首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Information on the input, distribution and fate of photosynthesized carbon (C) in plant–soil systems is essential for understanding their nutrient and C dynamics. Our objectives were to: 1) quantify the input to, and distribution of, photosynthesized C by rice into selected soil C pools by using a C14 continuous labelling technique and 2) determine the influence of the photosynthesized C input on the decomposition of native soil organic carbon (SOC) under laboratory conditions. The amounts of C14 in soil organic C (SOC14) were soil dependent, and ranged from 114.3 to 348.2 mg C kg−1, accounting for 0.73%–1.99% of total SOC after continuous labelling for 80 days. However, the mean SOC14 concentrations in unplanted soils (31.9–64.6 mg kg−1) were accounted for 21.5% of the rice-planted soils. The amounts of C14 in the dissolved organic C (DOC14) and in the microbial biomass C (MBC14), as percentages of SOC14, were 2.21%–3.54% and 9.72%–17.97%, respectively. The DOC14 and MBC14 were 6.72%–14.64% and 1.70%–7.67% of total DOC and MBC respectively after 80-d of rice growth. At 80-d of labelling, the SOC14 concentration was positively correlated with the MBC14 concentration and rice root biomass. Rice growth promotes more photosynthesized (newly-derived) C into soil C pools compared to unplanted soils, reflecting the release of root exudates from rice roots. Laboratory incubation of photosynthesized (plant-derived) C in soil decreased the decomposition of native SOC (i.e. a negative priming effect), in some, but not all cases. If this negative priming effect of the new C on native SOC also occurs in the field in the longer term, paddy soils will probably sequester more C from the atmosphere if more photosynthesized C enters them.  相似文献   

2.
According to Thornley, J.H.M. (Nature, 227, 304-305, 1970) and McCree, K.J. (Crop Sci., 14, 509-514, 1974), respiratory substances are used only for maintenance respiration when plants are exposed to the dark conditions for a long period of time (more than 2 d). The maintenance respiration is also affected by the nitrogen status in plant, because protein turnover is one of the major energy consumption sources under maintenance process. Therefore, to determine whether respiratory substances are used only for maintenance, 14C- [U] -sucrose or a mixture of 14C- [U] -amino acids was introduced to rice and soybean plants from the tip of leaf. Plants were grown under natural light conditions and under dark conditions for 4 d with 2 nitrogen levels (0.2 and 0.02 g N L-1 soil). After the introduction of the 14C-compounds, the 14CO2 respiratory rate was monitored during 24 h, then the 14C distribution to organic acids, free amino acids, proteins, sugars, and polysaccharides was analyzed. Following results were obtained.

1. When 14C-[U]-sucrose or a mixture of 14C-[U]-amino acids was introduced to the leaf of rice and soybean plants, the 14C release rate by respiration was not affected by the nitrogen and light treatments except when 14C-sucrose was introduced to soybean in the low N plot. The 14C release rate from the 14C-compounds introduced into leaf in the low N plot of soybean was higher in the dark treatment than in the natural light treatment.

2. 14C-distribution ratio after introduction of 14C-sucrose and a mixture of 14C-amino acids to the leaf was not significantly affected by the nitrogen treatment. When 14C-sucrose was introduced to rice leaf, the 14C-distribution ratio to sugars and proteins was higher and that to polysaccharides was lower in the natural light treatment than in the dark treatment. The 14C-distribution ratio was less aifected by the light or nitrogen treatment in case of soybean leaf.

3. Although it was assumed that maintenance metabolism was dominant in the lower leaf (counted from the bottom), the 14C-distribution ratio was similar to that of upper leaf.

4. Nitrogen content of leaf was not different between rice and soybean in the high N treatment, unlike the 14C-distribution ratio. In rice, the nitrogen content of leaf was about twice as high in the high N treatment compared with the low N treatment, while the 14C-distribution ratio in leaf was stable regardless of nitrogen treatment.

Based on the above results, it is suggested that since the 14C-distribution ratio into each chemical component did not change regardless of light treatment, nitrogen treatment, or leaf age, It was impossible to separate respiration into two components, such as growth and maintenance respiration. The results also indicated that current photosynthates and storage substances were not used only for growth and maintenance, respectively.  相似文献   

3.
Increasing atmospheric CO2 concentration impacts the terrestrial carbon(C) cycle by affecting plant photosynthesis, the flow of photosynthetically fixed C belowground, and soil C pool turnover. For managed agroecosystems, how and to what extent the interactions between elevated CO2 and N fertilization levels influence the accumulation of photosynthesized C in crops and the incorporation of photosynthesized C into arable soil are in urgent need of exploration.We conducted an experiment simulating elevated CO2 with spring wheat(Triticum aestivum L.) planted in growth chambers.13C-enriched CO2 with an identical 13C abundance was continuously supplied at ambient and elevated CO2 concentrations(350 and 600 μmol mol-1, respectively) until wheat harvest.Three levels of N fertilizer application(equivalent to 80, 120, and 180 kg N ha-1 soil) were supplied for wheat growth at both CO2 concentrations. During the continuous 62-d 13CO2 labeling period, elevated CO2 and increased N fertilizer application increased photosynthesized C accumulation in wheat by 14%–24% and 11%–20%, respectively, as indicated by increased biomass production, whereas the C/N ratio in the roots increased under elevated CO2 but declined with increasing N fertilizer application levels. Wheat root deposition induced 1%–2.5% renewal of soil C after 62 d of 13CO2 labeling. Compared to ambient CO2, elevated CO2 increased the amount of photosynthesized C incorporated into soil by 20%–44%. However, higher application rates of N fertilizer reduced the net input of root-derived C in soil by approximately 8% under elevated CO2. For the wheat-soil system, elevated CO2 and increased N fertilizer application levels synergistically increased the amount of photosynthesized C. The pivotal role of plants in photosynthesized C accumulation under elevated CO2 was thereby enhanced in the short term by the increased N application. Therefore, robust N management could mediate C cycling and sequestration by influencing the interactions between plants and soil in agroecosystems under elevated CO2.  相似文献   

4.
Long-term effect of mungbean inclusion in lowland rice-wheat and upland maize-wheat systems on soil carbon (C) pools, particulate organic C (POC), and C-stabilization was envisaged in organic, inorganic and without nutrient management practices. In both lowland and upland systems, mungbean inclusion increased very-labile C (Cfrac1) and labile C (Cfrac2) in surface soil (0–0.2 m). Mungbean inclusion in cereal-cereal cropping systems improved POC, being higher in lowland (107.4%). Lowland rice-based system had higher passive C-pool (11.1 Mg C ha?1) over upland maize-based system (6.6 Mg C ha?1) indicating that rice ecology facilitates the stabilization of passive C-pool, which has longer persistence in soil. Organic nutrient management (farmyard manure + full crop residue + biofertilizers) increased Cfrac1 and carbon management index (CMI) over inorganic treatment. In surface soil, higher CMI values were evident in mungbean included cropping systems in both lowland and upland conditions. Mungbean inclusion increased grain yield of cereal crops, and yield improvement followed the order of maize (23.7–31.3%) > rice (16.9–27.0%) > wheat (lowland 7.0–10.7%; upland 5.4–16.6%). Thus, the inclusion of summer mungbean in cereal-cereal cropping systems could be a long-term strategy to enrich soil organic C and to ensure sustainability of cereal-cereal cropping systems.  相似文献   

5.
Effect of CO2 enrichment on the carbon-nitrogen balance in whole plant and the acclimation of photosynthesis was studied in wheat (spring wheat) and soybean (A62-1 [nodulated] and A62-2 [non-nodulated]) with a combination of two nitrogen application rates (0 g N land area m-2 and 30 g N land area m-2) and two temperature treatments (30/20°C (day/night) and 26/16°C). Results were as follows.

1. Carbon (dry matter)-nitrogen balance of whole plant throughout growth was remarkably different between wheat and soybean, as follows: 1) in wheat, the relationship between the amount of dry matter (DMt) and amount of nitrogen absorbed (Nt) in whole plant was expressed by an exponential regression, in which the regression coefficient was affected by only the nitrogen application rate, and not by CO2 and temperature treatments, and 2) in soybean the DMt-Nt relationship was basically expressed by a linear regression, in which the regression coefficient was only slightly affected by the nitrogen treatment (at 0N, DMt-Nt balance finally converged to a linear regression). Thus, carbon-nitrogen interaction in wheat was strongly affected by the underground environment (nitrogen nutrition), but not by the above ground environment (CO2 enrichment and temperature), while that in soybean was less affected by both under and above ground environments.

2. The photosynthetic response curve to CO2 concentration in wheat and soybean was less affected by the CO2 enrichment treatment, while that in wheat and soybean (A62-2) was affected by the nitrogen treatment, indicating that nitrogen nutrition is a more important factor for the regulation of photosynthesis regardless of the CO2 enrichment.

3. Carbon isotope discrimination (..:1) in soybean was similar to that in wheat under ambient CO2, while lower than that in wheat under CO2 enrichment, suggesting that the carbon metabolism is considerably different between wheat and soybean under the CO2 enrichment conditions.  相似文献   

6.
Nitrogen and carbon dynamics in paddy and upland soils for rice cultivation and in upland soil for corn cultivation was investigated by using 13C and 15N dual-labeled cattle manure compost (CMC). In a soil with low fertility, paddy and upland rice took up carbon and nitrogen from the CMC at rates ranging from 0.685 to 1.051% of C and 17.6–34.6% of N applied. The 13C concentration was much higher in the roots than in the plant top, whereas the 15N concentration differed slightly between them, indicating that organic carbon taken up preferentially accumulated in roots. The 13C recovery in the plant top tended to be higher in upland soil than in paddy soil, whereas 15N applied was recovered at the same level in both paddy and upland soils. In the experiment with organic farming soil, paddy rice took up C and N from the CMC along with plant growth and the final recovery rates of 13C and 15N were 2.16 and 17.2% of C and N applied. In the corn experiment, a very large amount of carbon from the CMC was absorbed, accounting for at least 7 times value for rice. The final uptake rates of 13C and 15N reached about 13 and 10% of C and N applied, respectively. Carbon emission from the CMC sharply increased by 2 weeks after transplanting and the nitrogen emission was very low. It is concluded that rice and corn can take up an appreciable level of carbon and nitrogen from the CMC through roots.  相似文献   

7.
Forest soils from field plots, subjected to long-term acidification by H2SO4 treatment, or to liming, were examined for the effects of treatment on net mineralization and turnover rates of carbon and nitrogen during incubation. The total soil respiration was decreased as a result of acidification, whereas the proportion of labeled C, introduced as 14C-glucose at start of the incubation, was increased in the CO2 pool emitted. The accumulation of mineral N (ammonium) was not significantly influenced by acidification, whereas the rate of microbial N turnover, obtained from 15N-dilution data for the exchangeable NH4+ fraction, was markedly decreased.  相似文献   

8.
In an incubation experiment with flooded rice soil fertilized with different N amounts and sampled at different rice stages, the methane (CH4) and carbon dioxide (CO2) production in relation to soil labile carbon (C) pools under two temperature (35°C and 45°C) and moisture (aerobic and submerged) regimes were investigated. The field treatments imposed in the wet season included unfertilized control and 40, 80 and 120 kg ha?1 N fertilization. The production of CH4 was significantly higher (27%) under submerged compared to aerobic conditions, whereas CO2 production was significantly increased under aerobic by 21% compared to submerged conditions. The average labile C pools were significantly increased by 21% at the highest dose of N (120 kg ha?1) compared to control and was found highest at rice panicle initiation stage. But the grain yield had significantly responded only up to 80 kg ha?1 N, although soil labile C as well as gaseous C emission was noticed to be highest at 120 kg ha?1 N. Hence, 80 kg N ha?1 is a better option in the wet season at low land tropical flooded rice in eastern India for sustaining grain yield and minimizing potential emission of CO2 and CH4.  相似文献   

9.
We tested whether experimental summer drought affects the transfer of recently photosynthesized carbon from plants to soil mesofauna in a subalpine meadow. From day one after 13CO2 pulse-labelling of the plant canopy, roots, collembolans and mites were enriched in δ13C in control, but not in drought plots. However, as the difference in δ13C between roots and soil animals was not affected by the drought treatment, we conclude that drought affects the tight linkage between photosynthesis and soil mesofauna primarily via functional responses of plants rather than via changes in the mesofauna.  相似文献   

10.
The effect of elevated carbon dioxide (CO2) concentration on symbiotic nitrogen fixation in soybean under open-air conditions has not been reported. Two soybean cultivars (Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35) were grown to maturity under ambient (415?±?16?μmol?mol?1) and elevated (550?±?17?μmol?mol?1) [CO2] at the free-air carbon dioxide enrichment experimental facility in northern China. Elevated [CO2] increased above- and below-ground biomass by 16–18% and 11–20%, respectively, but had no significant effect on the tissue C/N ratio at maturity. Elevated [CO2] increased the percentage of N derived from the atmosphere (%Ndfa, estimated by natural abundance) from 59% to 79% for Zhonghuang 13, and the amount of N fixed from 166 to 275?kg N ha?1, but had no significant effect on either parameter for Zhonghuang 35. These results suggest that variation in N2 fixation ability in response to elevated [CO2] should be used as key trait for selecting cultivars for future climate with respect to meeting the higher N demand driven by a carbon-rich atmosphere.  相似文献   

11.
有机-无机配施对盐渍土壤水稻生长及养分利用的影响   总被引:5,自引:0,他引:5  
针对滨海盐渍化土壤水稻种植过程中根系生长受盐碱胁迫,导致养分利用率低的问题。采用田间试验研究了有机肥与磷肥配施对滨海盐渍化土壤水稻不同生育期根系生长、水稻产量及养分利用率的影响。试验采用双因素设计,3个碳水平:(1)C0,无碳;(2)C1:低碳,450 kg/hm~2;(3)C2:高碳,900 kg/hm~2;3个磷水平:(1)P0:无磷;(2)P1:低磷,P_2O_5 64 kg/hm~2;(3)P2:高磷,P_2O_5 128 kg/hm~2。结果表明,在水稻成熟期,低碳低磷(T5)处理时根系总表面积显著高于高碳低磷(T7)和高碳高磷(T8)处理,分别增加25.2%和30.2%;低碳处理(T5、T6)时根系总体积显著高于高碳处理。T5处理时水稻产量、生物量显著高于其他处理,分别为10 245,9 550 kg/hm~2。结实率较高是低碳低磷(T5)处理水稻产量最高的原因。低碳低磷(T5)处理时糙米P积累量最高,显著高于T6、T7、T8处理,分别高出13.9%,27.8%,31.2%。T5处理的磷肥贡献率和农学效率显著高于其他施磷肥处理。磷肥偏生产力表现为低磷投入显著高于高磷投入。综上所述,与单独施用无机肥相比,有机肥与磷肥配施能够显著促进滨海盐渍化土壤水稻根系生长,提高水稻产量及磷肥农学效率,其中低碳低磷(T5,C 450 kg/hm~2+P_2O_5 64 kg/hm~2)处理最有利于盐渍化土壤水稻根系生长。  相似文献   

12.
Returning rice straw and leguminous green manure alone or in combination to soil is effective in improving soil fertility in South China. Despite the popularity of this practice, our understanding of the underlying processes for straw and manure combined application is relatively poor. In this study, rice straw (carbon (C)/nitrogen (N) ratio of 63), green manure (hairy vetch, C/N ratio of 14), and their mixtures (C/N ratio of 25 and 35) were added into a paddy soil, and their effects on soil N availability and C or N loss under waterlogged conditions were evaluated in a 100-d incubation experiment. All plant residue treatments significantly enhanced CO2 and CH4 emissions, but decreased N2O emission. Dissolved organic C (DOC) and N (DON) and microbial biomass C in soil and water-soluble organic C and N and mineral N in the upper aqueous layer above soil were also enhanced by all the plant residue treatments except the rice straw treatment, and soil microbial biomass N and mineral N were lower in the rice straw treatment than in the other treatments. Changes in plant residue C/N ratio, DOC/DON ratio, and cellulose content significantly affected greenhouse gas emissions and active C and N concentrations in soil. Additionally, the treatment with green manure alone yielded the largest C and N losses, and incorporation of the plant residue mixture with a C/N ratio of 35 caused the largest net global warming potential (nGWP) among the amended treatments. In conclusion, the co-incorporation of rice straw and green manure can alleviate the limitation resulting from only applying rice straw (N immobilization) or the sole application of leguminous green manure (high C and N losses), and the residue mixture with a C/N ratio of 25 is a better option because of lower nGWP.  相似文献   

13.
Intercropping with aerobic rice or arbuscular mycorrhizal fungi (AMF) colonization alleviated watermelon wilt disease, which is likely attributed to rice root exudates or AMF depressing watermelon wilt pathogen. However, it is unclear whether rice root exudates transfers to watermelon rhizosphere soil and whether AMF affects the transfer of rice root exudates to watermelon rhizosphere soil. A rhizobox experiment, with aerobic rice under 14?CO2, was conducted to investigate the effect of AMF colonization on carbon (C) transfer from rice to watermelon and on phosphorus (P) uptake by both watermelon and rice. The rhizobox was separated into labelling side (L side) and sampling side (S side) by inserting nylon mesh in the middle of the box. The L side was planted with aerobic rice, and the S side was aerobic rice (monocropping) or watermelon (intercropping). When 14?CO2 was added to rice canopy at the L side, 14?C activities of rice roots and rhizosphere soils in the L side were increased by intercropping with watermelon or AMF colonization. The 14?C was detected in roots and rhizosphere soils of rice and watermelon in the S side, but no differences were found among different treatments. 14?C activities in leaves were improved by AMF inoculation in the S side, regardless of rice or watermelon. Mycorrhizal colonization stimulated P absorption and translocation to rice in intercropping system. These findings suggest that AMF colonization could increase C transfer from rice to watermelon while intercropping with watermelon could promote AMF colonization and P uptake by rice.  相似文献   

14.
Carbon (C) and nitrogen (N) dynamics in a third production year ryegrass-clover mixture were investigated in the field. Cylinders (diameter 29.7 cm) were installed to depths of 20, 40 and 60 cm and equipped with suction cups to collect percolating pore water. Ryegrass and clover leaves were cross-labelled with 14C- and 15N-enriched urea and the fate of the two tracers was studied for 3 months during summer. Transfer of 14C occurred mainly from ryegrass to clover, whereas the largest transfer of 15N was in the opposite direction. The average transfer of N from clover was 40% (SE±3.1, n=9) of N in ryegrass, whereas the fraction of N in clover donated by ryegrass was 5% (±1.2, n=9). The amount of 14C transferred from ryegrass to clover was 1.7% (±0.1, n=9) of the 14C-activity in the total above-ground plant biomass found in the unlabelled clover and with a transfer from clover to ryegrass being 0.4% (±0.1, n=9). 15N-enriched compounds were not detected in percolating pore water, which may be caused by either dilution from irrigation or low availability of leachable N compounds. 14C was found solely as 14CO2 in the pore water indicating that dissolved organic carbon (DOC) did not originate from fresh root deposits. Transfer of 14C between the two species in the mixed crop alongside with high transfer of 15N despite a large percolation of pore water indicates that part of the N transfer occurred in non-leachable N-forms. The amount of N transferred between the two species was found to depend on the ratio between dry matter accumulated in the donating and receiving species, the 14C-allocation within the receiving species and the root turnover rate in the soil.  相似文献   

15.
The root-borne C- and N-flux in the plant/soil system was studied by determining the 14C- or 15N-balances in pot trials with soil as a substrate (14CO2- or 15NH3-application to the shoots, comparison of sterile and nonsterile treatments for quantification of root-borne substances). The following results were obtained: 1. The amount of (primary) root-borne carbon compounds released into soil was (besides root respiration) 11—20% of net-CO2-assimilation or 13—32% of the 14C incorporated into the plants (= 1 t C · ha—1). 5—6% of 15N assimilated by the plants were released as root-borne N compounds (= 15 kg N · ha—1). 2. A considerable portion of the root-borne C (about 6% = 600 kg C · ha—1) was found in the rooted soil zone at the end of the experiments (rhizodeposition). 3. (Primary) root-borne C and N compounds found in immediate vicinity of the roots (about 60—80%) were mainly water soluble, whereas most of the C and N compounds found in a greater distance were water insoluble. The water soluble exudates consisted mainly of neutral (carbohydrates) and acid fractions (organic acids). The basic fraction (amino acids) made up a small portion only. 4. The root-borne C and N compounds influenced the nutrient balance of soil and plant directly and/or indirectly via microbes (depending on species, variety and nutritional status of plants). 5. Microbes stimulated the release of C- and N-compounds, but rapidly respired 65—85% of the root-borne C-compounds, thereby putting a burden on the C-budget of the “host” plant. 6. It could be shown by the example of hup+ Rhizobium meliloti strains (tested by 3H2-incorporation) and the wheat-Serratia-association, that energy efficient microbenplant systems can improve plant performance.  相似文献   

16.
A long-term experiment on combined inorganic fertilizers and organic matter in paddy rice (Oryza sativa L.) cultivation began in May 1982 in Yamagata, northeastern Japan. In 2012, after the 31st harvest, soil samples were collected from five fertilizer treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)], at five soil depths (0–5, 5–10, 10–15, 15–20 and 20–25 cm), to assess the changes in soil organic carbon (SOC) content and carbon (C) decomposition potential, total nitrogen (TN) content and nitrogen (N) mineralization potential resulting from long-term organic matter addition. The C decomposition potential was assessed based on the methane (CH4) and carbon dioxide (CO2) produced, while the N mineralization potential was determined from the potassium chloride (KCl)-extractable ammonium-nitrogen (NH4+-N), after 2, 4, 6 and 8 weeks of anaerobic incubation at 30°C in the laboratory. Compared to NPK treatment, SOC in the total 0–25 cm layer increased by 67.3, 21.0 and10.8%, and TN increased by 64.2, 19.7 and 10.6%, in CM3, RS and CM1, respectively, and SOC and TN showed a slight reduction in the PK treatment by 5.2 and 5.7%, respectively. Applying rice straw compost (10 Mg ha?1) instead of rice straw (6 Mg ha?1) to rice paddies reduced methane production by about 19% after the soils were measured under 8 weeks of anaerobic incubation at 30°C. Soil carbon decomposition potential (Co) and nitrogen mineralization potential (No) were highly correlated with the SOC and TN contents. The mean ratio of Co/No was 4.49, lower than the mean ratio of SOC/TN (13.49) for all treatments, which indicated that the easily decomposed organic matter was from soil microbial biomass and soil proteins.  相似文献   

17.
【目的】采用15N、13C同位素示踪技术,通过对不同施氮量下嘎啦幼苗生长状况及氮、碳分配、利用特性等的研究,以期为苹果生产合理施肥提供依据。【方法】将2年生盆栽嘎啦幼苗进行低、中、高三个氮水平处理,同时进行15N标记。在新梢旺长初始期、新梢旺长期、新梢缓长期分别进行整株13C标记,72小时后,整株解析为叶、梢、根三部分,进行15N、13C测定。样品全氮用凯氏定氮法测定,15N丰度用ZHT-03质谱计测定。13C丰度用DELTA V Advantage同位素比率质谱仪测定。【结果】1)中、高氮水平的施肥处理可在不同程度上提高整株及叶片干物质量和新梢长度。新梢旺长初始期和新梢缓长期嘎啦幼苗整株干物质量、新梢旺长期叶片干物质分配比率在中、高氮水平处理间差异不显著,中氮水平经济有效。新梢旺长期以后新梢长度以中氮高氮低氮,三者间差异性显著,中氮处理有利于新梢生长。2)在新梢旺长初始期,低氮处理植株叶片15N分配率达50%,比其他处理高出13个百分点左右,表明低氮处理更多的氮被叶片所利用,中氮和高氮处理间差异不显著,说明在本试验施氮条件下中氮供应水平已能满足氮素营养需求。3)新梢旺长期和新梢缓长期幼苗13C固定量均以中氮处理最高,新梢旺长初始期3个处理间根系13C分配率中氮高氮低氮,表明中氮处理有利于碳同化物在嘎啦幼苗中的分配。4)不同施氮量处理的嘎啦幼苗,15N利用率随施氮水平提高而降低,高氮处理对碳同化物分配没有显著贡献。【结论】低、中、高氮不同处理新梢缓长期碳同化物在各器官间的分配比较均衡,氮素水平不能影响碳同化物的分配。盆栽试验表明,中氮水平在保证营养供应的同时,能够促进新梢生长和树势健壮。  相似文献   

18.
为明确不同施氮量下小麦植株的碳氮代谢特性及碳代谢与小麦赤霉病的关系,本文采用田间小区试验,以小麦多穗型品种‘豫麦49-198’和大穗型品种‘周麦16’为供试材料,在0 kg(N)·hm-2 、120 kg(N)·hm-2 、180 kg(N)·hm-2 、240 kg(N)·hm-2 、360 kg(N)·hm-2 5个氮肥水平下,探讨了不同施氮水平对小麦植株可溶性糖含量、C/N以及小麦赤霉病发病率和病情指数的影响。结果表明:两个品种小麦植株内的可溶性糖含量和C/N由越冬到开花期呈"V"形变化,拔节期最低,分别为80~200 mg·g-1和3~10。开花期各处理间差异达到最大,且施氮处理植株的可溶性糖含量和C/N比不施氮处理分别低15.4%~47.7%和24.5%~63.1%。植株全氮含量随施氮量的增加而增加,各处理在小麦拔节期和开花期差异最大。两个品种小麦植株的可溶性糖和氮素的累积吸收量在小麦生育期内均呈增加趋势。相关分析表明,植株全氮含量与小麦的可溶性糖含量在小麦拔节期和开花期显著负相关;小麦拔节期和开花期的可溶性糖含量、C/N与小麦赤霉病的发病率和病情指数呈线性关系。说明小麦拔节期到开花期的碳氮代谢对赤霉病的发生影响较大。  相似文献   

19.
Understanding rhizodeposited carbon (C) dynamics of winter wheat (Triticum aestivum L.) is important for improving soil fertility and increasing soil C stocks. However, the effects of nitrogen (N) fertilization on photosynthate C allocation to rhizodeposition of wheat grown in an intensively farmed alkaline soil remain elusive. In this study, pot‐grown winter wheat under N fertilization of 250 kg N ha?1 was pulse‐labeled with 13CO2 at tillering, elongation, anthesis, and grain‐filling stages. The 13C in shoots, roots, soil organic carbon (SOC), and rhizosphere‐respired CO2 was measured 28 d after each 13C labeling. The proportion of net‐photosynthesized 13C recovered (shoots + roots + soil + soil respired CO2) in the shoots increased from 58–64% at the tillering to 86–91% at the grain‐filling stage. Likewise, the proportion in the roots decreased from 21–28% to 2–3%, and that in the SOC pool increased from 1–2% to 6–7%. However, the 13C respired CO2 allocated to soil peaked (17–18%) at the elongation stage and decreased to 6–8% at the grain‐filling stage. Over the entire growth season of wheat, N fertilization decreased the proportion of net photosynthate C translocated to the below‐ground pool by about 20%, but increased the total amount of fixed photosynthate C, and therefore increased the below‐ground photosynthate C input. We found that the chase period of about 4 weeks is sufficient to accurately monitor the recovery of 13C after pulse labeling in a wheat–soil system. We conclude that N fertilization increased the deposition of photoassimilate C into SOC pools over the entire growth season of wheat compared to the control treatment.  相似文献   

20.
Various methods have been suggested to separate root and microbial contributions to soil respiration. However, to date there is no ideal approach available to partition below-ground CO2 fluxes in its components although the combination of traditional methods with approaches based on isotopes seems especially promising for the future improvement of estimates. Here we provide evidence for the applicability of a new approach based on the hypothesis that root-derived (rhizomicrobial) respiration, including root respiration and CO2 derived from microbial activity in the immediate vicinity of the root, is proportional to non-structural carbon contents (sugars and organic acids) of plant tissues. We examined relationships between root-derived CO2 and non-structural carbon of rice (Oryza sativa) seedlings using 14C pulse labelling techniques, which partitioned the 14C fixed by photosynthesis into root-derived 14CO2, and 14C in sugars and organic acids of roots and shoots. After the 14C pulse 14C in both sugars and organic acids of plant tissues decreased steeply during the first 12 h, and then decreased at a lower rate during the remaining 60 h. Soil 14CO2 efflux and soil CO2 efflux strongly depended on 14C pools in non-structural carbon of the plant tissues. Based on the linear regression between root-derived respiration and total non-structural carbon (sugars and organic acids) of roots, non-rhizomicrobial respiration (SOM-derived) was estimated to be 0.25 mg C g−1 root d.w. h−1. Assuming the value was constant, root-derived respiration contributed 85–92% to bulk soil respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号