首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
To investigate the effects of light on the accumulation of assimilate in rice seeds, ears were allowed to grow in darkness 10 d after their formation. The lipid content of rice bran on the 40th day increased by cultivation of ears in darkness whereas the dry weight and starch and sucrose contents of the rice seeds decreased. In the light, the triacylglyceride (TG) content of rice seeds was lowest on the 20th day but then increased continuously for the next 20 d, while the diacylglyceride (DG) content reached a maximum value on the 20th day. In darkness, in contrast, rice seeds showed a higher TG content, with a lower DG content and lower levels of other lipids on the 20th day compared with seeds exposed to light. These results suggest that the biosynthesis of starch and lipids in rice seeds is regulated by light.  相似文献   

2.
A combination of analytical techniques was used to examine and quantify seed compositional components such as protein, lipid, free sugars, isoflavones, and soyasaponins during soybean development and maturation in two Korean soybean cultivars. Protein accumulation was rapid during reproductive stages, while lipid content was only relatively moderately increased. The major carbohydrate saccarides sucrose and stachyose constantly increased during the reproductive stage. Previously published results suggest that the free sugar and lipid content reached their maximal concentrations at a relatively early stage of seed development and remain constant in comparison to other chemical components. The malonylglucosides were the predominant isoflavone form followed by the glucosides, acetyl glucosides, and aglycone forms. As soybean seed matures, total soyasaponin concentration was constantly decreased until the R8 stage. Soyasaponin beta(g) was the major soyasaponin in DDMP-conjugated group B soyasaponins, followed by the non-DDMP counterpart soyasaponin I and soyasaponin A1. The ratio of total isoflavone to total soyasaponin in the developing soybean increased from 0.06 to 1.31. Protein, lipid, and free sugar contents in the developing soybean seeds showed significant positive correlations with conjugated isoflavones and total isoflavone concentration, while the lipid contents showed a negative correlation with the isoflavone aglycone. Protein, lipid, and free sugar contents showed a negative correlation with total group A and B soyasaponins and total soyasaponins; however, only the soyasaponin A content was significantly negatively correlated with free sugar content. Total soyasaponin content was negatively correlated with isoflavone content (r = -0.828 at p < 0.01).  相似文献   

3.
The objective of the present study was to determine whether concentrations of different isoflavones (puerarin, genistein, genistin, daidzein, and daidzin) in shoots and roots of five selected soybean genotypes would respond the same or differently to red (650 nm peak transmittance) and far-red (750 nm peak transmittance) light treatments given under controlled environments. Levels of isoflavones (mg g(-1) dry weight biomass) present in seeds, control roots, and shoots and 10 day light-treated seedlings (light, dark, red, and far-red wavelengths) of soybean (Glycine max) were determined by high-performance liquid chromatography analysis in comparison with known isoflavone standards. Seeds of the five soybean genotypes studied consistently stored most of their isoflavones as glucosyl conjugates (e.g., daidzin, genistin, and puerarin). For the five soybean genotypes, isoflavone levels were lower in the seeds as compared with roots plus shoots of control, time zero (first true leaf stage) seedlings. Following 10 days of the respective light treatments, we found that (i) isoflavone levels were enhanced in dark-grown plants over light-grown plants for three of the five genotypes (a new finding) and the reverse occurred for a single genotype (a typical response of legumes) and (ii) generally, far-red end of day (EOD) light treatment enhanced total isoflavone levels in roots plus shoots over red EOD light treatment. Results from the present study show that phytochrome does appear to play a role in regulating isoflavone levels in developing soybean seedlings and that this influence by red/far-red-mediated phytochrome reactions is strongly dependent on the genotypes selected for study.  相似文献   

4.
张帆  周青 《中国农业气象》2010,31(2):240-243
为了探索酸雨胁迫对大豆萌发种子糖代谢动态的影响,试验采用蒸馏水浸泡大豆种子,再以pH2.5、4.5模拟酸雨(AR)处理大豆种子,考察不同强度AR胁迫对大豆萌发种子可溶性糖、还原性糖、蔗糖、淀粉及α、β-淀粉酶含量的影响。结果表明,第1天AR组的可溶性糖含量上升,第2天明显降低,随后稳定降低;AR胁迫下的第1天-第4天,还原糖含量维持较高水平,第3天-第5天呈下降趋势;pH2.5组在第2天-第5天蔗糖含量减少;AR胁迫的第2天-第4天淀粉含量降低;总体上,AR组的α-淀粉酶活性CK,但从第5天起pH2.5组的α-淀粉酶活性CK;β-淀粉酶活性在第1天-第6天高于或接近CK,pH2.5组在第7天低于CK。糖代谢各项指标和淀粉酶活性之间的关系表明,可溶性糖、还原糖、蔗糖含量变化幅度随AR胁迫强度增大而增加,淀粉含量变化与之相反;AR组对淀粉酶活性影响是导致萌发改变的内在因素之一。  相似文献   

5.
盖淑杰  吴美韩  张晓娟  李亚男  黎倩  彭露  周智  夏茂 《核农学报》2022,36(10):2084-2091
为探究远红光对植物生长的影响,采用“燃烧法+高温二次烧结”的方法制备了ZnGa2O4:Cr3+,Ge4+,Li+(ZGO:Cr3+,Ge4+,Li+)荧光粉,将自制的荧光粉材料涂覆在410 nm的蓝紫光LED芯片上,封装成发射主峰位于710 nm左右的LED远红光器件,并进一步组装成LED植物生长灯作为直接光源。以番茄(Solanum lycopersicum)品种红矮生为试材,白光(W)为对照(CK),设置3个处理:T1:红蓝组合光(1R1B)加远红光(光质比为3:1);T2:红蓝组合光(1R1B);T3:白光加远红光(光质比为3:1),研究红蓝组合光(1R1B)和远红光对番茄生理周期、农艺性状、光合色素和番茄果实主要品质的影响。结果表明,与CK相比,T1处理可显著缩短番茄生理周期,T1、T2和T3处理对番茄农艺性状中的株高有抑制作用。添加远红光降低了光合色素的含量,但提高了番茄果实中可溶性糖、番茄红素和维生素C的含量,特别是在红蓝组合光与远红光的共同作用下,可溶性糖含量提高效果最明显,达到CK的3.3倍。添加远红光能够促进维生素C和番茄红素含量增加;红蓝组合光则有利于番茄红素的积累。综上,采用ZGO:Cr3+,Ge4+,Li+远红光荧光粉激发型LED植物灯能调控番茄开花时间,缩短其生理周期,提高番茄果实品质。本研究结果为提高番茄以及其他园艺作物的品质提供了一种新的光照手段,具有广阔的应用前景。  相似文献   

6.
LED红蓝弱光照射保持樱桃番茄冷库贮藏品质   总被引:5,自引:4,他引:1  
为了探究单色光对番茄冷藏过程中品质的影响,开发樱桃番茄保鲜新技术,以绿熟期樱桃番茄(Lycopersicon esculentum Mill.)为试材,在4℃条件下分别采用发光二极管(LED,light emitting diode)红蓝单色弱光(30 lx)持续照射,研究LED红蓝单色弱光对樱桃番茄采后贮藏过程中感官和主要营养品质指标的影响。结果表明:研制的LED试验装置稳定可靠,红蓝单色光的发射光谱稳定,不因光照强度的变化而发生偏移。贮藏10 d以后LED红蓝光处理的樱桃番茄感官品质显著优于无光对照(P0.05),且LED红光处理好于蓝光处理(P0.05)。LED蓝光照射能较好地保持樱桃番茄维生素C含量(P0.05),但LED红光照射不利于维生素C含量的保持。LED红蓝单色弱光照射有利于促进樱桃番茄早期贮藏过程中的还原糖和可溶性总糖积累,显著抑制贮藏后期糖含量的下降(P0.05)。LED红蓝单色弱光照射处理还能显著延缓樱桃番茄贮藏过程中可溶性固形物下降(P0.05),提高樱桃番茄果实可滴定酸的含量,其中LED红光处理显著高于蓝光处理(P0.05)。贮藏20 d时,红光照射可显著促进番茄红素的合成,但贮藏过程中LED蓝光照射与对照差异不显著(P0.05)。综合来看,与对照(CK)相比,LED红蓝弱光(30 lx)照射有利于樱桃番茄4℃贮藏过程中感官和营养价值的保持,其中LED红色弱光照射处理效果较好。作为一种简便可行的物理保鲜方法,LED红蓝弱光持续照射处理在樱桃番茄采后营养品质调控方面具有应用潜力。  相似文献   

7.
Effect of pre-harvest continuous light with different red/blue ratio on photon flux density (R/B ratio) on reducing nitrate accumulation was studied by growing lettuce (Lactuca sativa L.) under continuous illumination delivered by light-emitting diodes (LEDs). Results show that nitrate concentration decreased by 1648.0–2061.1 mg kg?1 in leaf blade and 962.9–2090.3 mg kg?1 in petiole, accompanied by a dramatic increase in soluble sugar content. Compared with monochromatic red light treatment, the decrease in nitrate concentration and increase in soluble sugar content in lettuce under mixed red and blue light were more pronounced. The lowest nitrate concentration was observed in the treatment with R/B ratio of 4. It's concluded that pre-harvest exposure to 48?h continuous LED light could effectively reduce nitrate accumulation in lettuce and this process is strongly affected by R/B ratio of light. This study may provide new perspective for pre-harvest quality management of vegetable, especially in commercial leaf vegetable production under artificial lighting.  相似文献   

8.
The aim of present investigation has been to explore the effect of sulfur application on plant metabolism, seed yield and seed quality in soybean. The sulfur was supplied in different doses ranging as 1, 2, 4, 6 and 8 meq S L?1. Plant supplied with 4 meq S L?1 showed optimal growth. Plant growth and dry matter was reduced under sulfur deficiency (1 and 2 meq S L?1) and toxicity (6 and 8 meq S L?1). Application of sulfur increases the tissue sulfur and cysteine concentration in both leaves and seeds. The critical concentration for deficiency (CCD) and toxicity (CCT) of sulfur was observed 0.194 to 0.277% dry weight respectively. Pod yield and seed yield was also suppressed in sulfur deficiency and toxicity. In leaves sugar (reducing, non-reducing and total sugar) and starch was found to be accumulated while in seeds both were depleted under sulfur deficiency and toxicty. Seed storage proteins (albumins, globulins, glutelins and prolamins) were also reduced under sulfur stress. Thus, we conclude that sulfur deficiency and toxicity both affects the plant metabolism, yield and seed quality in terms of carbohydrates and storage proteins of soybean.  相似文献   

9.
为丰富花生种子特异启动子资源,本研究利用PCR技术在花生基因组中克隆了种子贮藏蛋白基因PSC32的启动子AHSSP1,利用半定量RT-PCR检测了PSC32基因表达模式,借助NewPLACE在线分析了AHSSP1序列中存在的顺式作用元件,并构建了AHSSP1驱动GUS报告基因的表达载体,经农杆菌转化获得转基因拟南芥,经GUS组织化学染色鉴定了该启动子的功能。结果表明,PSC32基因957 bp长的启动子AHSSP1序列具备种子特异表达启动子特有的3个RY REPEAT元件。半定量RT-PCR分析发现,PSC32基因在花生成熟种子中表达,而在饱果成熟期根、茎、叶片、花、入土前的果针、成熟种子的果壳中均不表达。GUS组织化学染色发现,转基因拟南芥成熟种子以及萌发种子的子叶、下胚轴和胚根均能够被染上蓝色;长出真叶后,子叶和下胚轴仍能被染色,而根和真叶不能被染上蓝色;成年期转基因拟南芥的叶片也不能被染上蓝色。而野生型拟南芥整个生长时期均不能被染上蓝色。以上现象说明AHSSP1是一个种子特异启动子。本研究丰富了花生种子特异启动子的资源,对花生籽仁品质改良或以花生籽仁作为"生物反应器"的研究具有重...  相似文献   

10.
The phytic acid (myo-inositol hexakisphosphate or InsP6) content of seed crops is important to their nutritional quality. Since it represents 75?±?10% of the total seed phosphorus (P), phytic acid is also important regarding the management of P in agricultural production. A low-phytate F5 line, No. T-2-250-4-20, was selected from the progeny of a cross between the low-phytate soybean line CX1834 and the Japanese commercial cultivar Tanbakuro. This line and its parents were grown in a field nursery, and the growth characteristics, phytate accumulation, and processing suitability for tofu were evaluated. At full maturity, the weight of seeds per plant of line T-2-250-4-20 was 5.2- and 1.3-fold higher than that of CX1834 and Tanbakuro, respectively. The amount of phytate-phosphorus as a percentage of the total P content in seeds was 23% in line T-2-250-4-20-34, 30% in CX1834, and 69% in Tanbakuro. No significant difference was observed among the three cultivars/lines in their seed magnesium (Mg), potassium (K), crude protein, and sugar. However, the calcium (Ca), crude fat and ash contents in seeds of line T-2-250-4-20-34 and Tanbakuro was lowered compared to that of CX1834. The breaking stress of tofu was estimated employing a rheometer with a decreasing concentration of the coagulant magnesium chloride (MgCl2), starting at 15.7?mmol?L?1. In tofu made from Tanbakuro, the concentration of MgCl2 required to achieve the maximum breaking stress was 12.6?mmol?L?1; however, it was 9.5?mmol?L?1 for tofu made from T-2-250-4-20-34 and CX1834. The tofu made from Tanbakuro was soft and broke at 6.3?mmol?L?1 MgCl2, but, in line T-2-250-4-20-34, harder tofu was made with lower MgCl2 concentrations. No difference was observed among the cultivars/lines in the SDS-PAGE patterns of protein in soymilk. These results indicate that we have developed a low-phytate soybean with adequate productivity, and confirmed that tofu made from the low-phytate T-2-250-4-20-34 soybean becomes coagulated and harder at a lower MgCl2 concentration than that from high-phytate soybean cultivars.  相似文献   

11.

The localization of metallothionein ( MT ) in the seeds and roots of soybean was investigated by immunohistochemistry. The germinating seeds at 2 hr, 1, 2, 3, 4 and 6 d including 1-mo root tips of soybean ( c.v. Toyosuzu ) with and without heavy metals ( Cu 400 μg Lor Zn 3 μg ml?1) treatment were used to demonstrate the localization of MT by the indirect immunoperoxidase technique using polyclonal rabbit antirat MT conjugated to ascaris as a primary antibody. Metallothionein was localized in the proliferating regions such as the embryo in seeds, and root and shoot apices of both the control and heavy metals-treated plants. The intensity of MT staining in the proliferating regions generally increased as the soybean seeds germinate. Starting at about 1 day after germination, MT was found in the veins and vascular bundles suggesting its translocation to other organs. Similar observation hold true in the case of plants treated with heavy metals. This means that heavy metals treatment had no effect on MT localization. However, the heavy metals-treated plants showed higher concentration of MT over the control with respect to the growth stage of soybean seeds. These indicate that MT found in soybean plays a physiological role in heavy metal transport, detoxification and cell division in a similar manner to mammalian MT.

  相似文献   

12.
Abstract

This study was carried out to evaluate the effect of long-term natural aging on germinability and several biochemical characteristics regarding antioxidative response of both dry and germinating two different clover (Trifolium repens and Trifolium pratense) seeds stored for 40 years. The percent germination of the seeds was monitored for 7 days. The activities of catalase, peroxidase, superoxide dismutase, lipid peroxidation, H2O2 levels, and phenolic matter content were tested on 0, 1st, 3rd, and 7th days of germination. On the 7th day of germination, the germination ratios of the old T. repens and T. pratense seeds were 32 and 17%, while freshly harvested seeds showed 99 and 96% germination on the 4th day, respectively. The long-term aging caused an important increase in lipid peroxidation levels of the old dry seeds. Total phenolic content was high in the old dry seeds of T. repens compared with those of T. pratense. Remarkably, the long-term aging caused an important decrease in H2O2 content and the activities of catalase and peroxidase enzymes, but an increase in activity of superoxide dismutase in both the old dry seeds. The decreases in germinability of the old legume seeds were well correlated with the increasing level of lipid peroxidation and the decreasing activities of peroxidase and catalase. During the germination of the legume seeds, a noticeable increase was determined only in peroxidase activity in two types of the old seeds, while catalase activity decreased. However, the other biochemical parameters studied did not significantly change between the germinating old seeds and their freshly harvested controls.  相似文献   

13.
氮肥用量对花生氮素吸收与分配的影响   总被引:2,自引:0,他引:2  
为明确花生氮素吸收与分配规律,以花育25号为试验材料进行土柱栽培试验,采用15N 示踪法研究氮肥用量对花生不同器官氮素同化吸收与积累分配的影响。结果表明,当施氮量超过90 kg·hm-2(N2)时,花生植株各器官干物质量及氮素积累量基本不再显著增加。籽仁干物重在3个施氮量(N1、N2、N3) 条件下分别较不施氮增加2.61%、5.32%和1.88%,且在施氮量90 kg·hm-2(N2)时最高,为19.00 g/株。同一施氮量条件下,花生不同器官15N 积累量表现为籽仁> 叶> 茎>果壳>根;在不同施氮量条件下,15N 在花生各器官积累量随施氮量增加而增加。N2增加了15N 在籽仁中的分配比例,降低了茎和叶片中的分配比例,促进氮素由营养器官向生殖器官转运,提高了15N 在籽仁中的积累量,其氮肥利用率分别较N1、N3和N4提高22.77%、17.56%和28.13%。综上,本试验条件下施用90 kg·hm-2氮素(N2)可提高花生籽仁干物重,增加氮素积累量和氮肥利用率。一元二次方程模拟结果表明,77.19 kg·hm-2为花生产量最高的最适施氮量。本研究结果为花生氮肥利用率及氮肥的合理施用提供了理论依据。  相似文献   

14.
试验在密闭植物工厂内进行,以0:00-12:00照射的白色LED光为基础光,在保证生菜正常生长的前提下以两种峰值波长的LED红外光(850nm和930nm)作为补充光,通过调节红外光补光的时间点使之与白光形成半重叠(S)、全重叠(O)、不重叠(N)3种模式,分别为Fr_(930)S、Fr_(850)S、Fr_(930)O、Fr_(850)O、Fr_(930)N、Fr_(850)N共6个处理,各处理白光及红外光的光强度、供光时长均一致,且处理间的耗电量也基本一致。通过测定各处理生菜生长及品质指标,以分析不同红外光对生菜的作用是否独立或依赖于基础光,以及在相同耗电量下红外光的最佳补光模式。结果表明:(1)同一峰值波长的红外光在不同补光模式下对生菜的生长和品质影响各异;而同一补光模式下,不同峰值波长红外光对生菜的生长及品质的影响也存在差异。(2)6个处理中,850nm红外光独立于白光补光时,生菜地上食用部分的鲜重最高;而生菜粗蛋白和可溶性糖含量均在850nm红外光半重叠模式下最高;930nm独立补光时生菜Vc含量最高,硝酸盐含量最低。因此,实际生产中,在耗能基本一致的前提下,可根据生产目的对红外光的种类及其相对于基础光的补光模式进行选择和调节。  相似文献   

15.
玉米/大豆带状套作可以充分利用光环境,提高单位土地面积物质产出。为探明玉米/大豆带状复合种植模式下不同空间配置对大豆冠层光环境、形态、产量及系统效益的影响,进而为大豆高产优质栽培提供依据,本研究选用半紧凑型(‘川单418’)和紧凑型(‘荣玉1210’)玉米品种与大豆带状套作,固定带宽为200 cm,玉米采用宽窄行种植,玉米窄行距设置3个处理:20 cm、40 cm、60 cm;并以单作大豆(SS)作为对照。分析透光率、形态、光合色素、荧光参数、生物量和系统产量的变化规律。结果表明:套作大豆冠层透光率、红光/远红光(R/FR)比值随玉米窄行距的增大而逐渐降低;套作下大豆茎粗、节数、茎干重和全叶干重均随玉米窄行距增大呈降低趋势,最大值出现在玉米窄行距20 cm处理下;与单作大豆相比,两个玉米品种下大豆茎粗、节数、茎干重和全叶干重均显著降低,而第2节间长和主茎长显著升高。套作下大豆叶片光合色素含量随玉米窄行距的增大而逐渐降低,各行距处理及不同玉米品种下套作的叶片光合色素含量均低于单作大豆。大豆叶片荧光参数Fv/Fm、NPQ、Fq''Fm''Fq''/Fv''随玉米窄行距的增大均呈先增大后减小的趋势,而Fo变化趋势与之相反。玉米收获后,大豆光环境得到改善并迅速恢复生长,套作大豆形态生理指标与单作差异减小,但由于前期玉米的遮荫,各套作处理间大豆产量差异仍显著。通过系统效益分析,在玉米窄行距40 cm处理下,套作系统综合产量最高,两玉米品种下玉米、大豆产量平均分别为8 559.52 kg·hm-2、1 717.60 kg·hm-2,土地当量比平均达1.57。本试验中大豆与两个株型玉米套作,大豆形态生理指标差异影响不显著。因此,选择紧凑或半紧凑玉米品种,适度缩小玉米窄行距可以显著改善带状套作大豆的生长环境,提高其生物量和产量。  相似文献   

16.
不同播期、密度、土壤含水量与旱地晚花生产量的关系试验结果表明:早播能缩短生育期,减轻秋旱对花生生育的影响,提高花生从花针期起的叶面积指数和干物质积累量,增加结荚数和果重,比晚播增产率达73.8%~176.7%,达到显著水平。种植密度从目前广西大面积生产上每m2下种30粒扩大到38粒,对花生也有一定的增产作用。其主要原因是扩大了绿叶面积指数,提高了群体的净同化总量和干物质积累量,增加总结果数和总饱果数。选择低地种植,可容纳较多的雨水,保水抗旱,增产作用较明显。  相似文献   

17.
禾本科与豆科作物间作具有显著的增氮作用。为探明玉米/大豆、玉米/花生间作模式的氮素吸收、氮营养竞争能力及豆科结瘤特性的变化,解释玉米与豆科间作体系的增氮效应,通过田间试验,设置玉米单作(MM)、大豆单作(SS)、玉米/大豆间作(MS)、花生单作(PP)、玉米/花生间作(MP)等5种种植模式,研究不同种植模式对作物氮素积累、氮营养竞争强弱及豆科结瘤固氮特性的调控作用。结果表明,与单作相比,间作显著降低玉米和大豆的氮素积累量,对花生的氮素积累量影响不显著。5种模式系统氮素积累总量表现为MS > SS > MP,PP和MM处理最低且差异不显著,MS处理比MP处理显著高21.8%。与MM处理相比,MS和MP处理的玉米氮素积累量分别降低20.5%和11.7%,其中MP处理籽粒、叶片和茎秆氮素积累量比MS处理高8.9%、21.2%和14.3%。与SS处理相比,MS处理的大豆氮素积累量降低28.5%,其中,中行、边行分别降低10.1%、15.4%。玉米相对大豆氮营养竞争比率表现为强(CRms>1),相对花生则表现为弱(CRmp<1)。与SS处理相比,五叶期MS处理的大豆根瘤数量显著增加,根瘤鲜重无显著差异,盛花期后根瘤数量和鲜重均显著降低;MS处理的大豆根瘤固氮酶活性均降低,且中行降低幅度更大。与PP处理相比,开花期MP处理的花生根瘤数量和鲜重均显著增加,下针期后均显著降低;MP处理的花生根瘤固氮酶活性均降低,且边行降低幅度更大。各间作模式作物的氮素积累量虽然降低,但间作模式的系统氮素积累量却显著高于各单作模式,两种间作模式中MS处理的氮素积累总量最高。  相似文献   

18.
Sunflower (Helianthus annuus L.) cv. Modern grown in refined sand at deficient (0.033 mg L‐1) boron (B) developed visible symptoms of low B accompanied by marked depression in growth, dry matter, tissue B, flower head size, and seed weight. The B deficient seeds showed a marked decrease in non‐reducing sugars and contents of oil and starch whereas in leaves reducing sugars accumulated. Except for slight increase in leaf B and flower size, resumption of sufficient B (0.33 mg L‐1) to B deficient plants from the day of anthesis could not appreciably alter the growth, dry matter, head size and seed weight of deficient plants. Apart from this, non‐reducing sugar content in seeds increased on resupplying B to deficient plants. A significant decrease in non‐reducing sugars and starch content in B sufficient seeds by withdrawing B from the day of anthesis indicate a specific role of B in production and deposition of reserve in the seeds of sunflower.  相似文献   

19.
Abstract

A time-course study examining the current photosynthate allocation of soybean (Glycine max [L.] Merr.) cv. Williams was conducted in relation to nodule initiation. Whole shoots were exposed to 14CO2 for 120 min and the distribution of radioactivity in each organ was determined. During the early stages of nodule formation (i.e. 4, 6 and 8 days after inoculation) the 14C distribution to the inoculated roots did not increase when compared with uninoculated control roots. In addition, the 14C respired by underground parts was similar in both the inoculated and the control roots. Eight days after inoculation, the accumulation of starch and sugar was similar in both inoculated and uninoculated plants. These results indicate that photosynthate allocation for nodule initiation does not increase markedly during the early stages of nodule formation. After the emergence of the nodules, photosynthate allocation to the inoculated roots gradually increased. In addition, the consumption of current photosynthate by the respiration of underground parts increased at day 12 after inoculation, but did not increase at day 8 after inoculation.  相似文献   

20.
Abstract

Applications of zinc (Zn) and copper (Cu) at excessive rates may result in phytotoxicity. Experiments were conducted with mixtures of soils that were similar except for their Zn and Cu levels. The critical toxicity levels (CTL) in the soils and plants for these elements were determined. Peanut (Arachis hypogaea L.), soybean [Glycine max (L.) Merr.], corn (Zea mays L.), and rice (Oryza sativa L.) were the crops grown. One soil mixture had Mehlich 3‐extractable Zn concentrations up to 300 mg dm‐3 with no corresponding increase in soil Cu; two soil mixtures had soil Zn concentrations up to 400 and 800 mg dm‐3 with a corresponding increase in soil Cu up to 20 and 25 mg dm‐3, respectively; and four soil mixtures had no increase in soil Zn, but had Mehlich 1‐extractable Cu concentrations from 6 to 286 mg kg‐1. Under a given set of greenhouse conditions, the estimated Mehlich 3‐extractable Zn CTL was 36 mg dm‐3 for peanut, 70 mg dm‐3 for soybean, between 160 and 320 mg dm‐3 for rice, and >300 mg dm‐3 for corn. No soil Cu CTL was apparent for peanut or soybean, but for corn it was 17 mg dm‐3 and for rice 13 mg dm‐3. With different greenhouse procedures and the Mehlich 1 extractant, the soil CTL for rice was only 4.4 mg kg‐1. Therefore, peanut and soybean were more sensitive to Zn toxicity, whereas corn and rice were more sensitive to Cu toxicity. Plant Zn CTL for peanut was 230 mg kg‐1, while that for soybean was 140 mg kg‐1. Copper appeared to be toxic to corn and rice at plant concentrations exceeding 20 mg kg‐1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号