首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
不同氮素用量对杭白菊养分累积、转运及产量的影响   总被引:3,自引:2,他引:1  
通过田间小区试验,研究不同施氮量对杭白菊养分积累、转运及产量的影响,以确定杭白菊最佳氮肥用量。试验设5个处理,氮素用量分别为0、90 kg/hm2、120 kg/hm2、150 kg/hm2、180 kg/hm2,以N0、N1、N2、N3、N4表示,5次重复。结果表明,不同氮素用量影响杭白菊不同时期干物质和养分的阶段积累量,但不影响其积累趋势,整个生育期内杭白菊氮、磷、钾积累量为钾氮磷。不同施氮量影响茎叶氮、磷、钾的转移效率和在不同器官中的分配比率,以不施肥处理最高,N3(150 kg/hm2)次之。在氮、磷、钾三种元素中,转运效率磷氮钾。收获期氮、磷、钾在不同器官的分配比率不同,氮素、钾素分配比率为茎花叶根,磷素分配比率为茎花根叶。各处理杭白菊花的产量在1746.232~211.3 kg/hm2之间,以N3(150 kg/hm2)处理产量最高。在本实验条件下,杭白菊的推荐施氮量为150 kg/hm2。  相似文献   

2.
ABSTRACT

The present investigation aimed to determine the effectiveness of different nitrogen (N) rates on grain yield, growth, and water use efficiencies of direct wet-seeded rice and to create a relationship of N rates with growth parameters and dry matter production at different stages. The experiments compared six rates of nitrogen (0, 40,80,120,160, and 200 kg ha–1N) replicated thrice in randomized complete block design in two conjunctive years of 2009–2010 and 2010–2011 at Bangladesh Rice Research Institute farm, Gazipur.The highest grain yield of 7.85 and 7.22 t ha?1 was observed in N200 treatment in 2009–2010 and 2010–2011, respectively. The relationship (R2) of total dry matter with leaf area index , leaf area duration, and crop growth rate indicated strong association during booting stage to achieved maximum dry matter during harvest. Water use efficiency varied 87–91% in different N levels.  相似文献   

3.
Summary A spontaneous mutant ofAzospirillum lipoferum, resistant to streptomycin and rifampicin, was inoculated into the soil immediately before and 10 days after transplanting of rice (Oryza sativa L.). Two rice varieties with high and low nitrogen-fixing supporting traits, Hua-chou-chi-mo-mor (Hua) and OS4, were used for the plant bacterial interaction study. The effect of inoculation on growth and grain and dry matter yields was evaluated in relation to nitrogen fixation, by in situ acetylene reduction assay,15N2 feeding and15N dilution techniques. A survey of the population of marker bacteria at maximum tillering, booting and heading revealed poor effectivety. The population of nativeAzospirillum followed no definite pattern. Acetylene-reducing activity (ARA) did not differ due to inoculation at two early stages but decreased in the inoculated plants at heading. In contrast, inoculation increased tiller number, plant height of Hua and early reproductive growth of both varieties. Grain yield of both varieties significantly increased along with the dry matter. Total N also increased in inoculated plants, which was less compared with dry matter increase.15N2 feeding of OS4 at heading showed more15N2 incorporation in the control than in the inoculated plants. The ARA,15N and N balance studies did not provide clear evidence that the promotion of growth and nitrogen uptake was due to higher N2 fixation.  相似文献   

4.
Our aim was to assess if Brassinolide (BR) could ameliorate stress caused by waterlogging on maize. Two BR levels (with and without), two maize varieties [Ikom White (IKW) and Obatanpa-98 (Oba-98)] and three growth stages [control (WLo), seedling stage (WL1), and tasseling stage (WL2)] were studied under waterlogging lasting 10 days. Maize growth and development were significantly (p?≤?.05) reduced by waterlogging stress under WL1 than WL2. Waterlogging stress at WL1 adversely affected (p?≤?.05) the protein and relative water contents. The nitrogen (N) content among the plant partitions (leaves, stems, and grains) were reduced (p?≤?.05) at both silking and harvest. The beneficial effect of BR was more pronounced in Oba-98 with higher protein contents, dry matter yield, N-uptake and harvest index than IKW. Oba-98 was also better yielding than IKW. Thus, in a waterlogged soil, treatment of maize plants with BR at WL1 could induce some tolerance.  相似文献   

5.
Field experiments were conducted to clarify the relation between the tillering ability and morphological characters, dry matter production, or nitrogen absorption among 14 rice varieties including different ecospecies with different plant types, and about the same heading time. Tiller number varied widely among the varieties and the number of tillers per plant at the maximum tiller number stage ranged between 14.3 and 39.5 in 1995 and 12.2 and 34.6 in 1996. Among all the varieties, IR 36 followed by Suweon 258 produced the highest maximum tiller number and Dawn produced the lowest maximum tiller number. The plant length and the specific leaf area, i.e. one of the indicators of leaf thickness, showed a strong negative and positive significant correlation, respectively, with the maximum tiller number. The varieties with a shorter plant length produced shorter and thinner leaves which would provide less competition for dry matter and nitrogen between mother stem and tillers and among tillers. This resulted in a higher efficiency of tiller production in the higher-tillering varieties for the same amount of dry matter production and nitrogen absorption. Percentage of productive tillers widely varied among the varieties, ranging from 42 to 73% in 1995 and from 50 to 81% in 1996. Semidwarf indica and japonica-indica varieties showed a lower percentage of productive tillers than the Japanese and tall indica varieties, and high-tillering varieties IR 36 and Suweon 258 produced the highest number of dead tillers, which resulted in the lowest percentage of productive tillers. The number of dead tillers depended mainly on the extent of competition for carbohydrates produced and nitrogen absorbed from the maximum tiller number stage to heading among tillers, although the increasing ratio of dead tillers was higher in indica varieties than in japonica varieties with a decrease in the amounts of these substances.  相似文献   

6.
In a three‐year survey several control methods of nitrogen (N) supply in strawberry were investigated. It was found that Nmin analysis could be used as a measurement of control from the beginning of the season, indicating the need of additional N supply. Leaf dry matter analysis, taken during flowering, could be used as an indicator thus making it possible to make corrections within the season, if needed. When leaf dry matter analysis was compared to leaf sap analysis, correlations were evident for the majority of nutrients, N being an important exception. It was concluded that the use of Nmin‐ and leaf dry matter analyses combined might make corrections in N fertilization within the same year possible.  相似文献   

7.
Oriental tobacco plants (Nicotiana tabacum L. cv Myrodata Agrinion) were grown without nitrogen (N) fertilization (N0) and with added ammonium nitrate at a rate of 50 kg‐ha‐1 (N1) and 100 kg‐ha‐1 (N2). Non‐uniform patterns for leaf FW and DW changes per node showed a decreasing trend from lower to upper nodes during the vegetative stage. From approaching flowering to fruit set, these patterns became more uniform. Plants which were fertilized with N had increased leaf FW and DW accumulation levels and non‐uniform distribution patterns, primarily during the reproductive stage, and leaves of the lower nodes were found in the older plants. By contrast, the median values of leaf FW for the unfertilized plants were reduced during the reproductive period. The DW/FW×100 ratio values revealed a stable relationship between leaf FW and DW from the vegetative to the reproductive stage, while modified patterns of DW/FW×100 appeared later in the plant cycle. Nitrogen fertilization resulted in an early appearance of modified patterns of DW/FW×100 in the plant life cycle and higher accumulation of dry matter per unit leaf area. Patterns of total leaf N concentration showed an increasing trend from the lower to the upper nodes for all plant ages and treatments. Total N concentration values varied from 1.6%, 1.9%, and 1.8% on a dry matter basis, for the lower node up to 5.5%, 6.3%, and 6.1% for the upper node in young tobacco plants in the N o , N1, and N 2 treatments, respectively. After fruit set, a more uniform distribution of total leaf N was observed among the leaves in all treatments. Concentration values for total leaf N in older plants varied from 1.9%, 2.1%, and 2.2% for the lower node up to 3.4%, 3.3% and 3.2% for the upper node in the N 0 , N1, and N2 treatments, respectively. These results suggest a progressive decrease with plant age for total leaf N concentration in the plant as a whole. The increased N fertilizer level affected the total N level in young plants but not in the older ones. Inflorescence and fruit set periods are critical for plant N balance except for the plants which received the increased N fertilization. The determined total stem N concentration was less than that for the leaves. This change in the stem, similar to leaves, showed an increasing trend from the basal to the upper part and a decreasing trend from the vegetative to the reproductive stage. The total stem N level declined from 1.0–1.2%, 1.6–1.7%, and 2.2–2.9% on a dry matter basis to 0.5–0.6%, 1.0–1.2%, and 1.2–1.6% for the basal, middle, and upper part of the stem, respectively.  相似文献   

8.
陈天祥  杨顺瑛  苏彦华 《土壤》2023,55(5):954-963
采用氮素低效品种武育粳3(WY3)、氮素吸收高效品种连粳7(LJ7)和氮素吸收利用双高效品种南粳9108(NJ9),开展了包括不施氮肥(LN)、适宜或减量氮肥投入(MN, 200 kg/hm2)和过量施氮(HN, 350 kg/hm2)三个条件的田间试验,探究了不同基因型差异的水稻植株整体和关键功能叶含氮量对施氮水平的响应,及其导致的光合特征的变化对氮素利用效率的作用特征。结果表明:在生育后期,氮高效品种的干物质和氮素积累强于氮低效品种。在MN条件下,LJ7和NJ9在齐穗期至完熟期干物质积累量相比WY3分别高46.44%和29.12%,氮素积累量分别高26.28%和32.31%;在该条件下,施用穗肥后27 d的时间段内(灌浆阶段),WY3的剑叶氮含量降低21.86%,LJ7和NJ9的剑叶氮含量分别降低26.3%和34.74%,降幅次序为NJ9>LJ7>WY3,LJ7和NJ9的剑叶干重、光合速率、气孔导度、单穗重和产量显著高于WY3,氮高效品种的氮素利用效率指标优于WY3。在HN条件下,LJ7和NJ9在灌浆阶段的干物质和氮素积累量仍高于WY3,剑叶干重、气孔导度和单穗重显著优...  相似文献   

9.
Differences in nitrogen (N) use by different varieties of rice (Oryza sativa L.) have been reported by numerous researchers. Some have indicated that N fertilization required for maximum yield differs between modern varieties and old varieties (varieties no longer in production); others have suggested that among modern varieties, semidwarf varieties require higher N rates than taller varieties. The objectives of this study were to evaluate differences in dry matter and N accumulation among modern long‐grain varieties in relation to plant stature (tall versus semidwarf) and maturity group (early versus very early), and to compare old varieties and modern varieties. A greenhouse pot experiment with Crowley silt loam (fine, montmorillonitic, thermic Typic Albaqualf) was conducted to compare old and modern long‐grain varieties at 52 days after sowing. Based on the results of the pot experiment, three varieties each from six variety groups (old varieties, modern medium‐grain varieties, and four groups of modern long‐grain varieties) were planted in the field on Crowley silt loam soil. Each variety was fertilized with three preflood N levels (0, 67, and 135 kg N ha‐1). Plants were harvested 49 days after sowing and 25 days after 50% heading. Old and modem long‐grain varieties did not differ in total N accumulation at any N level. However, long‐grain varieties produced more grain than the old varieties at all N levels, and among long‐grain varieties, semidwarf varieties produced more grain than tall varieties when 135 kg N ha‐1 were applied. Early and very early varieties did not differ in total N accumulation or grain yield. Varieties that produced a higher grain yield did so by partitioning more N to grain than straw. Modern medium‐grain varieties accumulated more N than old and long‐grain varieties and produced more grain with both 67 and 135 kg N ha‐1. Medium‐grain varieties had a higher harvest index and physiological efficiency than old varieties but did not differ from long‐grain varieties. This suggests that medium‐grain varieties also partition more of their N into grain than straw and possibly are able to absorb more N from soil than old or long‐grain varieties.  相似文献   

10.
研究钵苗摆栽下籼粳杂交稻、常规粳稻丰产优质施氮量及综合效益,提出安徽沿江地区钵苗摆栽下适宜粳稻类型及施氮量。于2016—2017年连续2 a开展大田试验,以当地主栽籼粳杂交稻甬优1540和常规粳稻镇稻18为供试品种,设置0、195、255、315、375 kg/hm~2共5个氮肥水平(分别用N0、N195、N255、N315、N375表示),研究不同施氮水平对钵苗摆栽下不同类型粳稻产量、品质、相关农艺性状及经济效益的影响。结果表明,籼粳杂交稻甬优15402a均在N315处理下产量最高,达到10.30~11.55t/hm~2。常规粳稻镇稻18各施氮处理下水稻产量无显著差异,产量为7.43~8.91 t/hm~2。增施氮肥,不同程度增加了2个品种的糙米率、精米率和蛋白质含量,提高了加工品质和营养品质,但垩白率和垩白度整体有所提高,直链淀粉含量增高,不利于外观品质和食味的改善。甬优1540在N315处理下的整精米率与N375无差异,且在N315处理下的垩白度与N195无显著差异。另外,镇稻18在N195处理下的整精米率、蛋白质含量、垩白度和直链淀粉含量与其他氮肥处理无显著差异。钵苗摆栽下籼粳杂交稻丰产优质施氮量为315kg/hm~2,常规粳稻为195 kg/hm~2。在适氮水平下,钵苗摆栽甬优1540较镇稻18提高水稻产量22.9%~23.2%,整精米率2.15%~4.50%,蛋白质含量30.44%~37.41%,经济效益51.07%~53.33%,同时降低垩白度9.52%~13.73%。总的来说,在适宜氮肥水平下,钵苗摆栽下籼粳杂交稻较常规粳稻提高了水稻产量、品质和经济效益。  相似文献   

11.
During the last two decades, high-yielding cultivars for multipurpose use of rice have been bred and released in Japan. Some of them have repeatedly recorded high yields of over 9?t?ha?1 of brown rice (about 11.25?t?ha?1 of rough rice). Here, characteristic features of nitrogen (N) acquisition and its relation to formation of yield components, dry matter production and grain yield at yield levels over 9?t?ha?1 of brown rice in recent high-yielding cultivars, a large grain type of japonica variety, “Akita 63,” extra-panicle weight types of indica variety, “Takanari” and “Saikai 198,” and a panicle weight type of japonica variety, “Fukuhibiki,” are described as compared with those in the standard japonica cultivars, “Toyonishiki” and “Nipponbare.” The grain yield of the recent high-yielding cultivars was 9.4 to 11.6?t?ha?1 of brown rice; that is 1.2?1.7 times greater than those of the standard cultivars. Sink capacity (1000-grain weight?×?spikelet number per unit land area) was 47?62% greater in the recent high-yielding cultivars, largely due to their 1.3?1.5 times greater N-use efficiency for sink formation (sink capacity per unit amount of total plant N in the aboveground part at maturity), although major component(s) responsible for their greater sink capacity differ among the cultivars. The ratio of grain yield to total dry matter was 1.1?1.4 times greater in the recent high-yielding cultivars than in the standard cultivars, indicating that the former efficiently translocate dry matter into spikelets during the grain-filling period. N-use efficiency for dry matter production (total dry matter per unit amount of total plant N) was comparable between “Akita 63,” “Fukuhibiki” and “Toyonishiki,” and slightly greater in “Takanari” and “Saikai 198” than in “Nipponbare.”

These results indicate that greater N-use efficiency for sink formation and efficient translocation of dry matter into spikelets contribute greatly to the high-yielding potential of the recent high-yielding cultivars.  相似文献   

12.
In a four year survey, two control methods of nitrogen (N) supply in strawberry were combined. It was found that Nmin analysis could be used as a measurement of control from the beginning of the season, indicating the need of additional N supply. Leaf dry matter analysis, taken during beginning of flowering, could be used as an indicator thus making it possible to make corrections within the season, if needed. This study clearly showed variation in nutrient values among years and cultivars, whereas differences among plants of different age were not significant. It was concluded that the use of Nmin and leaf dry matter analyses combined might make corrections in nitrogen fertilization within the same year possible, and a new standard for leaf nutrient content, based on samples taken during beginning of flowering, was suggested.  相似文献   

13.
为研究灌水量、施氮量和缩节胺用量对棉花籽棉产量、纤维品质和水肥利用效率的交互影响,于2020年和2021年在南疆库尔勒地区开展大田试验,设置3个灌水量(W1:60%ETc,W2:80% ETc,W3:100% ETc,ETc为作物蒸发蒸腾量),4个施氮量(N0:0 kg/hm2,N200:200 kg/hm2,N300:300 kg/hm2,N400:400 kg/hm2)和2个缩节胺用量(D1:120 g/hm2,D2:240 g/hm2)。结果表明:灌水量、施氮量和缩节胺用量对籽棉产量、水分利用效率、肥料偏生产力和部分纤维品质指标影响显著(P<0.05)。灌水量、施氮量和缩节胺用量三者交互作用对肥料偏生产力和纤维品质影响显著(P<0.05)。株高、叶面积指数和干物质量也受灌水量、施氮量和缩节胺用量三者交互作用影响。W3N300D2处理籽棉产量最高(2020年为7 578 kg/hm2,2021年为7 173 kg/hm2),W1N400D1处理水分利用效率和W3N0D2处理肥料偏生产力最高,W3N400D1处理的纤维长度、纤维强度和马克隆值均获得较大值,纤维品质最佳。基于TOPSIS综合评价方法对棉花产量品质和水肥利用效率进行综合评价,100%ETc灌水量、300 kg/hm2施氮量和240 g/hm2缩节胺用量组合最优,可作为南疆棉花适宜的水氮和化控管理模式。研究结果可为南疆棉花水肥高效利用提供理论依据和科学指导。  相似文献   

14.
In-season diagnosis of crop nitrogen(N) status is crucial for precision N management. Critical N(N_c) dilution curve and N nutrition index(NNI) have been proposed as effective methods to diagnose N status of different crops. The N_c dilution curves have been developed for indica rice in the tropical and temperate zones and japonica rice in the subtropical-temperate zone, but they have not been evaluated for short-season japonica rice in Northeast China. The objectives of this study were to evaluate the previously developed N_c dilution curves for rice in Northeast China and to develop a more suitable N_c dilution curve in this region. A total of17 N rate experiments were conducted in Sanjiang Plain, Heilongjiang Province in Northeast China from 2008 to 2013. The results indicated that none of the two previously developed N_c dilution curves was suitable to diagnose N status of the short-season japonica rice in Northeast China. A new N_c dilution curve was developed and can be described by the equation N_c = 27.7 W~(-0.34) if W ≥ 1 Mg dry matter(DM) ha~(-1) or N_c = 27.7 g kg~(-1) DM if W 1 Mg DM ha~(-1), where W is the aboveground biomass. This new curve was lower than the previous curves. It was validated using a separate dataset, and it could discriminate non-N-limiting and N-limiting nutritional conditions. Additional studies are needed to further evaluate it for diagnosing N status of different rice cultivars in Northeast China and develop efficient non-destructive methods to estimate NNI for practical applications.  相似文献   

15.
机插杂交粳稻超高产形成群体特征   总被引:30,自引:7,他引:23  
在研究不同机插水稻群体产量及其结构、群体茎蘖动态、叶面积动态与组成、光合势、干物质积累、群体生长速率等差异的基础上,初步阐明机插杂交粳稻超高产形成的群体特征:1)以足量的穗数与较大的穗型协调产出足够的群体总颖花量(50000万/hm2以上),并保持正常的结实率与千粒质量(结实率85%以上,千粒质量27g左右)。2)在合理的茎蘖动态(群体于有效分蘖临界叶龄期左右够苗,高峰苗适宜,一般为预期穗数的1.3倍)与叶面积指数(LAI)动态(孕穗期LAI达7.8~8.0,抽穗后LAI下降平缓,成熟期仍能保持3.0左右。)基础上提高成穗率(75%以上)与有效叶面积、高效叶面积比例(抽穗期有效叶面积率达95%,高效叶面积率达75%以上),以保证实现不同生育阶段目标生产力。3)以合理增加拔节-抽穗期物质生产与积累(群体生长速率22.5g/(m-2.d),干物质积累量9000kg/hm2以上,占总干物质量的45%左右)为重点,有效增强抽穗-成熟期群体物质生产与积累(群体生长速率13.5g/(m-2.d)左右,干物质积累量8000kg/hm2以上,占总干物质量的40%左右),以提高最终生物学产量(20400kg/hm2以上)。机插杂交粳稻生产过程中遵循以上规律可获得超高产。  相似文献   

16.
氮、硫配施对冬小麦氮素利用效率及产量的影响   总被引:6,自引:1,他引:6  
【目的】氮(N)、硫(S)是生物所必需的营养物质,对小麦籽粒产量和品质起着重要作用。硫素供应不足,特别是在当前大量氮素供应情况下引起的作物生理性缺硫将导致作物产量和含硫氨基酸蛋白质含量下降。本文旨在探索氮、硫配施对冬小麦氮素利用效率和籽粒产量的促进效果并提出合理的区域氮、硫施肥技术。【方法】20122013年,在河南温县以国审冬小麦品种豫麦49-198为供试材料,进行大田试验。设置不同施氮量0、120、180、240和360 kg/hm2(分别以N0、N120、N180、N240和N360表示)和施硫0和60 kg/hm2(S0和S60)试验,调查氮、硫对冬小麦干物质积累、氮素积累分配、籽粒产量和氮素利用效率的影响。【结果】对冬小麦生育后期干物质积累分析表明,干物质积累随施氮量增多而提高,相同施氮量条件下施硫较不施硫小麦干物质积累量显著提高,其中成熟期干物质积累量N180S60、N240S60和N360S60分别较N180S0、N240S0和N360S0提高2225、3607和3120 kg/hm2,而且氮素低的处理添加硫后干物质积累量高于氮素高不加硫处理,如N180S60N240S0、N240S60N360S0,处理间差异均达显著水平。随施氮量增多,冬小麦植株氮素积累总量增加,在N 240和360 kg/hm2水平,硫素供应显著增加小麦植株氮素积累。不同施氮量条件下施硫较不施硫均显著提高了小麦籽粒产量,分别提高了10.5%、18.3%、5.2%、5.6%和4.9%。随施氮量增多,氮肥偏生产力下降,氮回收效率、生理效率和农学效率则均以N 180达最高值。不同施氮水平下,施硫均显著提高了冬小麦氮素回收效率,但对氮生理效率影响不显著,其中在施N量为120、180和240kg/hm2时,施硫较不施硫氮肥偏生产力和农学效率均显著提高。【结论】在当前小麦生产中,采用控氮或减氮增硫技术措施,可实现小麦氮利用效率和籽粒产量的同步提高。在本试验地区小麦生产中,达到冬小麦稳产高效或增产高效的适宜施氮量为180 240 kg/hm2配合60 kg/hm2硫肥施用。  相似文献   

17.
Nitrogen (N) dilution curves, a pivotal tool for N nutrition diagnosis, have been developed using different winter wheat (Triticum aestivum L.) tissues. However, few studies have attempted to establish critical nitrogen (Nc) dilution curves based on the leaf area ratio (LAR) to improve the monitoring accuracy of N status. In this study, three field experiments using eight N treatments and four wheat varieties were conducted in Jiangsu Province of China from 2013 to 2016. The empirical relationship of LAR with shoot biomass (expressed as dry matter) was developed under different N conditions. The results showed that LAR was a reliable index, which reduced the effects of wheat varieties and years compared with the traditional indicators. The N nutrition index (NNI) based on the LAR approach (NNI-LAR) produced equivalent results to that based on shoot biomass. Moreover, the NNI-LAR better predicted accumulated N deficit and best estimated the relative yield compared with the other two indicator-based NNI models. Therefore, the LAR-based approach improved the prediction accuracy of Nc, accumulated N deficit, and relative yield, and it would be an optimal choice to conveniently diagnose the N status of winter wheat under field conditions.  相似文献   

18.
A two‐year field experiment was conducted to determine if using mixed strains of Rhizobium inoculant and starter nitrogen (N) fertilizer could improve yield and nodulation of four common bean varieties on a Vertisol at Alemaya, Ethiopia. A granular mixed inoculant of CIAT isolates 384, 274, and 632 and a starter N fertilizer at a rate of 23 kg N ha‐1 (50 kg urea ha‐1) were applied separately at planting. Inoculation with mixed strains and starter N fertilizer gave a significantly higher grain yield, nodule number, and dry matter yield for most varieties used. Both grain yield and dry matter yield showed a significant correlation (r=0.93 and r=0.87; P<0.05 for grain yield and dry matter yield, respectively, for 1991 crop season and r=0.90 and r=0.86; P<0.05 for grain yield and dry matter yield, respectively, for 1992 crop season) with nodule number. It is recommended that resource‐poor farmers adopt the practice of using a Rhizobium inoculant or starter N to improve common bean yields in the Hararghe highlands, Ethiopia.  相似文献   

19.
氮肥对新疆棉花产量形成期叶片光合特性的调节效应   总被引:25,自引:3,他引:25  
在新疆生态条件下,采用裂区设计研究了氮肥用量对棉花产量形成期叶片光合特性的调节效应。结果表明,适量追施氮肥在一定程度上可以改善叶片光合性能,提高植株生育后期叶片叶绿素含量和硝酸还原酶(NR)活性;维持叶片较高的PSⅡ潜在活性(Fv/Fo)和PSⅡ光化学最大效率(Fv/Fm);提高中下部叶片的光合速率,延缓了叶片衰老,保证了棉花生育后期光合产物的形成,从而使棉花达到高产。这种调节效应因品种和生育时期的不同而异。新陆早6号在盛铃前期叶片叶绿素含量、NR活性、光合速率及Fv/Fo和Fv/Fm随氮肥用量增加而增加,盛铃后期至吐絮期叶绿素含量、Fv/Fo和Fv/Fm、叶片光合速率等指标均以中氮处理(300.kg/hm2)最高,高氮处理易造成植株盛花期生长过旺,群体荫蔽,影响了叶片光合作用;新陆早7号中氮处理与高氮处理之间差异不明显。因此,生产上应根据不同品种和生育时期进行合理施肥,避免因施肥不当造成产量下降和浪费肥料。  相似文献   

20.
灌溉量和施氮量对油用亚麻茎秆抗倒性能及产量的影响   总被引:2,自引:1,他引:2  
为明确灌水和施氮对油用亚麻(Linum usitatissimum L.)抗倒伏能力和产量的影响,以‘陇亚杂1号’为材料,于2012—2013年以灌溉量为主处理(W1:2 700 m3·hm-2;W2:3 300 m3·hm-2),施氮量为副处理[纯氮量分别为N0:0 kg·hm-2(CK);N1:37.5 kg·hm-2(低氮);N2:112.5 kg·hm-2(中氮);N3:225 kg·hm-2(高氮)],研究灌溉量和施氮量对与油用亚麻抗倒性能相关的形态学特性、茎秆强度、抗倒伏指数及茎秆化学组分含量、产量构成因子及产量的影响。结果表明,随灌溉量的增加,茎秆强度和抗倒伏指数下降,株高增加,重心上移,茎粗、茎壁厚度降低,地上部干重增加,根干重减少,根冠比下降,同时茎秆中纤维素、木质素、可溶性糖和淀粉的含量下降;随施氮量的增加,茎秆强度和抗倒伏指数先升高后降低,株高和重心高度增加,茎粗、茎壁厚度、根干重和根冠比先增后减,地上部干重增加,茎秆中各化学组分含量及产量也先增加后降低。进一步分析发现抗倒伏指数与茎秆强度、茎粗、茎壁厚度、根干重、根冠比、纤维素含量、木质素含量、可溶性糖含量及淀粉含量均呈正相关关系,与株高、重心高度、地上部干重呈负相关关系。低灌水处理(W1)的茎秆强度、抗倒伏指数和产量分别比高灌水处理(W2)高30.55%、41.06%和0.53%,过多灌水不利于油用亚麻茎秆抗倒伏性能和产量的提高;中氮处理(N2)的茎秆强度分别比不施氮(CK)和高氮(N3)处理高36.8%和3.95%,产量分别高15.9%和0.8%,可见油用亚麻的栽培中施氮量不能过高或过低。因此,生产上采用适宜的灌溉量和施氮量是防止油用亚麻倒伏、获得高产、提高生产效益的重要措施。在本试验区,同等肥力土壤条件下,以灌溉量2 700 m3·hm-2和纯施氮量112.5 kg·hm-2为宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号