首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The modern varieties of pigeonpea were domesticated from perennial wild species with a tall bushy startue (van der Maesen 1990). Although breeding efforts had been focused on the incorporation of the annual character compatible with the present cropping systems, perennial character persists in the growth habit. The growth feature related to the perennial character is represented by a low early growth vigor (Brakke and Gardner 1987). The lower net photosynthetic rate compared with that of sunflower, cotton, and other legumes at the same leaf age (Rawson and Constable 1981) may account for the slow growth. Although photosynthetic activities are controlled by many factors, including environmental, physical, and chemical factors, allocation of the fixed carbon into either starch or sucrose is one of the regulating mechanisms in photosynthetic pathways (Huber et al. 1990) which directly affects translocation of photosynthates and consequently whole plant growth.  相似文献   

2.
Temperature is a limiting factor on legume-Bradyrhizobium symbiosis of subtropical plants in the temperate region. Twelve strains of Bradyrhizobium spp. that nodulate pigeonpea [Cajanus cajan (L.) Millsp], and cowpea [Vigna unguiculata (L.) Walp], were evaluated for tolerance to three temperature regimes (20°C/10°C, 30°C/20°C, and 38°C/25°C day/night temperature) by determining their growth following exposure to the regimes. The five most temperature-tolerant strains were further evaluated for symbiotic effectiveness with pigeonpea and cowpea under controlled temperatures. These strains were USDA 3278, USDA 3362, USDA 3364, USDA 3458, and USDA 3472. Plant heights of both crops were generally independent of Bradyrhizobium strains and were dependent mainly on temperature regimes. Plant heights were the shortest at the lowest temperature. At the lowest temperature regime, biological nitrogen (N) fixation by pigeonpea was almost completely inhibited. Cowpea genotype IT82E-16 inoculated with USDA 3458 formed the most effective symbiosis. The 30°C/20°C temperature regime was optimum for effective symbiotic association in both crops, and also for Bradyrhizobium survival.  相似文献   

3.
In cowpea (Vigna unguiculata (L.) Walp.) tolerance of manganese (Mn) excess depends on genotype, silicon (Si) nutrition, form of nitrogen (N) supply, and leaf age. The physiological mechanisms for improved Mn leaf-tissue tolerance are still poorly understood. On the basis of the density of brown spots per unit of leaf area and the callose content which are sensitive indicators of Mn toxicity, it was confirmed that cultivar (cv.) TVu 1987 was more Mn-tolerant than cv. TVu 91, young leaves were more Mn-tolerant, Si improved Mn tolerance, and NO3-grown plants were more Mn-tolerant than NH4+-grown plants. A close positive relationship existed between the bulk-leaf Mn content and the vacuolar Mn concentration from the same leaves. Since no clear and consistent differences existed between leaf tissues differing in Mn tolerance, the results suggest that accumulation of Mn in the vacuoles and its complexation by organic anions do not play a role in Mn leaf-tissue tolerance in cowpea. A near linear relationship was found between leaf Mn contents and concentrations of free (H2O-soluble) and exchangeable-bound (BaCl2-extractable) Mn in the apoplastic washing fluid (AWF) extracted from whole leaves by an infiltration and centrifugation technique. There were no differences in apoplastic Mn concentrations owing to genotype and form of nitrogen nutrition. However, Si decreased the Mn concentration in the AWF. With increasing bulk-leaf Mn contents, concentrations of organic anions in the AWF also increased. The results suggest that complexation of Mn by organic anions in the leaf apoplast contribute to Mn tolerance due to genotype and more clearly due to NO3-N nutrition. Cell wall-bound peroxidase activity increased with leaf age and was higher in the Mn-sensitive cv. TVu 91 than in cv. TVu 1987. This was in agreement with a higher H2O2 production rate in cv. TVu 91. Also, a lower ratio of reduced to oxidized ascorbic acid in the AWF revealed that in Mn-sensitive leaf tissue, the apoplastic reduction capacity was lower than in Mn-tolerant leaf tissue when genotypes and leaves of different age were compared. We interpret our results as strong circumstantial evidence that Mn tolerance depends on the control of the free Mn2+concentration and of Mn2+-mediated oxidation/reduction reactions in the leaf apoplast.  相似文献   

4.
Detection of DNA polymorphism in cultivated pigeonpea (Cajanus cajan) and two of its wild relatives Cajanus volubilis and Rhynchosia bracteata is reported here for the first time using amplified fragment length polymorphism (AFLP) fingerprinting. For this purpose, two EcoRI (three selective nucleotides) and 14 MseI (three selective nucleotides) primers were used. The two wild species shared only 7.15% bands with the pigeonpea cultivars, whereas 86.71% common bands were seen among cultivars. Similarly, 62.08% bands were polymorphic between C. volubilis and pigeonpea cultivars in comparison to 63.33% polymorphic bands between R. bracteata and pigeonpea cultivars, and 13.28% polymorphic bands among pigeonpea cultivars. The cluster analysis revealed low polymorphism among pigeonpea cultivars and very high polymorphism between cultivated pigeonpea and its wild relatives. The AFLP analysis also indicated that only one primer combination (EcoRI + ACT and MseI + CTG), at the most any four primer pair combinations, are sufficient for obtaining reliable estimation of genetic diversity in closely related cultivars like pigeonpea material analyzed herein. AFLP analysis may prove to be a useful tool for molecular characterization of pigeonpea cultivars and its wild relatives and for possible use in genome mapping.  相似文献   

5.
The physiology of NaCl induced stress was studied in two prop species, cowpea and 4 cultivars of tobacco one of which (Jayashree) is salt sensitive. It was found that the growth of all the cvs of tobacco was reduced by the presence of NaCl (100 mH) in the nutrient medium. While the fresh wt per unit area of the leaves of salt‐tolerant tobacco cv. I and PV‐7 (Nicotiana tabacum L.) and MPS‐219 (N. rustica L.) was increased’ significantly, it was decreased in the salt‐sensitive Jayashree. The dry wt per unit leaf area was decreased much more in I, PV‐7 and J than in NPS‐219. The total chlorophyll was reduced in all and more so in Jayashree.

The relative turgidity % was found to decrease in the primary leaves of cowpea (Vigna unguiculata L.) in the first 6 days of treatment with 100 mM NaCl in the nutrient medium while the decrease was less significant in the first and and second trifoliate leaves, showing that there was readjustment with growth of the plant to salinity. The 14C fixation in the leaf disks of cowpea grown in NaCl was much less than in the control plants. The studies reveal that there is a general reduction in the growth of both tobacco and cowpea following NaCl treatment and this effect is due to a decrease in the total chlorophyll and a reduced rate of photosynthesis.  相似文献   

6.
ABSTRACT

Low bioavailability of soil phosphorus (P) often limits N2 (nitrogen) fixation and crop production in large parts of the tropics. The efficiency of P acquisition and P use by 21 genotypes of pigeonpea [Cajanus cajan (L.) Millsp.] were studied in a pot experiment using two cowpea [Vigna unguiculata (L.) Waip.] genotypes as controls. The short-duration genotypes produced more dry matter, accumulated more P, and produced more dry matter per unit of absorbed P than the medium-and long-duration genotypes. Dry-matter production correlated positively with the P uptake (r2 = 0.72) and P-use efficiency (r2 = 0.86). The P uptake correlated positively with the P-use efficiency (r2 = 0.36); whereas the P-use efficiency correlated negatively with the P-uptake efficiency (r2 = 0.50). Root surface did not determine P acquisition of pigeonpea, which absorbed 1.6 mg P cm?3 from 33 cm3 soil compared with 0.17 mg P cm?3 from 387 cm3 soil for cowpea at 66 d.  相似文献   

7.
Summary Damage caused by Rivellia angulata larvae to pigeonpea root nodules at the ICRISAT center in India was greater in the crop grown on Vertisols (up to 86%) compared to that on Alfisols (20%). Attempts to quantify the field effects of nodule damage on growth and yield of pigeonpea in a Vertisol, involving many heavy applications of soil insecticides (aldrin and hexachlorocyclohexane) failed because the insecticides did not control the pest and adversely affected the growth of the pigeonpea and the subsequent crop of sorghum (Sorgorum bicolor L. Moench). The impact of nodule damage on pigeonpea growth, yield and nutrient uptake was successfully studied in greenhouse-grown plants at three N levels. In this pot study, artificial inoculation with Rivellia sp. led to substantial nodule damage (70%). The results of this damage were a significant overall reduction in nodule dry weight (46%), acetylene reduction activity (31%), total leaf area (36%), chlorophyll content of leaves (39%) and shoot dry weight (23%) 68 days after sowing. At maturity, Rivellia sp. infestation caused significant reductions in top dry weight (22%), root and nodule dry weight (27%), seed dry weight (14%), and total N (29%) and P uptake (19%). The problems and prospects of manipulating nodule damage so as to reduce N losses in pigeonpea are discussed.Submitted as JA No. 756 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

8.
The effects of arbuscular mycorrhizal (AM) fungi on water status and stomatal behaviour of cowpea, Vigna unguiculata (L.) Walp. cv. B89-504, under water-stressed conditions in the greenhouse were studied. The 3 × 2 experimental design included two levels of mycorrhizal colonisation (Glomus mosseae, Glomus versiforme) and non-mycorrhizal control treatment and two soil moisture levels (well-watered pots and pots allowed to dry). Relative water content and leaf water potential values were higher in well-watered mycorrhizal and non-mycorrhizal plants than in water-stressed mycorrhizal and non-mycorrhizal plants. AM species had no significant effect on leaf osmotic potential, stomatal conductance and leaf transpiration in both well watered and water-stressed plants. The values of stomatal conductance and leaf transpiration were high during the vegetative stage and low during the flowering stage. These responses which can be related to the age of the plant suggest that mycorrhizal colonisation did not affect stomatal closure of cowpea plants during water stress. The decrease in plant growth and dry matter production in both mycorrhizal and non-mycorrhizal plants shows that drought resistance in cowpea was unaffected by mycorrhiza in the vegetative phase.  相似文献   

9.
Zinc (Zn) and nickel (Ni) accumulation in the seedlings of two pigeonpea [Cajanus cajan (L.) Millspaugh] cultivars were studied under different concentrations of Zn and Ni supplied. Significant differences in the seedling growth were observed between the two cultivars of pigeonpea as well as between Zn and Ni treatments. The Zn and Ni treatments decreased dry weights and relative growth indices of the roots and shoots. The Zn and Ni accumulation was greater in the roots of cv. LRG30 than cv. ICPL87. The amount of metal ions allocated to the shoots was more in cv. ICPL87 than in cv. LRG30. The conspicuous compartmentation of Zn and Ni in the roots of the seedlings and the differential responses of the two cultivars of pigeonpea to these heavy metals indicated that cv. LRG30 possesses better root compartmentation of Zn and Ni and therefore resulted in relatively better growth than cv. ICPL87.  相似文献   

10.
Summary Once symbiosis between the pigeonpea cultivar ICPL 227 and the Rhizobium sp. strain IC 3024 is established, it is efficient in fixing N2 under saline conditions and can support growth comparable to N-fed plants in growth media with up to 6 dS m-1 salinity. However, the early stages of establishment of the pigeonpea-IC 3024 symbiotic system have proved sensitive to salinity. The present study showed that the number of nodules was markedly reduced at 8 dS m-1 salinity; however, nodule development and functioning were not affected by salinity in the pigeonpea-IC 3024 symbiosis. The symbiotic system of Atylosia platycarpa and Rhizobium sp. strain IC 3087 was established successfully even at 12 dS m-1 and supported growth comparable to that of N-fed plants. P levels in leaves were increased under saline conditions in N-fed and N2-fixing pigeonpea and A. platycarpa. There were no consistent differences in the leaf Na and chloride levels between N-fed and N2-fixing plants of pigeonpea and A. platycarpa. The present study suggests that the rhizobial symbiosis may not be a necessary factor for initial screening of pigeonpea and related wild species for salinity tolerance.Submitted as JA No. 964 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

11.
紫茎泽兰叶片凋落物对入侵地4 种草本植物的化感作用   总被引:5,自引:2,他引:3  
为了明确紫茎泽兰叶片凋落物对入侵地草本植物的化感作用, 研究了不同浓度紫茎泽兰叶片凋落物水提液对入侵地草本植物多年生黑麦草、白三叶、辣子草和紫花苜蓿种子萌发和幼苗生长的影响, 同时结合土培试验研究了叶片凋落物在入侵地土壤中的化感作用。结果表明, 除多年生黑麦草外, 水提液对其他3 种草本植物种子萌发均产生了显著的化感抑制作用, 且水提液的浓度越高抑制效果越强; 低浓度水提液对紫花苜蓿和辣子草的幼苗生长存在显著化感促进作用, 高浓度的水提液对除多年生黑麦草外的其他3 种植物幼苗的生长存在显著化感抑制作用, 水提液对多年生黑麦草幼苗生长的影响不显著; 土壤中按照50 g·kg-1的比例添加叶片凋落物后, 显著抑制了白三叶的生长, 而添加活性炭后, 白三叶的单株生物量相对于未添加活性炭的处理增加71.25%, 进一步证实叶片凋落物在土壤中的化感抑制作用。这说明外来入侵植物紫茎泽兰可能通过其叶片凋落物在入侵地土壤中降解, 释放化感物质, 抑制伴生植物的种子萌发和幼苗生长, 为自身创造有利的生长环境, 实现其成功入侵和扩张。  相似文献   

12.
We examined the effect of a vesicular-arbuscular mycorrhizal (VAM) fungus Glomus pallidum Hall on the phosphatase activity and cytokinin concentration in cowpea [Vigna unguiculata (L.) Walp] roots at successive stages of plant growth. Both acid and alkaline phosphatase activity were significantly (P=0.05) higher in mycorrhizal than in non-mycorrhizal roots 30 days after inoculation. Similarly, the cytokinin content was significantly increased in mycorrhizal roots compared to non-mycorrhizal roots. Our study suggests that these biochemical changes may improve the growth of mycorrhizal cowpea plants.  相似文献   

13.
Comparative physiological studies on iron (Fe) chlorosis of Vicia faba L. and Helianthus annuus L. were carried out. High internal Fe contents in Vicia cotyledons (16–37 μg) were completely used for plant growth and Fe chlorosis was not inducible by the application of nitrate (with or without bicarbonate). In Helianthus, low quantities of Fe in the seeds (4 μg) were insufficient for normal growth and without Fe in the nutrient solution, Fe chlorosis was obtained in all treatments. This chlorosis was an absolute Fe deficiency. Also, the treatment with 1 μM Fe in the nutrient solution and nitrate (with or without bicarbonate) led to severe chlorotic symptoms associated with low leaf Fe concentrations and high Fe concentrations in the roots. In contrast, Helianthus grown with NH4NO3 and 1 μM Fe had green leaves and high leaf Fe concentrations. However, with NO3 supply (with or without bicarbonate), Fe translocation from the roots to the upper plant parts was restricted and leaves were chlorotic. Chlorotic and green sunflower leaves may have the same Fe concentrations, leaf Fe concentration being dependent on Fe translocation into the leaf at the various pH levels in the nutrient solution. At low external pH levels (controlled conditions) more Fe was translocated into the leaf leading to similar leaf Fe concentrations with higher chlorophyll concentrations (NH4NO3) and with lower chlorophyll concentrations (NO3). This indicates a lower utilization of leaf Fe of NO3 grown sunflower plants. Utilization of Fe in faba bean leaves is presumably higher than in sunflower leaves. In Vicia xylem sap pH was not affected by nitrate. In contrast, the xylem sap pH in Helianthus was permanently increased by about 0.4 pH units when fed with nitrate (with or without bicarbonate) compared with NH4NO3 nutrition. The xylem sap pH is indicative of leaf apoplast pH. From our earlier work (Mengel et al., 1994; Kosegarten und Englisch, 1994) we therefore suppose that in Helianthus, Fe immobilization occurs in the leaf apoplast due to high pH levels when grown with nitrate (with or without bicarbonate).  相似文献   

14.
Following the prevalent agronomic practice of applying N fertilizer in two splits at optimum levels recommended for maximum yield viz. 120 kg N ha, to two wheat (Triticum aestlvum L.) cultivars, which differ in in vivo nitrate reductase (NR) activity, it was observed that the activity is high in the first formed leaf blades and declines in the successively formed ones. Enhancement in the activity subsequent to incubation of excised leaf blades in NO3 suggests that the substrate (NO 3) is limiting and that the leaf blades, particularly the upper ones, have the potential to reduce additional amounts of NO3 . High NR cultivar has greater potential than the low NR cultivar. The studies suggest that it may be possible to increase the NO3 moles reduced and thus enhance the reduced N content in case the nitrogen is available at later stages of growth.  相似文献   

15.
 The interaction of plant nutrients, root-soluble carbohydrate availability and arbuscular mycorrhizal (AM) fungi was examined in field grown cowpea [Vigna unguiculata (L.) Walp.]. Plant nutrients were altered through application of farmyard (cow dung, sheep manure) and green (sunnhemp, pongamia) manures. Organic amendments increased plant growth, AM fungal colonization, soluble carbohydrate concentration in roots, and spore numbers. Percent total colonization, root length with vesicles and spore numbers in soil were negatively correlated with the concentration of soluble carbohydrates within roots, which in turn were related to tissue nutrient levels. However, a positive correlation existed between soluble carbohydrate concentrations within root and root length with arbuscules. But the mycorrhizal parameters were related more to plant nutrient level and their ratios, indicating that tissue nutrients have another level of control in addition to their effect on soluble carbohydrate concentration in roots. Increased AM colonization due to organic amendment significantly reduced nutrient imbalances. The strong relationship between colonization and root-soluble carbohydrate concentration levels validates the basic assumption that mycorrhizal fungi act as a 'strong sink' for photosynthates. This study indicates that the host influences AM colonization by regulating the formation of AM fungal structures and spore formation via availability of root carbohydrates. Received: 15 January 1999  相似文献   

16.
Frontline demonstrations technology-transfer program (FLD-TTP) in pulses is a noble initiative of the government of India for higher technology adoption to bridge yield gaps. Thus, a study was conducted in Himachal Pradesh, India, on pulse productivity and profitability enhancement using proven technology besides yield gap analysis under FLD-TTP. Extension yield gaps varied by 485–550, 210–460, 470–640, 290–320, 494–600, and 277–512 kg ha?1 in blackgram (Vigna mungo), kidneybean (Phaseolus vulgaris), pigeonpea (Cajanus cajan), cowpea (Vigna sinensis), chickpea (Cicer arietinum), and lentil (Lens culinaris), respectively, in the current study. Greater technology gaps were registered in cowpea and chickpea and the least in kidneybean. It was inferred that by adopting improved pulse production technology, pulse productivity can be raised by 97–128, 39–82, 112–129, 59–65, 130–141, and 67–126% in blackgram, kidneybean, pigeonpea, cowpea, chickpea, and lentil, respectively. Improved technology package has also enhanced profitability and additional returns enhancing incremental benefit–cost ratio (1.25–7.21). Technology indexes in blackgram (34.3–34.7%), kidneybean (32–37.5%), pigeonpea (47–50.6%), cowpea (68.8–73%), chickpea (59–65%), and lentil (44.3–60.2%) revealed that demonstrated technology under FLD-TTP is quite feasible in prevailing farming situations in Himachal Pradesh, but it strongly emphasizes educating farmers intensively to adopt available technology. Improved technology has also raised water-use-efficiency in Kharif (0.89–1.32 kg ha?1 mm) and Rabi pulses (2.41–5.62 kg ha?1 mm). Overall, FLD-TTP has great potential to scale up pulse productivity and farmers’ livelihoods in Himachal Pradesh and collateral farming situations in the developing world to enhance agricultural production.  相似文献   

17.
In our previous studies, pigeonpea (Cajanus cajan L.), groundnut (Arachis hypogaea L.), and rice (Oryza sativa L.) were found to have a higher ability to take up Fe- or Al-bound phosphorus (P) than soybean (Glycine max L.) and sorghum (Sorghum bicolor L.). Phosphorus absorption characteristics like I max, K m, C min, and FeIII reduction activity of roots, and root exudates in various crops were examined with a view to analyzing the mechanisms of P uptake. Phosphorus uptake ability was largely unrelated to variations in I max, K m, C min, and FeIII reduction activity of roots. Phosphorus-solubilizing activity in anionic fractions of root exudates was detected in pigeonpea but not in rice or groundnut. Malonic acid was the major component followed by oxalic and piscidic acid. These organic acids were able to release P from FePO4 and A1PO4. The higher P uptake ability of pigeonpea in soils with low P fertility presumably depends on the secretion of such organic acids from roots.  相似文献   

18.
Seeds of Carrizo citrange (Citrus senensis (L.) Osb. X Poncirus trifolliata (L.), Cleopatra mandarin (C. reticulata Blanco), Sour orange (C. aurantium L.), and Rough lemon (C. Union (Buna f.) were sown in trays, irrigated without or with enriched Carbon dioxide (CO2) (1,362 mg L‐1) and evaluated for seedling emergence, growth, and nutrient contents. Rough lemon had a faster rate and higher percent emergence than the other rootstocks. Carrizo citrange had thicker stem diameters and taller seedlings than other rootstocks. Cleopatra mandarin had the smallest seedling shoot and root weights and larger shootrroot ratios than Rough lemon and Sour orange. Carrizo citrange and Cleopatra mandarin had higher leaf chlorophyll‐a and total chlorophyll content than Rough lemon or Sour orange. Carbon dioxide enriched irrigation had no effects on emergence or seedling growth variables except lower root weight. Lower media pH (6.90 versus 5.65), attributed to CO2 enriched irrigation, may have adversely affected root growth as compared to shoot characteristics. Leaf nutrient contents generally differed between rootstocks but were not affected by CO2 enriched water except for higher Zn and lower Mn contents. These results indicate that citrus seedling emergence, subsequent growth and leaf nutrient content differred between rootstocks but there are no beneficial effect from CO2 enriched irrigation.  相似文献   

19.
A study was conducted to determine the effects of legume companion crops and phosphorus (P) fertilizer on the growth and survival characteristics of newly established loblolly pine (Pinus taeda L.) seedlings. At 12 months post‐establishment, there was no legume effect (P>0.05) on root lateral development or ropting depth for pine seedlings. Likewise, there was no legume effect (P>0.05) on aboveground biomass production of pine seedlings. Partridge pea (Cassia fasciculata Michx.) had a negative effect (P<0.05) on pine seedling total root biomass compared to other treatments. Pine seedlings grown with legumes allocated less resources to root development compared to pine seedlings grown alone. Pine seedlings grown alone or with cowpea [Vigna unguiculata (L.) Walp.] were subject to less mortality (P<.05) than seedlings grown with alyceclover [Alysicarpus vaginalis (L.) DC] or partridge pea. Phosphorus fertilization enhanced dry matter (DM) yield of legumes but had no effect on rooting depth of pine seedlings during the first 12 months of growth. After 12 months post‐establishment, the most pronounced effect of P fertilization was that of increased nitrogen (N) content of leaf, stem, and roots of pine seedlings. Native, annual herbaceous grass biomass in the control plots (no legume) reduced the amount of soil N to below pre‐planting levels, while soil N levels in all legume plots exceeded pre‐trial levels.  相似文献   

20.
A study was conducted during 1982 and 1983 to determine the effect of tillage and mulching on soil environment and cowpea (Vigna unguiculata cv. FS-68) seedling growth under arid conditions. One disking and three diskings with a disc harrow up to 15-cm depth improved the soil environment and increased the final seedling emergence count, but did not affect the population of Macrophomina phaseolina in soil. Disking also increased plant growth and markedly reduced seedling mortality. Placement of weed mulch in-between the crop rows at the rate of 6 t ha−1 along with disking treatments significantly increased the mean moisture status of the 15-cm soil depth by 1.4% on a dry weight basis (Pw), significantly decreased the mean maximum temperature of the 10-cm depth (measured at 2 p.m.) by 3.9°C and thus increased plant growth and dry matter production. Mulching also markedly reduced the population of M. phaseolina and the mortality of the cowpea seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号