首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Andosols developed on basaltic material are naturally rich in metals. Organic matter and allophane, the key colloids of these soils, have a strong affinity for trace metals, but are intimately mixed so that speciation of trace metal is difficult to determine. We used three complementary approaches, namely physical fractionation, chemical extraction and potentiometric measurement, to distinguish them. Physical particle-size separations and chemical selective dissolution of allophanes and organic matter were combined to demonstrate relations between the occurrence of colloids and contents of Cu and Zn in an andic B horizon. About 22% of total soil Cu and 7% of total soil Zn were present in the < 5-μm fraction, associated with organic or amorphous mineral constituents. To support this association further, the affinity of soil colloids for Cu and Zn in a mimicked system was demonstrated. An Al-rich allophane was synthesized, and a portion of the organic matter was extracted from the clay fraction, and their reactivities towards Cu2+ or Zn2+ were studied by potentiometry. The two metallic cations displayed specific affinity towards allophane or soluble organic matter. Furthermore, the behaviour of copper and zinc in the ternary system, allophane + soluble organic matter + trace element, revealed a synergy in the surface complexation. The use of these three speciation approaches highlighted the linkage between metals and constituents, and showed how important the colloidal constituents are in the behaviour of Cu and Zn in Andosols.  相似文献   

2.
Abstract

Properties and classification of four selected volcanic ash soils from Abashiri, Hokkaido were studied and the transition of Andisols to Mollisols was discussed. Two of the four pedons (Brown Andosol and Cumulic Andosol)1 showed morphological, clay mineralogical, physical, and chemical properties common to most Andisols in Japan. However, the properties of the other two pedons (Acid Brown Forest soil and Brown Forest soil)1 were considerably different from those of common Andisols in Japan. It was found that the changes in the andic soil properties or transition of Andisols to Mollisols was closely related to the progression of clay weathering, mainly the transformation of noncrystalline clay materials to halloysite. One of the four pedons (Brown Forest soil)1had the clay fraction dominated by halloysite from the uppermost horizon down to the bottom of the profile and satisfied both andic and mollic requirements. Thus we concluded that the pedon is a transitional soil between Andisols and Mollisols and that the transition is closely related to the duration of surface weathering under relatively weak leaching conditions. The four pedons were classified according to the Andisol Proposal (Leamy et al. 1988, New Zealand Soil Bureau) as follows:

Pedon 1: Medial, amorphic (allophane/imogolite), frigid Typic Hapludand (Brown Andosol).1 Pedon 2: Medial, amorphic (allophane/imogolite), frigid Typic Melanudand (Cumulic Andosol).1 Pedon 3: Medial, amorphic (allophane/ imogolite), over kandic, frigid Typic Melanudand (Acid Brown Forest soil).1 Pedon 4: Medial, kandic, frigid Typic Hapludand (Brown Forest soil).1  相似文献   

3.
Potato common scab induced by Streptomyces scabies is a serious constraint for potato-producing farmers and the incidence of potato scab depends on the soil chemical properties. We examined the chemical characteristics of conducive and suppressive soils to potato common scab with reference to the chemical properties of nonallophanic Andosols, recently incorporated into the classification system of cultivated soils in Japan. Allophanic Andosols with a ratio of pyrophosphate-extractable aluminum (Alp) to oxalate-extractable aluminum (Alo) of less than 0.3–0.4 were “conducive” soils with a high allophane content of more than 3%. On the other hand, nonallophanic Andosols with a Alp/Ala ratio higher than this critical value were “suppressive” soils, and their allophane content was less than 2%. The concentration of water-soluble aluminum (AI) was also a useful index for separating conducive from suppressive soils as well as the Alp/Ala value and allophane content. The suppressive soils showed a much higher concentration of water-soluble Al at pH 4.5 to 5.5 than the conducive soils. The high concentration of water-soluble Al may be responsible for the control of the incidence of potato common scab in Andosols.  相似文献   

4.
Recent studies with Andisols show that the carbon (C) stabilization capacity evolves with soil age relative to the evolution of the mineral phase. However, it is not clear how soil mineralogical changes during pedogenesis are related to the composition of soil organic matter (SOM) and 14C activity as an indicator for the mean residence time of soil organic matter (SOM). In the present study, we analyzed the contribution of allophane and metal–SOM complexes to soil C stabilization. Soil organic matter was analyzed with solid-state 13C nuclear magnetic resonance spectroscopy. Additionally, the soil was extracted with Na-pyrophosphate (Alp, Fep) and oxalate (Alo, Sio, and Feo). Results supported the hypothesis that allophane plays a key role for SOM stabilization in deep and oldest soil, while SOM stabilization by metal (Al and Fe) complexation is more important in the surface horizons and in younger soils. The metal/Cp ratio (Cp extracted in Na-pyrophosphate), soil pH, and radiocarbon age seemed to be important indicators for formation of SOM–metal complexes or allophane in top- and subsoils of Andisols. Changes in main mineral stabilization agents with soil age do not influence SOM composition. We suggest that the combination of several chemical parameters (Alp, Fep and Cp, metal/Cp ratio, and pH) which change through soil age controls SOM stabilization.  相似文献   

5.
The stabilization of organic matter in soil by interaction with aluminium (Al) or allophane is important in maintaining soil quality, and in retarding the decomposition of soil organic matter. Complexation of Al by soil organic matter may also ameliorate Al toxicity. Here we use 13C-NMR spectroscopy to assess the interaction of soil organic matter with both Al and allophane in two poorly drained podzols containing only trace amounts of iron. The 13C-NMR spectrum of the subsoil of the allophane-rich One Tree Point podzol shows an intense peak at 179 p.p.m., assigned to carbon in carboxylic acids. This peak shifts to 177 p.p.m. after removal of allophane (11% of the soil mass) by treatment with HF. We infer that the carboxyl groups in the organic matter are bonded to structural Al on the surface of allophane spherules. In the non-allophanic Te Kopuru podzol, on the other hand, the organic matter apparently interacts with Al ions in the soil solution. This soil also has more aromatic carbon and fewer carbons in carboxyl and carbohydrate structures than the allophanic sample. There is an indication that allophane stabilizes carbohydrate groups as well as carboxyl groups.  相似文献   

6.
Parent material and pumiceous alluvial soils, located in a tropical region of Mexico, were studied to supply information on soil suitability for agricultural production in the context of sustainable agriculture. In recent alluvial soils, an understanding of how soil characteristics vary with parent material and topography provides a basis for determining land utilization type, land suitability as well as land quality. The main objective of this study was to establish the relationship of soil properties to parent material in west Nayarit, Mexico. Field studies were initiated in 1993 by a request for technical assistance from the Comision Federal de Electricidad. The studied soils were derived from pumice that has been reworked and mixed with detrital material from other sources. We found that such soils have unique physical, chemical and mineralogical characteristics that are rarely found in soils derived from other parent materials. Data for two selected alluvial soil profiles are presented. These soils were developed on Holocene volcanogenic pumiceous alluvial river terraces and river floodplains, under current udic-isohyperthermic soil-climate conditions. The agronomic properties, tillage influences and fertilizer requirements of these soils have been studied extensively. To maximize their productivity and minimize deterioration, proper management must be based on an understanding of the unique physical, chemical and mineralogical properties. Results indicate that such soils have physical properties that provide a good environment for deep rooting and can supply the water necessary for vigorous plant growth. In both soils, water retention at 33 and 1500 kPa, particle surface area, calculated clay, cation exchange capacity, Al exchangeable percentage and P retention, and the occurrence of isotropic coatings on rock fragments and peds tend to increase in the presence of the large amounts of hydrolyzed pumice that are found in the 0.02–2.0 mm fraction. Scanning electron microscope–energy dispersive X-ray analyses demonstrate that the coatings dominantly consist of noncrystalline material, probably allophanic-like material as suggested by the Si/Al molar ratio of 1.0. Selective dissolution analysis reveals that these abundant noncrystalline materials consist of ferrihydrite and allophane with an atomic ratio (Alo−Alp)/Sio of approximately 1.4. Both ferrihydrite and allophane have very large specific surface area and absorptive capacity that make a significant contribution to the overall properties of these soils. X-ray diffraction analysis and transmission electron microscope observation show that the major group of crystalline clay minerals in the upper section of studied soils are tubular and spheroidal halloysite. These soils were classified as Vitrandic Udifluvents according to Soil Taxonomy.  相似文献   

7.
The aim of this study was to use nitrogen gas adsorption to study the complex surface properties of a wide range of Andosol Ah and Bw horizons; N2 gas adsorption not only provides specific surface area, SSA, but it also yields complementary information about micropore volume and hydrophilic and/or hydrophobic surface properties. Total SSAs were positively related to micropore SSA which was, in its turn, positively interrelated to the dimensionless parameter C of the Brunauer‐Emmett‐Teller (BET) equation (micropore N2 filling) and microporous allophane content. The more allophanic the Andosol horizon sample, the larger were its total, micropore and mesopore SSAs. On the other hand, strong negative exponential relationships were obtained between either total or micropore or mesopore SSA and soil organic carbon content, with a SSA threshold at an organic carbon content of c. 8–10%, the SSAs being extremely small at larger organic carbon content values. Both SSABET and CBET decreased non‐linearly as a function of the organic C/allophane ratio, with either a SSABET or a CBET threshold at an organic C/allophane ratio value of 3–5, above which both SSABET and CBET were very small (mostly the aluandic Andosol Ah horizons). The more the soil allophanes are assumed to be coated, the more hydrophobic the soil surfaces become and the smaller both SSABET and CBET become; nitrogen gas has a permanent quadrupole moment and therefore acts as a polar probe when surfaces are sufficiently hydrophobic. The antagonistic roles played by allophanes and organic matter in both the SSAs and the values of the dimensionless parameter C in the BET equation were also highlighted by (i) multiple linear regressions between the SSAs and both allophane and organic carbon contents and (ii) principal‐component analysis of SSABET, CBET and soil constituent (allophane, ferrihydrite and organic C) contents.  相似文献   

8.
Many scientists have attempted to discern the chemical composition and the structure of allophane (2, 4–6). Yoshinaga (7) presented the chemical composition of eighteen samples of pure allophane in detail, and concluded as follows: All samples consisted principally of silica, alumina, and water. The silica-alumina molecular ratio ranged from about 1.3 to 2. Molecular ratios of ignition loss (+H20) and total water (±H2O) to alumina were nearly constant, with the averages about 2.5 and 5.7, respectively. The chemical composition of soil allophane fell into a relatively narrow range, and the change in the percentage composition of the three major elements had a regularity.  相似文献   

9.
Can surface complexation constants for anions, drawn from the literature for reference oxides, be combined to describe competitive adsorption in a spodic B horizon sample containing the important adsorbent minerals proto‐imogolite allophane and ferrihydrite? To answer this and to derive complexation constants for the corresponding reference oxides, a CD‐MUSIC model was used, with arsenate as the sorbing ion. To minimize the interference from competing organic substances, a sample containing little organic matter was used. To describe the adsorption of added arsenate correctly, it was found that competitive interactions from sulphate, silicic acid and phosphate had to be considered. In the model, the specific surface area of singly coordinated AlOH groups of allophane, the sulphate surface complexation constant on allophane, and the total concentration of reactive silicic acid were fitted. All other parameters were fixed using reference oxide values. The results indicated that arsenate, phosphate and silicic acid formed stronger surface complexes on ferrihydrite than on gibbsite or allophane, whereas the reverse was true for sulphate. I conclude that the approach used should provide significant qualitative information on the competitive adsorptive interactions in soils. However, the approach may be impractical for routine simulations and predictions. This is partly due to the uncertainty of the assumption that the properties of allophane and ferrihydrite in real soils can be approximated by those of gibbsite and ferrihydrite synthesized in the laboratory. Another difficulty is that the adsorption of arsenate and phosphate might not reach equilibrium within the limited time of most experiments.  相似文献   

10.
It is important to study the rate determining processes of chemical weathering and soil formation in volcanic islands since a significant part of the carbon fixed by chemical weathering of silicates on Earth is fixed at the surface of volcanic islands. These soils are fertile and much of the river suspended matter delivered to the ocean stems from these islands. This study determines the factors that drive the pedogenesis of a Histic Andosol in Western Iceland. Soil solutions were extracted from the profile in the field, from undisturbed ex situ mesocosms and from repacked laboratory microcosms. Concentrations of measured and calculated inorganic species in the field and experimental soil solutions were used for thermodynamic and kinetic interpretation, and to calculate the weathering rates.

The main primary rock constituent of the 205 cm thick soil profile was basaltic glass, allophane content ranged from 2 to 22% and the soil carbon content ranged from 11 to 42%. Mean soil solution pH value ranged from 4 to 6 with the lowest value at 80 cm depth and highest between 150 to 205 cm. The high solute concentrations in soil solutions in the beginning of the microcosm weathering experiment declined faster for anions than cations. Under field conditions inorganic anions were supplied by marine and anthropogenic rather than pedogenic sources and hence these anions were subsequently leached out during the experimental duration when there was a limited input of anions through experimental precipitation. The factor, which defined the rate at which each ion was depleted from the exchange complex of the soil, decreased down the soil profile. The release sequence at 50 cm depth was Cl > Na > SO4 > F > Si. The Si and base cations experimental weathering rate when normalized to geographical surface area are similar to or lower than those measured from river catchments in Southwestern Iceland. The dissolved Al flux was much higher from the soil when compared to the river catchments.

Field and experimental soil solutions were all highly undersaturated with respect to basaltic glass. Field and mesocosm samples were supersaturated with respect to secondary allophane and imogolite, while samples from the microcosms were often undersaturated with respect to allophane and imogolite. Predicted dissolution rate was dictated by the soil solution aH+3/aAl3+ activity ratio but slowed down by up to 20% and 30% by decreasing undersaturation in field and mesocosms respectively. Predicted dissolution rates according to the aH+3/aAl3+ activity ratio increased up to factor of 7, 30 and 37 by speciating Al3+ with oxalate in field, mesocosms and microcosms respectively. Speciation with oxalate, which represents the maximum effect of the dissolved organic carbon (DOC) on dissolution rates, generally had more effect near the surface than at deep levels in the soil profile. This study shows that at fixed temperature, reactive surface area, and composition of the volcanic glass in the soil, the chemical weathering rates of Andosols are dictated by: 1) aeolian deposition rates and drainage, which affect the saturation state and the aH+3/aAl3+ activity ratio, 2) the production of organic anions within the soil, and 3) external supply of anions capable of complexing Al3+.  相似文献   


11.
Ferrihydrite occurs in soils undergoing rapid weathering, and in soils containing soluble silicate or organic anions which inhibit the formation of more crystalline iron oxides. Because of its very high specific surface area and adsorptive capacity (analogous to allophane), ferrihydrite can profoundly influence soil properties, even if present in only low concentrations. Ferrihydrite was recognised as a mineral by the International Mineralogical Association in 1975. Its structure and chemical formula, however, are not yet clearly understood. Most evidence to date indicates hexagonal-close-packed layers of O2′, OH, and H2O with Fe(III) occupying octahedral positions and giving a trigonal unit cell (a=0.508 nm; c=0.94 nm). Some samples appear to have only a partially ordered structure and uncertainty exists as to how to name such material. Natural ferrihydrites commonly contain up to about 9% Si and the role and location of silicate are subjects of active research. At concentrations greater than 5-10%, ferrihydrite in soils can usually be identified by X-ray diffraction. At lower concentrations, a combination of methods can be indicative. Acid-oxalate-extractable iron is a convenient and often useful indicator of the presence and quantity of ferrihydrite in a soil, though it cannot be regarded as a means of positive identification.  相似文献   

12.
Phosphate reactions with natural allophane, ferrihydrite and goethite   总被引:5,自引:0,他引:5  
The reactions of phosphate with natural samples of allophane, ferrihydrite, hematite and goethite were measured for up to 30 d. The amount of phosphate sorbed on allophane showed the biggest increase with time whereas the amount sorbed on goethite showed the least increase with time. The total amount of phosphate sorbed either at high levels of phosphate addition or after 10 d followed the order hematite < goethite < ferrihydrite < allophane and was probably related to the specific surface. Si was desorbed as phosphate was adsorbed on the minerals.
The reactions of phosphate on allophane involved rapid, strong adsorption, probably at defect sites, followed by weaker adsorption, followed, probably, by disruption of the allophane structure together with precipitation of aluminium phosphates. Previous suggestions either of diffusive penetration of phosphate into surfaces or about the formation of aluminium phosphate coatings, are unlikely to hold for allophane, if all the Al is at the surface and if the structure can be ruptured.
The reactions of phosphate with iron oxides involved a rapid, strong ligand exchange, followed by weaker ligand exchange, and, probably, by a relatively slow penetration at defect sites and pores. Highly crystalline goethite has virtually no slow reaction and therefore solid-state diffusion of phosphate does not readily occur. The extent of phosphate uptake during the slow penetration reactions probably depends on the degree of crystallinity or porosity of iron oxides.
The most reactive adsorbents, such as allophane, ferrihydrite and Al-humus complexes do not have planar surfaces, and this needs to be considered when modelling phosphate reactions.  相似文献   

13.
Gustafsson et al. in a recent paper in this Journal reported the effects of adding HCl, AlCl3 and Si(OH)4 on the pH and concentrations of Al and Si in 1:1 soil:solution systems at three different temperatures, using samples of soil from an allophanic Bs horizon. Contrary to their conclusions, their observations are compatible with Al in the soil solution being in equilibrium with a proto‐imogolite allophane; it is neither necessary nor even plausible to postulate a hypothetical Al hydroxide. Concentrations of 0.2–0.4 mm Si in the equilibrated solutions at pH 5 could arise from an amorphous silica, probably phytoliths. They cannot come from the allophane.  相似文献   

14.
FLUORIDE ADSORPTION BY ILLINOIS SOILS   总被引:8,自引:0,他引:8  
Fourteen surface and 6 subsurface horizons of Illinois soils adsorbed significant amounts of F? with release of OH?. At low concentrations, adsorption was described by both Langmuir and Freundlich isotherms. The calculated Langmuir adsorption capacities were related to pH, clay, organic carbon, and amorphous aluminum contents. Two soils with different gross chemical properties behaved in essentially the same manner, with adsorption maxima occuring between pH 5.5 and 6.5. The similarity between adsorption at different pH values for the soils and those for bauxite, allophane and synthesized ‘soil chlorite’, and the lack of adsorption maxima between pH 5.5 and 6.5 for pure kaolinite and montmorillonite, suggest that F? adsorption in the soils is due primarily to the presence of amorphous aluminum oxyhydroxides which are common weathering products in these soils.  相似文献   

15.
Surface chemical properties of soil colloids are the important factor affecting soil fertility and genesis.To provide scientific basis for soil genetic classification,promotion of soil fertility and reasonable fertilizqation,the specific surface area and electric charge of soil colloids in relation to clay minerals and organic matter are further discussed on the basis of the results obtained from the studies on surface chemical properties of soil colloids in five main soils of China.Results from the studies show that the effect of clay minerals and organic matter on the surface chemical properties of soil colloids is very complicated because the siloxane surface,hydrated oxide surface and organic matter surface do not exist separately,but they are always mixed together and influenced each other.The understanding of the relationship among clay minerals,organic matter and surface chemical properties of soil colloids depends upon further study of the relevant disciplines of soil science,especially the study on the mechanisms of organo-mineral complexes.  相似文献   

16.
Abstract

Allophanic top‐ and subsoils from the Mexican and Newzealand Central Volcanic Plateau, as well as a nonallophanic sandy loam soil, were sampled to study the impact of organic matter and allophane content on 2,4‐D fate. High sorption rates were found, especially in the two topsoils from Mexico and New Zealand, with distribution coefficient (K d ) obtained from displacement experiments in packed columns equal to 7.61 and 8.43 L kg?1 respectively. 2,4‐Dichlorophenoxyacetic acid transfer through the soil columns was found to be in chemical nonequilibrium and was well predicted using a two‐site sorption model. For the two allophanic top soils, K d obtained from batch was very different to the K d obtained from column experiments. Either the equilibrium could not be reached in batch or the two‐site model was not able to describe the wide range of sorption sites present in the highly reactive organic matter and allophane components.  相似文献   

17.
The presence of soils with andic properties on German territory has been suspected for decades and there are numerous reports of sites where they may potentially occur. Andic properties, however, are not adequately represented by the German soil‐classification system. The German taxonomic category “Lockerbraunerde” has not been revised or reconciled with international taxonomic categories since the year 1957, when it was initially proposed. With this review, we show that there are true Andosols of both the silandic (allophane‐containing) and the aluandic (Al‐Humus‐dominated) type in Germany and that their properties differ substantially from other soils which merely exhibit low bulk density. By (1) comparing soil carbon storage between some German Andosols, Chernozems, and nonandic Cambisols with particularly low bulk density and (2) elucidation of the differential pedogenetic pathways leading to Andosol formation, we further demonstrate that Andosols are important objects of study in research issues of contemporary interest. We propose that appropriate measures be taken to lay the foundations for the protection and conservation of these soils, because they are valuable as archives of natural history and provide opportunities to study unique soil processes.  相似文献   

18.
A contrasting occurrence of clay minerals was found within a soil profile which was derived from volcanic materials in the suburbs of Fukuoka-city, Northern Kyushu. The soil profile is located on an isolated terrace, and the morphological characteristics of the soil correspond exactly to Andosols, so-called Kuroboku soils or Humic Allophane soils.

The clay fraction of upper horizons of the soil consists largely of alumina-rich gel-like materials, gibbsite, and layer silicates such as chlorite and chloritevermiculite intergrades, while that of lower horizons is composed of allophane and gibbsite or halloysite. There was no positive indication of allophane in the upper horizons. Corresponding with the clay mineralogical composition, quartz is abundant in the fine sand fraction of the upper horizons, while the mineral is very scarce or none in the lower horizons, suggesting a close relation between the petrological nature of parent volcanic materials and the mineralogical composition of weathering products. The dominant clay mineral in the volcanic 1.10il might be dependent on the petrological nature of parent materials, and allophane is mostly formed from andesitic materials, and alumina-rich gel-like materials and layer silicates have come from quartz andesitic materials. Allophane would transform to gibbsite or halloysite according to weathering conditions, and aluminarich gel-like materials change to gibbsite under a well-drained condition.

The soil materials have been so greatly weathered that some horizons contain gibbsite of even more than 40 per cent or halloysite over 70 per cent. The morphology and mineralogy are quite similar to so-cailed “non-volcanic Kuroboku soils.”  相似文献   

19.
姜军  赵安珍  杨聪  朱大威  徐仁扣 《土壤》2011,43(6):987-992
利用采自江苏省农业科学院果园的旱地黄棕壤(对照)和由黄棕壤发育水耕20年和60年的水稻土,研究了土壤黏粒和粉粒的矿物组成,胶体和土体的化学性质随水耕年限的变化.粉粒的X-射线衍射图谱表明,3种供试土壤发育母质相似,胶体的矿物组成随水耕年限的变化不大.动电电位和表面负电荷的测定结果也表明,胶体表面化学性质未发生明显变化.随水耕年限增加,土壤黏粒含量降低,导致土体性质发生明显变化,土壤CEC和结构电荷量随水耕年限增加显著减少.  相似文献   

20.
Abstract

The clay mineralogy of seven Dystrandepts developed on basalts in Northland (New Zealand), the French Massif Central and Western Oregon (U.S.A.) was determined by selective dissolution—differential infrared spectroscopy in combination with chemical, X-ray diffrac tion, electron microscopic and thermogravimetric analyses. Of 14 soil samples, 6 from Northland and Cantal (French Massif Central) contained allophane and imogolite, whereas the remaining 8 did not. Allophane-like constituents and/or “alumina” were found in all the samples, and opaline silica was present in three A1 horizons. The contents of 2 : 1–2 : 1 : 1 layer silicates and their intergrades varied somewhat among the samples. Predominant volcanic glass shards in the Northland Dystrandepts and quartz in the Western Oregon Dystrandepts indicated that their parent materials were not restricted to basalt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号