shoot, leaf lamina, and stem plus sheath at the middle and later stages. N use efficiency and N uptake differed according to urea type and N management. PASP-urea increased N accumulation of the shoot by improving N uptake of the leaf lamina and stem plus sheath from DAT 27, contributing to the significant improvement in NRE, NAE, and PFP. PASP-urea with optimized N management markedly improved the N uptake of each organ at the middle and latter stages, leading to increased final N uptake of the shoot, NRE, NAE, and PFP. Using PASP-urea with ONM method is a suitable way for improving both N accumulation and N use efficiency.  相似文献   

7.
氮水平对水稻植株氮素损失的影响   总被引:6,自引:1,他引:6  
利用15N差值法,在溶液培养条件下研究了不同氮肥水平对水稻植株氮损失的影响,并就影响水稻氮损失的因素进行了分析。结果表明,对前期正常供氮的水稻幼苗做为期10 d的不同氮(N 04、0、801、60 mg/L)处理,水稻植株生物量未受显著影响,表明前期吸收氮可维持水稻生长。但是,随着供氮水平的提高,叶片及根的含氮量显著增加,而15N的丰度却显著下降,叶片15N的丰度显著高于根。说明高氮处理增加了水稻植株吸氮量并稀释了前期吸收的15N,而且根系累积的氮向地上部转移。缺氮(N 0 mg/L)与过量供氮(N 160 mg/L)均显著增加植株氮的损失率,而适量供氮(N 80 mg/L)则氮肥利用率显著提高。水稻的生长期显著影响植物氮的损失率,在N 80 mg/L的条件下,随着水稻生长期的延长,植株氮损失从11.6%增加到22.3%。同时,随着供氮水平的增加,叶片中NH4+-N含量和谷草转氨酶(GOT)活性均显著增加,叶片组织pH也随之增加。表明植物体内铵浓度增加而引起的氨挥发是导致植物氮损失增加的原因之一。  相似文献   

8.
The effect of ammonium nitrogen concentration in soil solution on the establishment of rice plants was examined. The increase of the concentration decreased the percentage of establishment of seeds sown in submerged soil, although most of seeds sown on submerged soil became established. Therefore, the increase of ammonium nitrogen concentration in soil solution may impair the establishment of seeds sown in submerged soil, which would occur presumably because the increase delays the spear growth and emergence without the decline of soil redox potential. Several seed lots with various nitrogen contents were obtained from rice plants grown under various conditions. The percentage of establishment of low-nitrogen seeds sown in submerged soil was much lower than that of high-nitrogen seeds, especially in soils whose solution contained a large amount of ammonium nitrogen. However, the difference in the percentage of establishment between high- and low-nitrogen seeds sown on submerged soil was much smaller. Therefore, the increase of seed nitrogen content may improve the percentage of establishment of seeds sown in submerged soil, presumably because the increase accelerates the spear growth and emergence. Consequently, for direct sowing in submerged soil, ammonium nitrogen concentration in soil solution should remain low because ammonium nitrogen exerts an adverse effect on seedling establishment, and vigorous seeds with a high nitrogen content should be sown because seed nitrogen exerts a beneficial effect on seedling establishment.  相似文献   

9.
通过在辽河三角洲滨海盐碱稻区设置田间小区试验,探明了不同氮肥用量(0~420 kg/hm2)和运筹模式(基肥∶蘖肥∶穗肥分别为6∶3∶1与4∶3∶3,以下简称6∶3∶1模式与4∶3∶3模式)对水稻生长发育以及产量品质的影响。通过对水稻分蘖动态调查研究表明,两种氮肥运筹模式下水稻平均茎蘖数均与施氮量呈显著正相关(r2≥0.90),同时,6∶3∶1模式下氮肥用量对水稻平均茎蘖数的影响程度高于4∶3∶3模式。通过分析不同施氮量与产量的相关关系,发现了两者符合线性加平台肥料效应模型,拟合得到6∶3∶1模式与4∶3∶3模式下的最佳施氮量(EONR)分别为216 kg/hm2(210~235 kg/hm2)与316 kg/hm2(300~332 kg/hm2),6∶3∶1模式的EONR比4∶3∶3模式高46.3%。通过考查两种氮肥运筹模式下的氮素利用率指标,发现4∶3∶3模式下各处理氮素利用率(37.2%~40.8%)显著高于6∶3∶1模式(29.9%~34.2%)。...  相似文献   

10.
灌溉方式和施氮量对直播稻氮素和水分利用的影响   总被引:6,自引:0,他引:6  
为研究不同灌溉方式和施氮量对直播稻的光合生产、干物质积累、氮素利用、水分利用和稻谷产量的影响,采用裂区试验设计,主区因素为品种:‘德香4103’和‘金农丝苗’,副区因素为3种灌溉方式:浅水灌溉、轻干湿交替灌溉和重干湿交替灌溉,副副区因素为4个施氮量:0 kg(N)·hm~(-2)、120 kg(N)·hm~(-2)、180 kg(N)·hm~(-2)、240kg(N)·hm~(-2),分析测定直播稻的干物质积累量、氮素积累量和利用率、水分利用率和产量等指标。结果表明:灌溉方式和施氮量对直播稻氮素利用和产量形成的影响存在显著的互作效应。与浅水灌溉相比,轻干湿交替灌溉处理下‘德香4103’和‘金农丝苗’抽穗期剑叶净光合速率、拔节—抽穗期干物质积累量、结实期茎叶氮素转运量、成熟期籽粒中氮素积累量、氮素农艺效率和氮肥回收效率显著增加;抽穗期叶面积指数、拔节前干物质积累量、成熟期茎叶氮素积累量显著降低。施氮量对‘德香4103’和‘金农丝苗’氮素积累量、氮素利用效率、产量的影响存在差异。浅水灌溉处理中,与无氮相比,‘德香4103’和‘金农丝苗’施氮后产量分别提高31.79%~48.77%和29.72%~45.36%;施氮量超过180 kg·hm~(-2)后,‘德香4103’的产量显著下降,而‘金农丝苗’相应指标却无显著变化。轻干湿交替灌溉处理中,与无氮相比,‘德香4103’和‘金农丝苗’施氮后产量分别提高32.58%~61.10%和36.49%~48.45%;施氮量超过180 kg·hm~(-2)后‘德香4103’的产量无显著变化,氮肥回收效率、氮素农艺效率均显著下降,‘金农丝苗’的产量和干物质积累量无显著变化,成熟期氮素积累量显著提高。重干湿交替灌溉处理中,与无氮相比,‘德香4103’和‘金农丝苗’施氮后产量分别提高37.01%~42.88%和30.11%~42.63%;施氮量超过180 kg·hm~(-2)后,‘德香4103’和‘金农丝苗’的产量无显著变化;但‘德香4103’成熟期氮素积累量显著增加,‘金农丝苗’氮素积累量却无显著增加,两个品种氮素农艺效率均显著降低。综上所述,轻干湿交替灌溉更适合于直播稻高产、节水、高效栽培,其中‘德香4103’产量在轻干湿交替灌溉下施纯氮240 kg·hm~(-2)处理最高,‘金农丝苗’产量在轻干湿交替灌溉下施纯氮180 kg·hm~(-2)处理最高。  相似文献   

11.
12.
Many instances of antagonistic relationships among various micro-elements and between micro- and macro-elements in their absorption, translocation, and functions in plant growth have been reported (1). In a series of our researches on the effect of micro-elements on the growth of rice plants, it was observed that manganese toxicity symptom of rice plants was markedly reduced by increasing the concentration of zinc in the nutrient sdution. Although it has been reported that manganese toxicity symptoms of crops were reduced by addition of Fe (2,3), A1 (4), Ca (5) and silicate (6) to the medium, there have been few reports of the effect of Zn on Mn toxicity of rice plants. In this paper, the interaction between Mn and Zn in the growth of rice plants was reported.  相似文献   

13.
水稻根系形态与氮素吸收累积的相关性分析   总被引:9,自引:1,他引:9  
【目的】氮肥过量施用,不仅造成氮肥大量流失,还增加了农业生产成本,对生态环境带来了巨大的威胁。水稻根系形态作为影响养分吸收和利用的主要因素之一,明确其与氮素吸收累积的相关性是提高氮素利用效率、降低环境污染的有效途径。【方法】利用营养液培养方法,研究了 55 个水稻品种在 NH4+-N 和 NO3–-N 供应条件下苗期植株生物量、氮含量和氮素累积量及其与根系形态指标的相关性。【结果】在 NH4+-N 培养下,水稻营养指标与根系形态指标的相关性高于其在 NO3–-N 培养下的相关性。在相同供氮水平下,供应 NH4+-N 的水稻苗期平均生物量为 55.77 mg/plant,比供应 NO3–-N 的量高 4.94 mg/plant;水稻苗期平均氮含量为 4.22%,比供应 NO3–-N 的高 0.72%;水稻苗期平均氮累积量为 1.91 mg/plant,比供应 NO3–-N 的苗期平均氮累积量高 0.67 mg/plant。在 NH4+-N 和 NO3–-N 两种氮素形态培养条件下,水稻根系形态指标品种间根尖数变异系数最大,平均根系直径变异系数最小。总根体积、总根面积、总根长、分枝数四个形态指标与植株生物量、植株氮含量、植株氮累积量相关性最为显著,且相关系数 (r) 呈总根体积 > 总根面积 > 总根长 > 分枝数的规律。在 NH4+-N 培养下的水稻营养指标与根系形态指标的相关性要高于其在 NO3–-N 培养下的相关性。【结论】水稻苗期总根体积、总根面积、总根长、分枝数可作为水稻氮高效评价的重要指标。  相似文献   

14.
菜地氮肥用量与N2O排放的关系及硝化抑制剂效果   总被引:5,自引:0,他引:5  
熊舞  夏永秋  颜晓元  周伟 《土壤学报》2013,50(4):743-751
通过连续种植四季蔬菜近一年的大田试验,探究高施氮水平和低氮肥利用率的蔬菜生产系统中,N2O排放量与氮肥施用量之间的定量关系及其机理,并研究硝化抑制剂减少菜地N2O排放的效果.结果表明,在氮肥施用水平为N 0~1 733 kg hm-2a-1间,无论氮肥中是否添加硝化抑制剂,N2O总排放量与氮肥施用量均呈指数函数关系,即氮肥施用量高时,N2O排放率也高.在各氮肥水平处理下,硝化抑制剂均能降低N2O排放,抑制率为8.75% ~ 25.28%,且这种减排效果随着施氮量增加而增加.在氮肥施用量为N 300或400 kg hm-2季-1时,施用硝化抑制剂减少N2O排放所带来的效益略高于其成本,因此,即使不考虑氮肥利用率的提高等因素,施用硝化抑制剂仍是一种有利的选择.  相似文献   

15.
Yu  Qiaogang  Ye  Jing  Sun  Wanchun  Lin  Hui  Wang  Qiang  Ma  Junwei 《Journal of Soils and Sediments》2021,21(2):1079-1088
Purpose

The objectives of this study were to evaluate the effects of long-term organic materials incorporation on the soil aggregate and density-based fractions, and associated soil carbon (C) and nitrogen (N) conversion in the rice fields.

Materials and methods

A long-term located experiment was conducted to study the effects of continuous application of organic materials (milk vetch, rice straw, and poultry manure) on the distribution characteristics of soil aggregate and density-based fraction, as well as its organic C and N, in rice fields. The soil aggregate was classified using the wet-sieving method. Light fraction (LF) and heavy fraction (HF) were classified according to density fractionation. Aggregate organic C (AC) and total N (AN), LF organic C (LFC) and N (LFN), and HF organic C and N concentrations were measured by using the Elementar Vario ISOTOPE elemental analyzer.

Results and discussion

Application of organic materials increased the aggregate mass proportion of 2–0.25 mm (by 4.9–12.6%) and 0.25–0.053 mm (by 27.5–40.7%) fraction and its AC and AN concentration. The soil aggregate particulate organic C and total N were greatly improved with organic materials application. Furthermore, organic material had more obvious effect on the soil C and N in the LF than HF, which improved the LF particulate mass proportions by 75.1–177.0%, LFC by 51.7–68.4%, and LFN by 14.2–111.2%, respectively. Poultry manure had the greatest effect on increasing the AC, LFC, AN, and LFN, followed by milk vetch and rice straw.

Conclusions

Milk vetch, rice straw, and poultry manure could effectively increase the soil intermediate aggregate and LF proportion, and stimulate the stabilization and fixation of C and N in rice fields. It is an effective agricultural practice by applying organic material to improve soil fertility and sustaining high crop productivity. The increases of intermediate aggregate and associated C and N may be the main factor for soil C and N sequestration under continual application of organic materials.

  相似文献   

16.
We examined the effect of seed nitrogen content on the rates of germination, emergence, and establishment of rice plants. Several seed lots with various nitrogen contents were obtained from the parent plants grown under 3 planting densities and 4 rates of nitrogen application. There was a clear negative correlation between the seed nitrogen content and germination time (R =0.88), whereas the correlation between the seed dry weight and germination time was very low (R=0.23). The seed lot with a high nitrogen content absorbed water faster than the seed lot with a low nitrogen content, especially on the first day after soaking, and also showed a faster emergence, exsertion of the fourth leave, and a more uniform germination. Moreover, the increase of seed nitrogen content as well as the prolongation of soaking time resulted in a uniform emergence. Therefore, seed vigor is likely to be enhanced by the increase of seed nitrogen content, which may be achieved by an adequate application of a large amount of nitrogen to parent plants. Consequently, it may be possible to improve and stabilize the establishment of directly sown rice plants by the sowing of vigorous seeds with a high nitrogen content.  相似文献   

17.
Field observations indicate a long‐term decrease in crop uptake of N derived from soil organic matter under continuous production of irrigated lowland rice (Oryza sativa L.). Decreased availability has been associated with an accumulation of phenolic lignin residues in soil organic matter, which can chemically bind N. To evaluate the hypothesis that the decrease in N availability results primarily from anaerobic decomposition of incorporated crop residues, 15N‐labelled fertilizer was applied three times during one growing season in a field study that compared anaerobic decomposition with aerobic decomposition for annual rotations of rice (Oryza sativa L.)–rice and rice–maize (Zea mays L.). Contents of 15N and total N during the growing season were measured in humic fractions and total soil organic matter. Results indicated an inhibition of N mineralization for the rice–rice rotation with anaerobic decomposition of crop residues, both for 15N that was immobilized after application and for total N. The inhibition was strongest for 15N that was applied at planting. It became more evident as the season progressed and reached significant levels during mid‐season stages of plant growth when crop demand for N peaks. These results were clearest for a young, phenolic‐rich humic fraction that was active in 15N immobilization and remineralization. Comparable but less significant trends were evident for a more recalcitrant humic fraction and for soil organic matter. Trends in crop‐N uptake associated the combination of rice–rice rotation and anaerobic decomposition with inhibited uptake of soil organic N but uninhibited uptake of fertilizer N. Increased aeration of rice soils through aerobic decomposition of crop residues or crop rotation is a promising management technique for improving soil N supply in lowland rice cropping.  相似文献   

18.
【目的】催芽肥和促苗肥的合理施用是保障再生稻高产优质的重要途径,明确再生稻氮肥运筹方式及催芽氮肥适宜用量,对提高再生稻产量和氮肥利用率、优化再生稻米品质具有重要意义。【方法】本研究采用多年田间试验,以深两优5814为材料,设置5个再生季氮肥(N)处理:不施氮肥(N0-0);催芽肥60 kg/hm2 (N60-0)、促苗肥60 kg/hm2 (N0-60)、催芽肥和促苗肥各60 kg/hm2 (N60-60)、催芽肥和促苗肥分别为120、60 kg/hm2 (N120-60)。【结果】3年试验产量存在较大差异,但同一年份的再生稻施氮处理均显示了显著的增产效果,N60-0、N0-60和N60-60处理分别较N0-0平均增产35.8%、40.9%和67.4%。催芽肥和促苗肥配施通过提高有效穗数和每穗粒数进一步提高再生稻产量。随催芽氮肥用量的增加,产量呈先升高后平台的趋势。适宜的催芽氮肥用量和促苗肥配施促进了再生芽的萌发、形成和生长发育,显著增加了倒2节和倒3节(尤其是倒3节)的有效穗数和每穗粒数。养分吸收...  相似文献   

19.
  【目的】  探究实现水稻高产、优质和氮肥高效的密度与施氮量协同组合。  【方法】  于2018—2019年,在黑龙江省五常市龙凤山乡辉煌村进行田间试验。采用裂区试验方法,以‘五优稻4号’为供试品种。以密度为主区,设置15穴/m2 (D1)和24穴/m2 (D2);以施氮量为副区,设施氮(N)量为0、75、105、135 kg/hm2 4个水平,分别表示为N0、N75、N105、N135处理。在水稻成熟期,测定了植株地上部干物重、稻谷产量、精米产量、精米率、蛋白质含量、直链淀粉含量、食味值等指标;比较了稻谷产量与精米产量确定的施氮量差异。  【结果】  在D1、D2两个密度下,随着施氮量的增加,稻谷产量、地上部干物重、精米产量都呈先升高后降低的趋势,均在N105达到最大值。除D1密度下N105处理的稻谷产量与N135处理差异不显著外,其余均显著高于其他处理,而N135处理的稻谷产量与N75处理无显著差异,但2018年地上部干物重却显著高于N75处理。随着施氮量的提高,精米蛋白质含量呈现增加趋势,精米率和食味值却呈降低趋势。与N0相比,N135处理精米蛋白质含量平均提高了7.58%,精米率和食味值分别平均降低了8.81%和10.24%。N105处理的氮素回收率显著高于N75和N135处理,农学效率、氮肥生理利用率和偏生产力均显著高于N135处理。D2密度下精米蛋白质含量低于D1密度处理,而精米率和食味品质高于D1密度处理,D2密度下的稻谷产量、氮积累量和精米产量均高于D1密度处理,氮积累量和氮肥偏生产力比D1处理平均提高了40.35%和 40.31%,两个密度间氮肥回收率、农学效率和氮肥生理利用率无明显差异。农户直接出售优质米使经济效益提高了7428元/hm2,D2密度使经济效益额外增加了4229元/hm2。施氮量与稻谷产量、精米产量均呈二次曲线关系,依据施氮量与稻谷产量效应函数,确定经济最佳施氮量为96.4~123.7 kg/hm2;依据施氮量与精米产量效应函数,确定的适宜施氮量为76.2~105.9 kg/hm2。  【结论】  适度密植(24穴/m2)有利于稻谷产量、氮素吸收量的提高,而不影响食味值和精米率。在本试验水稻适宜密植条件下,基于施氮量和精米产量效应函数确定的适宜施氮量为76.2~105.9 kg/hm2,该施氮量的确定方法有利于协同实现稻米高产优质和氮肥减施增效。  相似文献   

20.
Labelled 14C-acetate and 15N-(NH4)2SO4 were added to a clay soil in the laboratory to follow transformations of microbial C and N, A fungal population developed initially, reaching a maximum by day 5, then rapidly declined and was replaced by a population dominated by bacteria and actinomycetes. Soil samples containing doubly-labelled microorganisms and their metabolites were extracted by Na4P2O7, and the extracted material further separated with phenol.The highly labelled acid-soluble (fulvic acid) fraction of the Na4P2O7 extract contained extracellular metabolites of low molecular weight which were rapidly attacked and converted to new microbial biomass, metabolites, mineral N or CO2. Na4P2O7 also removed an acid-insoluble (humic acid) fraction of which up to 70 per cent of the labelled C and N could be removed by phenol. Attack of these recently synthesized extracellular materials was indicated by a rapid decline of Na4P2O7 extractable C and N during the growth of bacteria and actinomycetes.Following Na4P2O7 extraction, the residue was sonicated and peptized in water and the components of the microbial biomass were partitioned into sedimentation fractions by centrifugation. The components concentrated in the > 0.2 μm fraction, which were hypothesized as being cell wall components, were more resistant to attack than materials in the < 0.04 μm fraction. The materials in the latter fraction were thought to originate from cytoplasmic constituents. The labelled materials in the < 0.04 μm sized fraction, which accumulated as the fungal population developed, were utilized less rapidly by the developing bacterial population.Decomposition of the microbial population resulted in transfer of C and N through various sediment fractions. The organic fraction (considered to be cytoplasmic material and adsorbed extracellular metabolites) which became labelled as the bacterial population developed, was utilized less rapidly by the developing bacterial population than components removable by Na4P2O7. Evolution of 14CO2, production of microbial material and immobilization of N closely paralleled the incorporation and release of these elements from the fractions. The similarity of the behavior patterns of these elements suggested they were intimately associated within the soil microbial system studied. This demonstrated that N transformations were highly dependent on C transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号