首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Heavy metal pollution is a widespread global problem causing serious environmental concern. Cadmium, one of the heavy metals, is water soluble and can be transferred from soil to plants and enter into the food chain. It is detrimental to human health because it accumulates in the body and can cause renal tubular dysfunction, pulmonary emphysema and osteoporosis. This heavy metal needs to be cleaned up for a clean and safe environment. An experiment was conducted to evaluate the potential of Dyera costulata as a phytoremediator to absorb cadmium from contaminated soils. Dyera costulata seedlings were planted on six different growth media (soil + different levels of cadmium): Control, 25 ppm Cd, 50 ppm Cd, 75 ppm Cd, 100 ppm Cd and 150 ppm Cd. The highest growth performance mainly height, basal diameter and number of leaves were in the control, 50 ppm Cd and 25 ppm Cd treatments, respectively. The highest accumulation of cadmium (52.9 ppm) was in the 75 ppm Cd treatment. Among the plant parts, leaves showed the highest concentration of cadmium. Dyera costulata showed high translocation factor and low bioconcentration factor values in soil at high cadmium concentrations and was also able to tolerate and accumulate high concentrations of cadmium. The roots of Dyera costulata were found to be suitable for the absorption of cadmium in contaminated soils. This species can be an efficient phytoremediator for soils contaminated with cadmium.  相似文献   

2.
所研究的蜡状芽孢杆菌RC可以在镉浓度为200mg·L-1的固体培养基平板上生长良好,表明菌株具有强抗镉的能力。该菌株在液体培养基中Cd2+、Cr3+、Pb2+浓度均为75mg·L-1和Mn2+浓度为100mg·L-1培养时,菌株生长正常。在重金属Cr3+、Pb2+、Mn2+存在时,采用红外光谱与原子吸收光谱分析菌株对Cd2+的积累,结果表明,培养基中其他重金属离子的加入,会影响菌株对Cd2+的积累率;当Cr3+存在时,Cr3+可以增加细胞壁上有效官能团活性,明显提高RC菌体对Cd2+的积累率,而其他重金属组合对Cd2+吸附积累能力影响不大;RC细胞壁上活性基团-OH、-NH-、-COOH、-PO34-和-M-O(O-M-O)活跃参与Cr3+、Pb2+、Mn2+和Cd2+多种重金属离子的络合作用。通过高温和十二烷基硫酸钠处理菌株进行质粒消除试验,未发现该菌株的抗镉性质与抗性质粒的存在相关。  相似文献   

3.
Phytoremediation is a developing technology that uses plants to clean up pollutants in soils. To adopt this technology to cadmium (Cd)–contaminated soils efficiently, a Cd hyperaccumulator with fast growth rate and large biomass is required. In the present study, we selected Caryophyllales as a potential clade that might include Cd hyperaccumulators because this clade had a high mean concentration of zinc (Zn), which is in the same element group as Cd. Three species in Caryophyllales and three species in different clades were grown with Cd. Among them, Amaranthus tricolor showed high accumulating ability for Cd under both water‐culture and soil‐culture conditions, whereas Brassica juncea, a known Cd hyperaccumulator, accumulated high concentrations of Cd in shoots only under water‐culture conditions. This result suggests that A. tricolor has Cd‐solubilizing ability in rhizosphere. Because A. tricolor has large biomass and high growth rate, this species could be useful for phytoremediation of Cd‐contaminated fields.  相似文献   

4.
Abstract

We have identified Crassocephalum crepidioides (Benth.) S. Moore (Compositae) as a cadmium (Cd)-accumulator plant in a heavy-metal polluted environment. In soil polluted with Cd, 5.7–17.5 mg kg?1 Cd, concentrations in the above-ground plant tissues were measured as 14.6–78.6 mg kg?1 with transfer factors in the above-ground plant tissues (concentration in above-ground tissues/soil concentration) of 1.5–6.0. No other toxic heavy metals or plant micronutrients were found to have accumulated into the above-ground plant tissues. In a hydroponic culture with 1 µmol L?1 Cd added to Hoagland's nutrient solution, Cd concentration in the above-ground plant tissues was 121.0 mg kg?1, with a transfer factor of more than 1000. In a pot culture carried out for 9 weeks in a greenhouse, the highest Cd concentration in the above-ground plant tissues, 121.2 mg kg?1, was found in a treatment with 5 mg kg?1 Cd, whereas the highest Cd content in an above-ground plant tissue, 106.1 µg, was found in a treatment with 2 mg kg?1 Cd. These results clearly showed that C. crepidioides is a Cd accumulator. In all samples, the Cd concentration in the above-ground plant tissues was higher than that in the roots. The results obtained in the present study show that this plant has a strong potential for use in phytoremediation in farm fields contaminated with Cd.  相似文献   

5.
Alyssum pintodasilvae Dudley is a nickel (Ni) hyperaccumulator endemic to serpentine soils of north‐east Portugal. In one experiment, the effects of cadmium (Cd), chromium (Cr), copper (Cu), Ni, lead (Pb), and zinc (Zn) on the growth and mineral composition of this species were evaluated. The growth of A. pintodasilvae, measured by dry matter accumulation, was not influenced by the presence of Cr, Cu, Pb, Ni, or Zn in the soil, but Cd applications led to significant decreases in dry matter yield. The addition of heavy metals to the soil resulted in increased uptake and translocation by A. pintodasilvae but only Ni was accumulated to high levels. In a second experiment, two cuts of A. pintodasilvae, grown on a Ni‐enriched soil, were compared. Nickel concentrations were higher in the second cut, suggesting the possibility of continued growth and harvest of this plant to detoxify Ni‐contaminated soils.  相似文献   

6.
Rice (Oryza sativa L.) grown on cadmium (Cd)-contaminated soils has caused health problems in Asian subsistence rice farmers. For other crops, normal co-contaminant zinc (Zn) inhibits the increased uptake of Cd. We used a multi-chelator-buffered nutrient solution to characterize the interaction of Zn and Cd in uptake-translocation of Cd in “Lemont” rice. The activity of free Zn2+ varied from 10?7.6 to 10?5.2 M, while free Cd2+ held constant at 10?10.7 M. Zinc activity 10?5.6 M and higher was phytotoxic to rice, resulting in severe chlorosis, reduced growth, and increased Cd transport to shoots. In contrast to previous studies with wheat, lettuce, and spinach, free Zn2+ maintained at adequate to sub-phytotoxic levels (10?7.6 to 10?6.1) did not inhibit Cd uptake by rice. The inability of Zn to inhibit Cd uptake by rice is a key factor in Cd risk from zinc-lead mine waste contaminated soil compared with other crops.  相似文献   

7.
ABSTRACT

The application of soil amendments to immobilize heavy metals is a promising technology to meet the requirements for environmentally sound and cost-effective remediation. The present work was carried out to evaluate the effect of phosphogypsum (PG) used alone and in combination with compost (CP) at a mix ratio of 1:1 wet weight ratio (PG+CP) at 10 and 20 g dry weight kg?1 dry soil, on heavy metal immobilization in contaminated soil, and on canola growth (Brassica napus). The results were then compared with untreated soil (control). The results revealed that the Pb, Cd, and Zn uptake of canola plants was reduced by the application of PG alone and when it was mixed with CP. At an application rate of 10 g dry weight kg?1 dry soil of (PG+CP), the dry weight of canola plants increased by 66.8%, which was increased in comparison on its weight in the untreated soil (control). The addition of PG alone resulted in more pronounced immobilization of heavy metals as compared to PG mixed with CP. Plant growth was improved with CP addition but heavy metals immobilization was greatest in PG alone treatments. Results suggest that PG may be useful for the immobilization of heavy metals in contaminated soils.  相似文献   

8.
A pot experiment was conducted to investigate the influence of phosphate (P) application on diethylene triamine pentaacetic acid (DTPA)–extractable cadmium (Cd) in soil and on growth and uptake of Cd by spinach (Spinacia oleracea L.). Two soils varying in texture were contaminated by application of five levels of Cd (NO3)2 (0, 20, 30, 40, and 60 mg Cd kg–1). Three levels of KH2PO4 (0, 12, and 24 mg P kg–1) were applied to determine immobilization of Cd by P. Spinach was grown for 60 d after seeding. Progressive contamination of soils through application of Cd affected dry‐matter yield (DMY) of spinach shoot differently in the two soils, with 67% reduction of DMY in the sandy soil and 34% in the silty‐loam soil. The application of P increased DMY of spinach from 4.53 to 6.06 g pot–1 (34%) in silty‐loam soil and from 3.54 to 5.12 g pot–1 (45%) in sandy soil. The contamination of soils increased Cd concentration in spinach shoots by 34 times in the sandy soil and 18 times in the silty‐loam soil. The application of P decreased Cd concentration in shoot. The decrease of Cd concentration was higher in the sandy soil in comparison to the silty‐loam soil. Phosphorus application enhanced DMY of spinach by decreasing Cd concentration in soil as well as in plants. The results indicate that Cd toxicity in soil can be alleviated by P application.  相似文献   

9.
The capability of Chromolaena odorata (L) to grow in the presence of different concentrations of three heavy metals in crude oil-contaminated soil and its capability to remediate the contaminated soil was investigated using pot experiments. C. odorata plants were transplanted into contaminated soil containing 50,000 mg kg?1 crude oil and between 100 and 2,000 mg kg?1 of cadmium, nickel, and zinc and watered weekly with water containing 5% NPK fertilizer for 180 days. C. odorata did not show any growth inhibition in 50,000 mg kg?1 crude oil. Plants in experiments containing 2,000 mg kg?1 Cd showed little adverse effect compared to those in Zn-treated soil. Plants in 1,000 and 2,000 mg kg?1 Ni experiments showed more adverse effects. After 180 days, reduction in heavy metals were: 100 mg kg?1 experiments, Zn (35%), Cd (33%), and Ni (23%); 500 mg kg?1, Zn (37%), Cd (41%), and Ni (25%); 1,000 mg kg?1, Zn (65%), Cd (55%), and Ni (44%); and 2,000 mg kg?1, Zn (63%), Cd (62%), and Ni (47%). The results showed that the plants accumulated more of the Zn than Cd and Ni. Accumulation of Zn and Cd was highest in the 2,000 mg kg?1 experiments and Ni in the 500 mg kg?1 experiments. Crude oil was reduced by 82% in the experiments that did not contain heavy metals and by up to 80% in the heavy metal-treated soil. The control experiments showed a reduction of up to 47% in crude oil concentration, which was attributed to microbial action and natural attenuation. These results show that C. odorata (L) has the capability of thriving and phytoaccumulating heavy metals in contaminated soils while facilitating the removal of the contaminant crude oil. It also shows that the plant??s capability to mediate the removal of crude oil in contaminated soil is not significantly affected by the concentrations of metals in the soil.  相似文献   

10.
A greenhouse assay using an arugula (Eruca sativa L.) hydroponics system was carried out to evaluate the following effects of increasing amounts of cadmium and lead in nutritive solution: (a) production; (b) translocation of cadmium (Cd) and lead (Pb) throughout the plants; (c) possible interactions of Cd and Pb with other mineral elements, transition metals, essential to plants; (d) tolerance limits to Cd and Pb with regard to production; and (e) chelating interaction of Cd and Pb with root substances. The absorption of Cd and Pb increased with increasing dosages in solution. Roots accumulated larger amounts of metals than shoots. Plants develop better with less than 0.025 mg L?1 of Cd, with a damaging Cd concentration of 1 mg L?1. The tolerable Pb concentration was up to 10 mg L?1. Cadmium and Pb translocate poorly in plants and their deleterious effect is due to the deposit of very stable chelates in roots.  相似文献   

11.
Controlled-release N fertilizers can affect the availability of heavy metals in the contaminated paddy soil.A soil incubation experiment was conducted to investigate the effects of prilled urea(PU),S-coated urea(SCU),and polymer-coated urea(PCU)on the solubility and availability of heavy metals Cd,Pb,Cu,and Zn in a multimetal-contaminated soil.The results showed that the application of different coated urea significantly affected the solubility and availability of heavy metals.At 5 d of incubation,the application of PU,SCU,and PCU had significantly decreased the concentrations of water-soluble and available Cd,Pb,Cu,and Zn,when compared with the control.At 60 d of incubation,the depletory effects of PU on water-soluble and available heavy metals had reduced,and the initial decrease in the concentrations of water-soluble Cd,Pb,Cu,and Zn caused by SCU had changed to an increase.The concentrations of water-soluble Pb,Cu,and Zn in the SCU-treated soil were higher than those in the control.Application with PCU led to a higher water-soluble Cu than that in the control,while the available Cd,Pb,and Zn were lower than those in the control.The effect of different coated urea was much stronger on the water solubility of the heavy metals than on their availability.The effects of controlled-release urea on the transformation of heavy metals resulted in changes in the concentrations of NH4^+,water-soluble SO4^2-,and soil p H.The results further suggested that PCU could be used in dry farming operations in multimetal-contaminated acid soils.  相似文献   

12.
Abstract: The fraction distributions of heavy metals have attracted more attention because of the relationship between the toxicity and their speciation. Heavy‐metal fraction distributions in soil contaminated with mine tailings (soil A) and in soil irrigated with mine wastewater (soil B), before and after treatment with disodium ethylenediaminetetraacetic acid (EDTA), were analyzed with Tessier's sequential extraction procedures. The total contents of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) exceeded the maximum permissible levels by 5.1, 33.3, 3.1, and 8.0 times in soil A and by 2.6, 12.0, 0.2, and 1.9 times in soil B, respectively. The results showed that both soils had high levels of heavy‐metal pollution. Although the fractions were found in different distribution before extraction, the residual fraction was found to be the predominant fraction of the four heavy metals. There was a small amount of exchangeable fraction of heavy metals in both contaminated soils. Furthermore, in this study, the extraction efficiencies of Pb, Cd, and Cu were higher than those of Zn. After extraction, the concentrations of exchangeable Pb, Cd, Cu, and Zn increased 84.7 mg·kg?1, 0.3 mg·kg?1, 4.1 mg·kg?1, and 39.9 mg·kg?1 in soil A and 48.7 mg·kg?1, 0.6 mg·kg?1, 2.7 mg·kg?1, and 44.1 mg·kg?1 in soil B, respectively. The concentrations of carbonate, iron and manganese oxides, organic matter, and residue of heavy metals decreased. This implies that EDTA increased metal mobility and bioavailability and may lead to groundwater contamination.  相似文献   

13.
Abstract

The effect of bacterial inoculation of Rhizobium fredii HN01 on the immobilization and speciation of Cu, Zn, and Cd was studied in Red and Cinnamon soil which are typical Chinese soils. The soil was mixed with bacterial suspension for one week followed by an immobilization of each heavy metal for another week. The total binding and fractionation of heavy metals in soils were analyzed. As compared with the control, the retention of total Cu, Zn, and Cd in Red soil increased by 28, 16, and 28%, respectively, in the presence of rhizobia. The amount of exchangeable, NH4OAc-extractable, Mn oxides-bound and organic matter-bound Cu increased by 23–123%. There were significant decrease of exchangeable Cu and marked increases of NH4OAc-extractable and Mn oxide-bound Cu in Cinnamon soil with the presence of rhizobial cells, although no changes for the total retention of Cu were observed. The amount of exchangeable Zn in Red soil-rhizobia composite was 20% greater than that of the no-rhizobia soil. Addition of rhizobia also increased exchangeable Cd and specifically-adsorbed Cd by 25 and 93%, respectively, in Red soil. No considerable differences were found for the total immobilization of Zn and Cd as well as their distribution in various solid fractions of Cinnamon soil in the absence and presence of rhizobial cells. In terms of soil components, it is assumed that bacterial biomass had a relatively less impact on the species of heavy metals bound with Fe oxides. Results suggested that the retention and speciation of heavy metals in soil are governed largely by the interactions of bacteria with various inorganic and organic soil constituents. The data are useful in understanding the impact of microorganisms on the behavior, mobility and transformation of heavy metals in soil environments.  相似文献   

14.
Contamination of soils with heavy metals becomes more and more a problem in many countries all over the world. In areas where metal contaminated soils are used for food crop production, metals relatively mobile within the plant, such as cadmium (Cd) and zinc (Zn) can easily come into the food chain with great risks for human health. Since bioavailability of heavy metals in soils varies with soil and plant characteristics, e.g., mineralogical and organic matter properties of the soil and plant metal susceptibility, prediction of heavy metal uptake by plants by the common soil and plant chemical analysis techniques is often unreliable. Recently, the use of biomarkers has been suggested to be a suitable technique complementing chemical soil analysis. Therefore, the usefulness of the biomarker phytochelatin (PC), a non‐protein thiol, specifically induced in plants suffering from heavy metal stress, was tested. Maize (Zea mays L.) plants were exposed to excess copper (Cu) or Cd in nutrient solution systems and metal and PC concentrations were monitored in plant shoot and root. Results clearly illustrated that very soon after plant exposure to the metal, PC induction started, especially in plant roots. Phytochelatin seems to be a useful early warning system for heavy metal stress in plants.  相似文献   

15.
Woody plant species that produce high biomass have been proposed for use in phytoremediation technology. We investigated the accumulation of cadmium (Cd) and zinc (Zn) in Salix babylonica, S. caprea, S. dasyclados, S. matsudana × alba, S. purpurea, S. smithiana, Populus tremula, and P. nigra clones grown in a pot experiment on a Calcaric and a Eutric Cambisol (pH 7.2 and 6.4) of different levels of contamination (total metal concentrations in mg kg–1 in soil A: 32.7 Cd, 1760 Zn; soil B: 4.34 Cd, 220 Zn). Generally, the tested clones tolerated large metal concentrations in soils and had larger Cd and Zn concentrations in leaves compared to the roots. The largest Cd concentrations in leaves were found in two clones of S. smithiana (440 mg kg–1 on soil A; 70 mg kg–1 on soil B). One of the S. smithiana clones had also the largest Zn concentrations (870 mg kg–1) on soil B but accumulated slightly less Zn than a S. matsudana × alba clone (2430 mg kg–1) on soil A. The Cd concentrations in leaves of both S. smithiana clones on soil A are the largest ever reported for soil‐grown willows. The bioconcentration factors of the best performing clone reached 15.9 for Cd and 3.93 for Zn on the less contaminated soil B. Also based on the metal contents in leaves, this clone was identified as the most promising for phytoextraction. The metal concentrations in leaves observed in the pot experiment do not reflect those found in a previous hydroponic study and the leaf‐to‐root ratios are clearly underestimated in hydroponic conditions. This demonstrates the need for testing candidates for phytoextraction crops on soils rather than in hydroponics. Our data also show that the phytoextraction potential should be tested on different soils to avoid misleading conclusions.  相似文献   

16.
3种有机酸对伴矿景天修复效率及土壤微生物数量的影响   总被引:2,自引:0,他引:2  
伴矿景天(Sedumplumbizincicola)是一种Cd和Zn的超积累植物,常用于Cd污染土壤的植物修复。有机酸能够提高土壤重金属的有效性,促进植物对重金属的积累,对重金属污染土壤的植物修复效率具有强化作用,并对土壤微生物数量有重要影响。以河潮土和红黄泥为供试土壤,探讨了乙二胺四乙酸(EDTA)、柠檬酸、草酸对伴矿景天修复效率和土壤微生物数量的影响。结果表明,有机酸能显著提高土壤有效态Cd含量,柠檬酸处理的效果最好,河潮土和红黄泥中有效态Cd含量较单种伴矿景天分别增加72.73%,12.99%(P<0.05);伴矿景天地上部Cd含量在河潮土和红黄泥中以EDTA处理最高,在河潮土和红黄泥中分别比单种伴矿景天增加99.24%和33.32%;与单种伴矿景天相比,添加有机酸处理河潮土和红黄泥中伴矿景天修复效率显著提高。添加有机酸比单种伴矿景天显著增加土壤中微生物数量,其中柠檬酸处理河潮土中细菌和真菌数量分别增加34.38%和68.42%(P<0.05),草酸处理红黄泥中放线菌数量增加150.00%。研究结果可为重金属污染土壤的植物强化修复提供理论支撑。  相似文献   

17.
刈割对六种牧草吸收重金属和修复污染土壤潜力的研究   总被引:1,自引:0,他引:1  
The pollution of soils by heavy metals has dramatically increased in recent decades. Phytoextraction is a technology that extracts elements from polluted soils using hyperaccumulator plants. The selection of appropriate plant materials is an important factor for successful phytoextraction in field. A field study was conducted to compare the efficiency of six high-biomass forage species in their phytoextraction of heavy metals (Cd, Pb and Zn) from contaminated soil under two harvesting strategies (double harvesting or single harvesting). Among the tested plants, amaranth accumulated the greatest amounts of Cd and Zn, whereas Rumex K-1 had the highest amount of Pb in the shoot under both double and single harvesting. Furthermore, double harvesting significantly increased the shoot biomass of amaranth, sweet sorghum and sudangrass and resulted in higher heavy metal contents in the shoot. Under double harvesting, the total amounts of extracted Cd, Pb and Zn (i.e., in the first plus second crops) for amaranth were 945, 2 650 and 12 400 g ha-1, respectively, the highest recorded among the six plant species. These results indicate that amaranth has great potential for the phytoextraction of Cd from contaminated soils. In addition, the double harvesting method is likely to increase phytoextraction efficiency in practice.  相似文献   

18.
The purpose of this study was to use zero‐valent iron nanoparticles (nZVI) and cellulosic wastes to reduce bioavailability of lead (Pb) and cadmium (Cd), and to establish Persian maple seedlings (Acer velutinum Bioss.) in contaminated soil. One‐year‐old seedlings were planted in pots filled with unpolluted soil. Lead [Pb(NO3)2] and Cd [Cd(NO3)2] were added with concentrations of 0 (Control), 100 (Pb100), 200 (Pb200), and 300 (Pb300) mg kg−1 and 10 (Cd10), 20 (Cd20), and 30 (Cd30) mg kg−1. Cellulosic wastes were mixed with soil at the same time of planting [four levels: 0, 10 (W1), 20 (W2), 30 (W3) g 100 g−1 soil]. The nZVI was prepared by reducing Fe3+ to Fe0 and injected to pots [four levels: 0, 1 (N1), 2 (N2), and 3 (N3) mg kg−1]. Height, diameter, biomass, tolerance index of seedlings, bioavailability of heavy metals in soil, and removal efficiency of amendments were measured. The highest values of seedling characteristics were observed in N3. The highest removal efficiency of Pb (Pb100: 81.95%, Pb200: 75.5%, Pb300: 69.9%) and Cd (Cd10: 92%, Cd20: 73.7%, Cd30: 68.5%) was also observed in N3. The use of nZVI and cellulosic waste could be a proper approach for seedling establishment in forests contaminated with heavy metals.  相似文献   

19.
水稻根际耐镉细菌的筛选与鉴定   总被引:1,自引:2,他引:1  
为获得稻田土壤镉污染修复的微生物,采用培养基加镉平板法,从水稻根际土壤分离耐镉细菌。本研究分离得到3株耐镉菌株,经16S rDNA测序、比对,鉴定为假单胞菌属细菌。对菌株细胞形态的电镜观察、菌株生长曲线的测定结果表明,在镉处理浓度为100 mg L 1条件下,菌株生长未受明显抑制,但菌株形态发生了适应性的变化;在镉处理浓度超过300 mg L 1时,菌株生长受到明显抑制;在镉处理浓度700 mg L 1条件下,菌株仍能生长,但生长延滞期延长,对数期后的生长量亦低;对菌体镉含量分析表明,在100 mg L 1镉处理下,3株菌株菌体中的镉含量分别为9.04 mg g 1、4.96 mg g 1和28.58 mg g 1,富集系数依次为90.4、49.6和285.8。可见,分离得到的3株菌株具有较强镉耐性和镉吸收能力,将为稻田土壤重金属镉污染的修复提供重要微生物资源。  相似文献   

20.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号