首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soils of the Countesswells and Insch series incubated with 14C labelled glucose or plant materials have been separated into clay (< 2 μm), silt, (2–20 μm), fine sand (20–250 μm) and coarse sand (>250μm) fractions and the distribution of individual labelled and unlabelled sugars was determined in each fraction. Both soils contained about 10–15 per cent clay, 18–23 per cent silt and about 60 per cent fine and coarse sand. For all soil samples the concentrations of sugars were usually greatest in the clay, slightly less in the silt, with values in the sand fractions being five or ten times lower, except when fresh plant material was present. In 14C glucose amended Insch soil, 55 per cent of the radioactivity in sugars (predominantly hexoses) occurred in the clay, 36 per cent in the silt, 3 per cent in the fine sand and 6 per cent in the coarse sand after 28 days incubation. For the Countesswells soil the values were 55, 42, 2 and 1 per cent respectively. In 14C ryegrass amended soil before incubation. 77 per cent of the radioactivity in sugars (predominantly glucose, arabinose and xylose) was in the coarse sand. After one year's incubation this had fallen to 59 per cent. In soil amended with 14C cereal rye straw the distribution of radioactivity in sugars after four years incubation was: clay, 21 per cent; silt, 43 per cent; fine sand, 21 per cent; coarse sand, 4 per cent. These distributions were compared with that of the naturally occurring sugars: clay, 31–42 per cent; silt, 40–43 per cent; fine sand, 3–11 per cent; coarse sand, 12–20 per cent.  相似文献   

2.
MICROMORPHOLOGICAL QUANTIFICATION OF CLAY ILLUVIATION   总被引:2,自引:0,他引:2  
Three concepts are introduced to describe the extent of clay illuviation phenomena quantitatively for pedogenic interpretations: (1) the degree of clay illuviation per thin section or (sub)horizon, subdivided into 5 classes, ranging from negligible (< 0.3 per cent by vol.) to very strong (> 7 per cent by vol.) clay illuviation; (2) the degree of reworking of the illuviated clay, subdivided into 3 classes, ranging from weak (< 30 per cent reworking) to strong (> 70 per cent); (3) the profile clay illuviation index: the sum of products of clay illuviation percentage per (sub)horizon and horizon thickness (in cm). The index ranges from very low (< 50 per cent cm) to very high (> 700 per cent cm). A distinction was made between the profile index based on the in situ illuviation features only and that based on all the illuviation features.  相似文献   

3.
Four soils with 6, 12, 23 and 46% clay were fractionated according to particle size after incubation for 5–6 years with 14C labelled straw, hemicellulose or glucose: 6–23% of the 14C was still present and the amount increased with increasing content of fine particles. clay fractions contained 66–84% of the 14C and the silt fractions accounted for 4–19%. <2% was found in the sand fractions and 4–9% was water soluble. The distribution of the native C was: clay, 46–68%; silt, 20–31%; sand, 2–7%. The clay fractions had higher relative proportions of 14C than of native C, the reverse being true for the silt fractions. This distribution pattern was not directly related to soil clay content or to kind of organic amendment. The C enrichment factor of clay and silt fractions (per cent C in fraction/per cent C in whole soil) increased with decreasing fraction size for both native and 14C. However, clay enrichment factors were higher for 14C than for native C, whereas silt enrichment factors were lower. A soil (9% clay) that had been incubated in the field for 18 years with 14C labelled straw was also analysed. Labelled C content at sampling was 9% of the initial value. In contrast to the other soils the distribution of labelled and native C was similar in the clay and silt fractions, which contained 55% and 33% of the whole soil C, respectively. The results indicate that clay-bound organic matter may be important in mediumterm organic matter turnover, whereas silt-bound organic matter may participate in longer-term organic matter cycling.  相似文献   

4.
The mineralogical composition of clays (< 2μm) in representative profiles of all soil types of Israel was investigated. The soils were classified according to their clay mineral assemblages into three groups. I. Montmorillonitic soils. Montmorillonite is the dominant mineral and exceeds 65 per cent of the total minerals found; each of the other minerals comprises less than 15 per cent. 2. Montmorillonitic-kaolinitic soils. The soil clay fractions contain 50-60 per cent montmorillonite and 15-25 per cent kaolinite, generally adding up to more than 75 per cent of the clay fraction. 3. Montmorillonitic-calcitic soils. The clays contain more than 10 per cent calcite. Montmorillonite is the dominant clay mineral (except for one soil type, mountain rendzina, where calcite is dominant). The first and second assemblages are typical of the soils of the Mediterranean zone, whereas the soils of the desert zone are characterized by the third assemblage. The origin of montmorillonite, kaolinite, and illite, the three main clay minerals, was found to be detritic, as was the origin of palygorskite which was mainly found in the calcite rich soils of the desert zone. The cation exchange capacity of montmorillonite seems to be higher under higher precipitation. Montmorillonite content and cation exchange capacity of the clays were found to be highly correlated. The carbonate content of the clay fraction and the amount of carbonate in the soil were also highly correlated.  相似文献   

5.
The mineralogical composition and retention properties for radioisotopes (20Sr and 137Cs) of soils developed in five basalt flows of age varying from 6000 years to about four million years occurring in western Victoria were investigated. The trend of mineral weathering has been almost exclusively to amorphous material, kaolinite-plus-halloysite, and chlorite, the more soluble products of weathering having been removed. The most significant changes in clay mineralogical composition with time are the progressive decrease in the Si02/Al2O3 molar ratio of the amorphous material in the clay fraction of the surface horizons, from an initial value of approximately 4 to values of approximately 2, and the progressive increase in the amount of kaolinite-plus-halloysite, both in the topsoil and at depth, with age of the basalt flow. The amount of kaolinite plus halloysite increases from approximately 20 per cent of the clay of soil developed in the basalt flow 6000 years old to approximately 50 per cent of that of soil in basalt about four million years old. Evidence for the presence of halloysite was obtained by electron microscopy studies. The amorphous material and chlorite contents, each of which constitutes between 20 and 50 per cent of the clay fractions, decrease concurrently with the increase in kaolinite-plushalloysite content. Fixation of Sr by whole soil samples was controlled by the organic matter and free iron oxide contents rather than by the mineralogy of the samples. A high proportion of the added Cs was sorbed by whole soil samples. Much of the sorbed Cs was not readily replaced by CaCl, washings but was replaced in part by subsequent washing with NaCl of pH 5.3 and almost entirely by subsequent NH4Cl washings. Much of the Sr and Cs deposited on these soils by rainfall and dry fall-out would be sorbed; the ease of replacement suggests that these elements would be available for further movement through the food chain.  相似文献   

6.
Soil erosion and runoff were monitored from 1988 to 1990 on a Miamian soil (Typic Hapludalf) of 5-6 per cent slope using field runoff plots. Four treatments were studied: (i) disk-plough up and down the slope to 0.3 m depth (DP); (ii) disk-plough up and down the slope followed by a protective netting (PN); (iii) uncultivated fallow without any vegetation followed by surface soil removal (R); (iv) uncultivated fallow with natural vegetation followed by ploughing (F). Mean annual runoff losses were 6, 114 and 128 mm, or 4, 20 and 18 per cent of the rainfall, and mean annual soil losses were 1.2, 85.0 and 64.0 Mg ha−1 in 1988, 1989 and 1990, respectively. Mean runoff amounts were 26, 69, 116 and 118mm and mean annual soil losses were 0.4, 23.2, 58.6 and 118 Mg ha−1 for the F, PN, DP and R treatments, respectively. In comparison with DP, PN decreased annual runoff by 40.3 per cent and annual soil loss by 79.5 per cent. The high mean soil loss for the R treatment was due to erosion following soil removal. An additional 2920 Mg ha−1 of surface soil was removed from the R treatment in May 1990. The F treatment reduced runoff by 78, 77 and 62 per cent and reduced soil loss by 99.7, 99.4 and 98.4 per cent compared with the R, DP and PN treatments, respectively. Mean losses of K, Ca, Mg and P were 1.3, 4, 1 and 01 kg ha−1, respectively for F, 3, 16, 5 and 0.3kg ha−1, respectively, for PN, 5, 31, 1 and 0.6kg ha−1, respectively, for DP, and 3, 32, 12 and 0.4 kg ha−1, respectively, for R. Soil and nutrient losses for each treatment were in the order R > DP > PN > F. The soil organic carbon (SOC) content was significantly affected by soil erosion and management treatments, and ranged from 0.98 per cent for the R treatment to 2.3 per cent for the F treatment. Soil surface removal for the R treatment in 1990 reduced water-stable aggregates (WSA) by 9.0 per cent, SOC by 0.6 per cent, and clay content of the uppermost 0-50 mm depth by about 7.0 per cent. Mean total porosity (ft) ranged from 0.43 for the F to 0.52 for the DP treatment. Cumulative infiltration for 3h ranged from 13 cm for R to 34cm for PN, with corresponding infiltration rates of 4 cm h−1 and 13 cm h−1, respectively. Regardless of the treatment, there were also temporal changes in soil properties. In comparison with 1988, measurements made in 1990 showed a significant decrease in WSA of 21.3 per cent, an increase in clay content of 2.8 per cent, and a decrease in SOC of 0.39 per cent. Runoff and soil losses were significantly correlated with the mean weight diameter (MWD), SOC, bulk density (pb) and available water capacity (AWC). Plant height measured 8 weeks after planting (WAP) for the R treatment was reduced by 33.3 per cent, 33.0 per cent and 29.0 per cent compared withh DP, PN and F, respectively. Nitrogen uptake by maize plants (Zea mays L.) 10 WAP for the R treatment was lower by 15 per cent, 8 per cent, and 6 per cent compared with the DP, PN and F treatments, respectively, while P uptake was lower by 33 per cent, 32 per cent and 29 per cent, respectively, compared with the same treatments. Grain yield was 9.78 Mg ha−1 for PN, 9.76 Mg ha−1 for DP, 8.64 Mg ha−1 for F and 6.60 Mg ha−1 for R during the 1990 crop season. Grain yield was reduced by about 32.4 per cent in the R treatment compared with the PN treatment, representing a maize grain yield reduction of 158 kg ha−1 for each centimeter of soil lost.  相似文献   

7.
Assessments of the effects of deforestation, post-clearance tillage methods and farming systems treatments on soil properties were made from 1978 through 1987 on agricultural watersheds near Ibadan, southwestern Nigeria. These experiments were conducted in two phases: Phase I from 1978 through 1981 and Phase II from 1983 to 1987, with 1 year (1982) as a transition phase when all plots were sown with mucuna (Mucuna utilis). There were six treatments in Phase I involving combinations of land clearing and tillage methods: (1) manual clearing with no-till (MC-NT); (2) manual clearing with plough-till (MC-PT); (3) shear-blade clearing with no-till (SB-NT); (4) tree-pusher/root rake clearing with no-till (TP-NT); (5) tree-pusher/root-rake clearing with plough-till (TP-PT); (6) traditional farming (TF). The six treatments were replicated twice in a completely randomized design. The traditional treatment of Phase I was discontinued during Phase II. The five farming systems studied during Phase II with a no-till system in all treatments were: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) and (3) fallowing with Mucuna utilis on severely degraded and moderately degraded watersheds, respectively, for 1 year followed by maize-cowpea rotation for another; (4) and (5) ley farming involving establishment of pasture in the first year on severely and moderately degraded plots, respectively, controlled grazing in the second year, and growing maize (Zea mays)-cowpea (Vigna unguiculata) in the third year. All treatments, imposed on watersheds of 2–4 ha each, were replicated twice. The soil properties analyzed were particle size distribution, total aggregation and mean weight diameter of aggregates, soil bulk density, penetrometer resistance, water retention characteristics, infiltration capacity and saturated hydraulic conductivity. These properties were measured under the forest cover in 1978, and once every year during the dry season thereafter during Phases I and II. Prior to deforestation, mean soil bulk density was 0·72 Mg m−3 and 1·30 Mg m−3, soil penetration resistance was 32·4 KPa and 90·7 KPa, and mean weight diameter of aggregates was 3·7 mm and 3·2 mm for 0–5 cm and 5–10 cm depths, respectively. The infiltration rate was excessive (54–334 cm hr−1) and saturated hydraulic conductivity was rapid (166–499 cm hr−1) under the forest cover. Furthermore, water transmission properties varied significantly even over short distances of about 1 m. Deforestation and cultivation increased soil bulk density and penetration resistance but decreased mean weight diameter of aggregates. One year after deforestation in 1980, mean soil bulk density was 1·41 Mg m−3 for 0–5 cm depth and 1·58 Mg m−3 for 5–10 cm depth. Soil bulk density and penetration resistance were generally higher for NT than for PT methods, and the penetration resistance was extremely high in all treatments by 1985. During Phase II, soil bulk density was high during the grazing cycle of the ley farming treatment. Sand content at 0–5 cm depth increased and clay content decreased with cultivation duration. Soon after deforestation, saturated hydraulic conductivity and equilibrium infiltration rate in cleared and cultivated land declined to only 20–30 per cent of that under forest. Mean saturated hydraulic conductivity following deforestation was 46·0 cm hr−1 for 0–5 cm depth and 53·7 cm hr−1 for 5–10 cm depth. Further, infiltration rate declined with deforestation and cultivation duration in all cropping systems treatments. During Phase I, mean infiltration rate was 115·8 cm hr−1 under forest cover in 1978, 20·9 cm hr−1 in 1979, 17·4 cm hr−1 in 1980 and 20·9 cm hr−1 in 1981. During Phase II, mean infiltration rate was 8·5 cm hr−1 in 1982, 11·9 cm hr−1 in 1983, 11·0 cm hr−1 in 1984, 11·3 cm hr−1 in 1985 and 5·3 cm hr−1 in 1986. Infiltration rate was generally high in ley farming and mucuna fallowing treatments. Natural fallowing drastically improved the infiltration rate from 19·2 cm hr−1 in 1982 to 193·2 cm hr−1 in 1986, a ten-fold increase within 5 years of fallowing. High-energy soil water retention characteristics in Phase I were affected by those treatments that caused soil compaction by mechanized clearing and no-till systems. Soil water retention at 0·01 MPa potential in 1979 was 19·2 per cent (gravimetrics) for SB, 17·9 per cent for TP, 15·9 per cent for MC and 17·8 per cent for TF methods. With regards to tillage, soil water retention was 17·8 per cent for NT compared with 16·8 per cent for PT. During Phase II, water retention characteristics were not affected by the farming system treatments. Mean soil water retention (average of 4 years' data from 1982 to 1986) at 0·01 MPa for 0–5 cm depth was 16·6 per cent for alley cropping, 16·7 per cent for mucuna fallowing and 16·8 per cent for ley farming. Mean soil water retention for 1·5 MPa suction was 9·3 per cent for alley cropping, 8·7 per cent for mucuna fallowing, and 9·3 per cent for ley farming. Water retention at 1·5 MPa suction correlated with the clay and soil organic carbon content.  相似文献   

8.
14C-labelled cellulose was added to seven different soils containing silt + clay (particles < 0.02 mm) in amounts which varied from 8 to 75 per cent. The cellulose was allowed to decompose, and the amounts of labelled C transformed into metabolites hydrolyzable into amino acids were determined. The amounts of labelled amino acid C in the soils were proportional to their content of silt + clay. After 30 days of incubation labelled amino acid C remaining in the soil with the lowest content of silt + clay constituted 6 per cent of the carbon added in cellulose, as compared with 18 per cent in the soil with the highest content of silt + clay. These values had decreased to 5 and 13 per cent respectively after 2 years of incubation. The order between the soils in the content of labelled amino acid C established during the first month of incubation, was thus roughly maintained throughout the period of incubation. The biological half-life of the labelled C in amino acids varied in the seven soils during the last year of incubation from 3 to 8 years. The variation was, however, not related to the amount of silt + clay.n the soils had been incubated with the labelled material for 2 years, samples of the soils were exposed to “stress” treatments: air drying-rewetting; increased biological activity caused by addition of glucose, and exposure to chloroform vapour. The treatments resulted in an evolution of labelled C in CO, which was 5–10 times larger than the evolution from untreated samples. The increase in the CO2 evolution caused by the treatments in the different soils was, however, not related to the amount of silt + clay, and a high content of this material did not protect organic material against the effect of the treatments.is concluded that the silt + clay fraction ensures stabilization of amino acid metabolites produced during the period of intense biological activity that follows the addition of decomposable, energy rich material to the soil. The amount of amino acid metabolites stabilized increased with increasing concentration of silt + clay, but the rate of decay of the amino acid material during later stages was largely independent of the concentration of silt + clay.  相似文献   

9.
The effects of legume‐based soil management on soil dispersion were studied on an Alfisol between 1994 and 1995 in an experiment which was established in 1989 in southwestern Nigeria. The fallow systems, which constituted the main plots in the split‐plot experiment, included natural fallow, Pueraria phaseoloides (Roxb.) Benth, and Leucaena leucocephala Lam de Wit. The subplots were 25, 33, 50 and 100 per cent cropping intensities. Apart from indices of soil dispersion such as water‐dispersible clay and dispersion ratio, the fractal theory was applied to describe the fragmentation of soil aggregates less than 4 mm under the systems and cropping intensities. Although water dispersible clay was less than 60 g kg−1 in the 0–15 cm soil depth because it was inherently low in clay content, the soil dispersion ratio was generally above 50 per cent. Also, the fractal dimensions, which ranged between 2.75 and 2.89, were similar among the fallow systems with cropping intensities for the surface soil. However, the interaction of slope position with season caused significant differences in fractal parameters, suggesting that the processes of soil degradation were different for the upper and lower slopes even with similar microaggregate distribution. The soil was inherently vulnerable to soil dispersion, although, the fallow management systems with less than 100 per cent cropping intensity would maintain soil structure at similar level as the forest. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Uniformly labeled 14C-yeast was fed to woodlice and soil microorganisms together and independently. Mineralization was more rapid and extensive in treatments in which both groups were present. Two days after a single feed of the labeled yeast to freshly-collected or wood-reared animals, approximately 12 per cent of the 14C had been respired, 28 per cent excreted, 44 per cent assimilated, and 15 per cent unaccounted for. Yeast-reared animals were 6.6 per cent less efficient in assimilating the labeled food. After 26 days, maintenance consumption had resulted in dissipation of 65.8 per cent of the assimilated label, with almost 90 per cent of this amount eliminated as CO2 and 10 per cent excreted. The elimination rate dropped from 6.8 per cent of the assimilated label per day to 0.6 per cent over the 1 month period following the single feeding of 14C. Three-quarters of the labeled faecal material excreted by the woodlice was mineralized by the soil microogranisms within 1 month; however, the rate of degradation of the faeces was significantly slower than was the rate of degradation of the labeled yeast. The 14C method appeared to give high recoveries of label and reproducible results.  相似文献   

11.
Hydrological and water-quality measurements were made on a 44·3 ha watershed under forest cover and following deforestation and conversion to an agricultural land-use. Under secondary tropical rainforest, water yield ranged from 2·2 per cent to 3·1 per cent of annual rainfall. Deforestation of 7 per cent of the watershed area increased water yield to 7·0 per cent of annual rainfall. Baseflow increased with deforestation, and increased progressively with time after deforestation. It was 5·1 per cent of annual rainfall in 1979, 15·1 per cent in 1980, 16·4 per cent in 1981 and 17·9 per cent in 1982. In comparison, surface flow was 4·5 per cent in 1979 and 6·2 per cent in 1980, but decreased to 2·3 per cent in 1981 and 2·4 per cent in 1982. Total water yield following deforestation and conversion to agricultural land-use ranged from 9·6 per cent to 21·3 per cent of the annual rainfall received. The dry season flow decreased with time as the dry season progressed, but increased over the years following deforestation. Surface runoff during the rainy season depended on ground cover and soil quality. The extent and severity of soil degradation affected the dynamics of surface flow. Because of actively growing crops, plant nutrient concentrations in surface runoff were low. Forested lysimeters had higher seepage losses than cropped lysimeters, and the water-use efficiency was 1·9–3·6 kg ha−1 mm−1 for cowpeas compared with 6·1–11·0 kg ha−1 mm−1 for maize. The delivery ratio was high immediately after deforestation and decreased to a steady value of about 3·2 per cent within 7 years. The data show five distinct phases of soil degradation in relation to generation of surface runoff. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Perennial ryegrass growing in monolith lysimeters and treated with 400 kg N ha-1 as calcium nitrate labelled with nitrogen-15 (10.5 atoms per cent), during one growing season recovered between 43 and 54 per cent of the fertilizer nitrogen. In the following year without further nitrogen additions 4.6–9.5 per cent was taken up, whilst in the fifth year the recovery was less than 1 per cent. The contribution of non-fertilizer sources of nitrogen to the total nitrogen taken up by the plants during the season that nitrogen was applied was estimated using tracer methods to be about 13–14 g N m-2 year-1. The estimate from measuring the nitrogen content of an unfertilized sward was 7 g N m-2 year-1. The residual effects of a fertilizer application are likely to be detectable for a period of between 6 and 9 years. Losses of nitrogen to drainage in the winter after application represented 2–5 per cent of the fertilizer applied, whilst in subsequent years the amounts did not exceed 0.1 per cent. Mean concentrations of nitrate ranged between 4 and 16 mg N I-1. Fertilizer contributed about 60–70 per cent of the total nitrogen lost in the first winter after nitrogen application and 45–60 per cent averaged over three winters.  相似文献   

13.
Soils play a key role in the global carbon cycle, and can be a source or a sink of atmospheric carbon (C). Thus, the effect of land use and management on soil C dynamics needs to be quantified. This study was conducted to assess: (1) the role of aggregation in enhancing soil organic carbon (SOC) and total soil nitrogen (TSN) concentrations for different mulch rates, (2) the association of SOC and TSN with different particle size fractions, and (3) the temporal changes in the SOC concentration within aggregate and particle size fractions with duration of mulching. Two experiments were initiated, one each in 1989 and 1996, on a Crosby silt loam (Aeric Ochraqualf or Stagnic Luvisol) in central Ohio. Mulch treatments were 0, 8, and 16 Mg ha−1 yr−1 without crop cultivation. Soil samples from 0–5 cm and 5–10 cm depths were obtained in November 2000; 4 and 11 years after initiating the experiments. Mulch rate significantly increased SOC and TSN concentrations in the 0–5 cm soil layer only. The variation in the SOC concentration attributed to the mulch rate was 41 per cent after 4 years of mulching and 52 per cent after 11 years of mulching. There were also differences in SOC and TSN concentrations among large aggregate size fractions, up to 2 mm size after 4 years and up to 0ċ5 mm after 11 years of mulching. There were also differences in SOC and TSN concentrations among particle size fractions. Variation in the SOC concentration in relation to particle size was attributed to clay by 45–51 per cent, silt by 34–36 per cent, and to sand fraction by 15–19 per cent. Bulk of the TSN (62–67 per cent) was associated with clay fraction and the rest was equally distributed between silt and sand fractions. The enrichment of SOC and TSN concentrations in the clay fraction increased with depth. The C:N ratio was not affected by the mulch rate, but differed significantly among particle size fractions; being in the order of sand >silt >clay. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The rate of respiration of radioactive CO2 from fasting Oniscus asellus L. during 7.5 days was qualitatively similar for ring-labeled and carboxyl-labeled benzoic acid. The rate of respiration of ring-labeled benzoic acid during 7 days was quantitatively similar for isopods that were fed throughout, and had received 0.09 μg benzoic 1-14C acid with or without a “load” of 30 μg of unlabeled benzoic acid. The “loaded” animals displayed a qualitative difference in respiring greater quantities of CO2 at night vs day.At 15°C in July, 24.4 per cent of the radioactivity from an injected dose of benzoic l-14C acid was respired over a 7 day period; 1.3 per cent was excreted; 1.9 per cent was present as carbonates; 5.4 per cent was ether-extractable, of which 48 per cent was chromatographically accountable as benzoic acid; and 56.7 per cent of the label was retained in the body.Ring-labeled carbon from benzoic acid was incorporated into the tissues of the isopod. An analysis of a hydrolyzate from the soluble cellular fraction showed at least six identifiable amino acids and four unidentifiable components.  相似文献   

15.
STUDIES ON SOIL COPPER   总被引:1,自引:0,他引:1  
A method based on that used by McAuliffe et al. (1948) for phosphorus was developed for determining isotopically exchangeable copper in soils using the radioisotope 64Cu. The authors are confident that, with a few exceptions, isotopic equilibrium in soil/solution systems is attained rapidly enough to overcome possible difficulties resulting from the short half-life of this isotope. For the twenty-four soils examined, amounts of isotopically exchangeable copper were found to be between 0.19 and 12-24 μg g-I and represented between 2 and 21 per cent of the total soil copper. A correlation test and an experiment involving fractionation of labelled soils both demonstrated that the bulk of the isotopically exchangeable copper was located in the organic-bound fraction. Not all copper specifically adsorbed by organic matter was readily exchangeable with 64Cu : for one sample of organic material examined only 20 per cent of the adsorbed copper was isotopically exchangeable after 24 hours equilibration. The corresponding figures for clay materials and oxide material were found to be between 75 and 60 per cent.  相似文献   

16.
Sixteen soils and 4 soil preparations were cropped exhaustively with ryegrass in the glasshouse and monocalcium phosphate potentials (½pCa+pH2PO4=1) were measured after each of 6 consecutive harvests. The amounts of phosphorus (Q) removed from the soils by ryegrass accounted for 95·1–96·6 per cent of the variance in 1 for 3 soils and 2 soil preparations (P < 0·001), for 88·4–93·7 Per cent of the variance for 6 soils and 2 soil preparations (0·001 < P < 0·01), for 71·6–82·6 per cent of the variance for 3 soils (0·01 < P < 0·05) and for insignificant amounts of the variance for 4 soils. Values of ΔIQ ranged from 7 × 10–4 to 431 × 10–4½pCa+pH2PO4/ppm P removed from soil. ΔIQ tended to decrease (i.e. the soils were more buffered) with increasing clay contents and with increasing amounts of NaHCO3-soluble P and to increase (i.e. the soils were less buffered) with increasing amounts of CaCO3. Variations in organic C did not significantly affect ΔIQ. The following equation accounts for 81 per cent of the variance in ΔIQ for all soils except those in equilibrium with octacalcium phosphate: ΔIQ× (104) = 225·9–4·17(% clay)+8·01(% CaCO3)–1·38(ppm NaHCO3-soluble P).  相似文献   

17.
Two dextrans of similar molecular weight (?2 × 106) but containing different structural linkages (B-215F: 95% α-1→ 6 and 5% α-1→ 3 and Polytran: 75% β-1→ 3 and 25% β-1→ 6) were adsorbed on Na-montmorillonite. Adsorption isotherms showed strong, H-2-type (high-affinity. Langmuir mono-layer adsorption) clay-dextran interactions for both polymers. Maximum adsorption of the Polytran dextran (60 mg100mg clay) was 33 per cent greater than that of the B-512F dextran (44.5 mg100mg clay) for comparative equilibrium systems. Stable clay-Polytran complexes containing up to 47% dextran were prepared. Excess Na2SO4 (0.1 m) did not affect the quantity of dextran adsorption by montmorillonite at the 15% dextran concentration. Acid hydrolysis and modified Pregl method-C analyses did not quantitatively recover adsorbed dextran from complexes containing more than 13 mg of dextran adsorbed per 100 mg of clay. Loss on ignition determinations were in good agreement with the difference measurements of dextran adsorption, suggesting that part of the C was expelled as something other than CO2 in the ignition determinations. The maximum adsorption segment for Polytran was much smaller than the individual molecule. In contrast, the maximum adsorption segment for the B-512F dextran appeared to be the same magnitude as the individual polymer molecule. Adsorption segment length was regarded as a manifestation of the relative proportions of primary and secondary alcohol groups of the molecules.  相似文献   

18.
This study evaluates surface runoff generation and soil erosion rates for a small watershed (the Keleta Watershed) in the Awash River basin of Ethiopia by using the Soil and Water Assessment Tool (SWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. The simulated surface runoff closely matched with observed data (derived by hydrograph separation). Surface runoff generation was generally high in parts of the watershed characterized by heavy clay soils with low infiltration capacity, agricultural land use and slope gradients of over 25 per cent. The estimated soil loss rates were also realistic compared to what can be observed in the field and results from previous studies. The long‐term average soil loss was estimated at 4·3 t ha−1 y−1; most of the area of the watershed (∼80 per cent) was predicted to suffer from a low or moderate erosion risk (<8 t ha−1 y−1), and only in ∼1·2 per cent of the watershed was soil erosion estimated to exceed 12 t ha−1 y−1. Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the watershed was divided into four priority categories for conservation intervention. The study demonstrates that the SWAT model provides a useful tool for soil erosion assessment from watersheds and facilitates planning for a sustainable land management in Ethiopia. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Summary Soil texture affects pore space, and bacterial and protozoan populations in soil. In the present study we tested the hypothesis that bacteria are more protected from protozoan predation in fine-textured soils than in coarse-textured soils because they have a larger volume of protected pore space available to them. The experiment consisted of three sterilized Orthic Black Chernozemic soils (silty clay, clay loam, and sandy loam) inoculated with bacteria, two treatments (with and without protozoa), and five sampling dates. The soils were amended with glucose and mineral N on day 0. On day 4 bacterial numbers in all three soils were approximately 3×109 g–1 soil. The greatest reduction in bacteria due to protozoan grazing occurred between day 4 and day 7. Compared to the treatment without protozoa, bacteria in the treatment with protozoa were reduced by 68, 50, and 75% in the silty clay, clay loam, and sandy loam, respectively. On day 4, 2 days after the protozoan inoculation, all protozoa were active. The numbers were 10330, 4760, and 15 380 g–1 soil for the silty clay, clay loam, and sandy loam, respectively. Between day 4 and day 7, the period of greatest bacterial decline, total protozoa increased greatly to 150480, 96160, and 192100 g–1 soil for the three soils, respectively. Most protozoa encysted by day 7. In all soils the addition of protozoa significantly increased CO2–C evolution per g soil relative to the treatment without protozoa. Our results support the hypothesis that bacteria are more protected from protozoan predation in fine-textured soils than in coarse-textured soils.  相似文献   

20.
Food and fodder shortage in arid and semi‐arid regions force farmers to use marginal quality water for meeting the water requirement of crops which result in low quality, reduced production and an adverse impact on soil properties. A field study on loamy‐sand (Hyperthermic Typic Ustipsamments) saline soil was conducted during 1999–2001 at Central Institute for Research on Buffaloes, Hisar. This involved assessment of effects of conjunctive use of saline water, EC = 4·6–7·4 dSm−1, SAR = 14–22 ((mmol−1)½ with good quality water on five fodder crop rotations: oat‐sorghum (Avena sativa‐Sorghum bicolor), rye grass–sorghum (Loleum rigidumSorghum bicolor), Egyptian clover—sorghum (Trifoleum alexandrinumSorghum bicolor), Persian clover—sorghum (Trifoleum resupinatumSorghum bicolor) and Indian clover–sorghum (Melilotus indicaSorghum bicolor) and certain soil properties associated with it. Leguminous winter fodder crops were more sensitive to poor quality water use. Reductions in fodder yield with use of saline water alone throughout season were 85, 68, 54, 42, 36 and 26 per cent in Indian clover, Egyptian clover, Persian clover, oat, rye grass and sorghum respectively as compared to good quality water. Leguminous fodder crops produced protein rich (12–14 per cent) and low fibre (18–20 per cent) fodder as compared to poor quality grassy fodder under good quality water irrigation but their quality deteriorated when saline water was used. These leguminous crops accumulated proportionately higher Na+ (1·58 per cent) resulting in adverse impact on their growth as compared to grassy fodder crops. Higher soil salinity (12·2 dSm−1), SAR = 20 (mmol−1)½ was recorded with saline water irrigation; and slight adverse impact was noticed on infiltration rate and contents of water dispersible clay. Alternate cyclic use of canal and saline water could be an option for fodder production under such conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号