首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

In order to study the effects of seed nitrogen content and biofertilizer priming on germination indices of wheat seeds under salinity stress, a factorial experiment based on a completely randomized design with four replications was conducted in 2009. Experimental factors consisted of: (1) the application of different nitrogen fertilizer rates (0, 55, 110 and 165 kg ha?1 N) on parent plants; (2) priming of achieved seeds by biofertilizers (Nitragin, Biophosphorus and distilled water); and (3) different levels of salinity produced by NaCl (0, ?0.4, ?0.8 and ?1.2 MPa). Germination percentage, germination rate, mean germination time, germination index, radicle and plumule length, radicle and plumule dry weight and radicle number per seedling were measured. Nitrogen application increased seed nitrogen content in parent plants. All germination indices decreased with increasing in salinity levels. Biofertilizer priming, especially Nitragin, had a positive effect on germination percentage, radicle number and radicle and plumule length in most salinity levels. The highest values for germination factors were related to achieved seeds from parent plants that were treated with 110 kg ha?1 N. Overall, application of middle levels of N fertilizer (55 and 110 kg ha?1 N) on parent plants combined with seed priming with Nitragin biofertilizer improved the germination indices of wheat under salinity stress.  相似文献   

2.
Deep seeding of wheat, a common practice when soil moisture is deficient, causes poor seedling emergence and stand establishment. We investigated whether increasing seed protein content by nitrogen fertilization of parental plants might increase emergence rate and vigor of winter wheat seedlings from deep‐planted seeds. Four seeding depths, three cultivars, and three seed protein contents were compared in different soil mixtures and fertility regimes. Under all treatments, emergence rate and dry weight of seedlings markedly decreased as seeding depth was increased. Increasing protein content of seeds sometimes, but not always, increased seedling emergence rate and commonly increased seedling dry weight regardless of soil mixture or fertility regime. Differences were greatest at 4.8‐ and 12‐cm seeding depths; seedlings failed to emerge from 16‐cm depth under any treatments. We concluded that increasing seed protein content by nitrogen fertilization of parent plants is an economic and efficacious method of enhancing wheat establishment when seed must be deeply planted.  相似文献   

3.
The effect of ammonium nitrogen concentration in soil solution on the establishment of rice plants was examined. The increase of the concentration decreased the percentage of establishment of seeds sown in submerged soil, although most of seeds sown on submerged soil became established. Therefore, the increase of ammonium nitrogen concentration in soil solution may impair the establishment of seeds sown in submerged soil, which would occur presumably because the increase delays the spear growth and emergence without the decline of soil redox potential. Several seed lots with various nitrogen contents were obtained from rice plants grown under various conditions. The percentage of establishment of low-nitrogen seeds sown in submerged soil was much lower than that of high-nitrogen seeds, especially in soils whose solution contained a large amount of ammonium nitrogen. However, the difference in the percentage of establishment between high- and low-nitrogen seeds sown on submerged soil was much smaller. Therefore, the increase of seed nitrogen content may improve the percentage of establishment of seeds sown in submerged soil, presumably because the increase accelerates the spear growth and emergence. Consequently, for direct sowing in submerged soil, ammonium nitrogen concentration in soil solution should remain low because ammonium nitrogen exerts an adverse effect on seedling establishment, and vigorous seeds with a high nitrogen content should be sown because seed nitrogen exerts a beneficial effect on seedling establishment.  相似文献   

4.
Two field experiments were conducted on small plots in the Philippines to determine the effects of tillage, seeding method and time of sowing on the establishment of mungbean (Vigna radiata (L.) Wilczek cv. IPB-M79-17-79) in seedbeds created in drying soil that had been puddled as for an immediately preceding wetland rice crop.

Conditions following rice were simulated by flooding, puddling and then draining the plots. Mungbean was sown at 2–14 days after draining (DAD) as the soil dried. In one experiment, seeds were sown manually into plots that were either non-tilled or for which the surface 10 cm had been ploughed and harrowed. In a second experiment, manual sowing into non-tilled plots was compared with prototype machine seeding. Soil matric potential and temperature were monitored throughout the experiments, and germination and seedling emergence recorded.

Surface cultivation slowed the rate of water loss from depths below 5 cm and resulted in lower thermal diffusivity than in non-tilled soil. Germination results indicated that following drainage of a seedbed in previously puddled soil, manual sowing at a depth of 5 cm could be delayed until 8 DAD (while soil matric potentials remained > − 0.1 MPa) without a significant reduction in seed germination. The seeding machine was quicker and easier to use, but its constraint of shallow sowing (maximum depth 2 cm) meant that sowing could be delayed only to 5 DAD before germination and emergence were inhibited. Predictions of germination from measured values of temperature and water potential were made using equations derived from controlled-environment studies. Differences from germination observed could probably be accounted for by seed/soil/water contact effects, which appeared to be especially important in dry soil (< − 0.7 MPa). Subsequent seedling emergence was, however, often severely restricted in non-tilled soil by soil mechanical constraints in the drying, strengthening seedbed. In the first experiment, these conditions were alleviated by the cultivation treatment; in the second, disturbance of surface soil before drainage resulted in greater emergence and faster seedling growth.  相似文献   


5.
Abstract

Rapid and uniform crop establishment is a prerequisite for efficient crop production and minimal environmental impact. Experiments were carried out in shallow plastic boxes placed directly on the ground in the field for studies of the effects of seedbed properties on emergence of various crops. This paper presents an analysis of the time required for germination and emergence under near-optimal seedbed conditions. The crops studied were barley, oats, wheat, pea, rape seed, white mustard, sugar beet, red clover and timothy. The time required for germination generally increased with size of the seeds, presumably because larger seeds needed more water to initiate germination. This applied both when comparing different crops and different seed sizes of the same crop. However, considerable differences occurred between seed lots of the same crop and there were greater differences between seed lots of the same crop than between the three small grain crops studied. Growth rate of the seedlings generally increased with seed size, presumably because of increased energy content in the seed. Consequently, the most rapid emergence was obtained from small seeds at shallow sowing and from large seeds at deep sowing. The crops studied had a minimum temperature for germination and seedling growth close to 0 °C. Under optimal seedbed conditions, thermal time required for 50% germination of barley was typically about 65 °C days over this base temperature and for seedling growth about 6 °C days cm?1. From 4 cm sowing depth, about 80 °C days were required for emergence but with considerable variations between seed lots. For rape seed or white mustard about 40 °C days were required for germination and about 8 °C days cm?1 for the seedling growth.  相似文献   

6.
《Journal of plant nutrition》2013,36(5):1131-1148
Abstract

Cogenerational phenotypic plasticity compensation to nutrient limitations and shoot densities (light limitation) among individual plants of the same species could provide an increased fitness. Planting density varying between 4 and 16 plants per container and solution nitrogen varying between 5 and 19 mM were used to test phenotypic plastic responses in oat (Avena sativa cv. Montezuma) seed biochemistry and the resulting progeny. Seed Kjeldahl nitrogen (N), magnesium (Mg), and both albumin–globulin (l M NaCl soluble) and prolamin–glutelin (residue) protein fractions were affected by a solution N × plant density interaction. Phosphorus (P) content was influenced by both treatment variables. The protein fractions, P, N, and Mg, in seeds from parent treatments were generally highest in the two higher planting densities. The contents of N, P, Mg, and the prolamin–glutelin fraction were highest at mid‐N (9 mM), except for the 16 plants per container where they were maximal at high‐N (19 mM). In contrast, the albumin–globulin fraction responded linearly to N availability. Seeds per plant decreased while seed weights increased, as plant density increased. The seed content of N, albumin–globulin, prolamin–glutelin, P, and Mg were all negatively associated with the number of seeds per plant. Germination rates of progeny were inversely related to parent plants N treatment. Progeny from the treatment plants (seeds × germination percent) were inversely related, over a five‐fold range, to parent density. Progeny shoot/root ratios (S/R) were directly influenced by the N treatment of parent plants, with progeny from the highest parent N treatment having the highest S/R. Seed N and P content and the prolamin–glutelin protein fraction concentration were correlated with progeny SR. Seed weight was negatively correlated with progeny S/R. Annual grass seed numbers and weights and the allocation of several seed constituents are environmentally influenced by plant density and solution N. These seed biochemical and physiological effects result in a reproductive fitness change and a cogenerational phenotypic plasticity influenced progeny fitness (S/R attribute).  相似文献   

7.
为探究乳酸菌胞外多糖浸种对酸、盐胁迫条件下水稻生长发育的影响,采用室内恒温培养试验,研究不同浓度乳酸菌胞外多糖对水稻种子萌发及相关生理代谢指标的影响。结果表明,采用不同浓度胞外多糖浸种可以显著提高逆境胁迫下水稻种子的发芽势、发芽率及发芽指数,促进水稻根系生长,随着胞外多糖浓度的升高,对水稻种子萌发的促进作用呈先升高后降低趋势;胞外多糖浓度为200 mg·L-1时,缓解逆境胁迫伤害效果最为显著;pH值为3.0的酸胁迫下,与不添加胞外多糖相比,水稻种子的发芽势、发芽率及发芽指数分别提高了178.2%、38.7%和114.4%;7 mg·mL-1NaCl胁迫下,发芽势、发芽率、发芽指数分别提高了152.9%、73.8%、103.0%,且差异均达显著水平(P<0.05);胞外多糖浸种可显著降低各胁迫下水稻幼芽丙二醛(MDA)含量,不同程度地提高过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)等抗氧化酶活性,同时胞外多糖对经过逆境胁迫的水稻种子播种后生长的幼苗也具有一定的促进作用,可缓解逆境胁迫对水稻造成的毒害。本研究为微生物源物增强作物抗逆性研究提供了理论依据。  相似文献   

8.
为明确籽粒黄熟度对杂交水稻种子活力的影响,探究杂交水稻高活力种子适宜收获期的感官指标,于2016-2017年以深两优1813、隆两优1813、Y两优1128、创两优华占和Ⅱ优838为材料进行杂交水稻制种,通过不同收获时期形成籽粒黄熟度不同的群体,系统分析了不同籽粒黄熟度群体间种子活力、水分、千粒重及内含物的差异。结果表明,在不同品种间,籽粒黄熟度的增加速率存在明显差异。随着籽粒黄熟度的增加,种子活力先增加后趋于稳定;种子水分先降低后趋于稳定;种子千粒重逐渐增加,但差异不显著;种子的直链淀粉、总淀粉、蛋白质及可溶性糖含量均先增加后趋于稳定。当籽粒的黄熟度为75%~90%时,种子发芽率、发芽势、发芽指数和活力指数均处于高值水平,且差异不显著;种子水分和千粒重均未达到显著差异。相关性分析表明,籽粒黄熟度与种子发芽率、活力指数呈极显著正相关,相关系数分别为0.870 3**和0.664 0**;与种子水分呈极显著负相关(R2=-0.842 4**),与种子千粒重相关性不显著(R2=0.197 2)。籽粒黄熟度与种子内含物均无显著相关性,但种子发芽势、发芽指数和活力指数均与种子内含物达到显著相关。综上,籽粒黄熟度为75%~90%可以作为杂交水稻高活力种子生产适宜收获期的感官指标。本研究结果为杂交水稻高活力种子生产提供了理论参考。  相似文献   

9.
This study evaluated how zinc (Zn) concentration of rice (Oryza sativa L.) seed may be increased and subsequent seedling growth improved by foliar Zn application. Eight foliar Zn treatments of 0.5% zinc sulfate (ZnSO4?·?7H2O) were applied to the rice plant at different growth stages. The resulting seeds were germinated to evaluate effects of seed Zn on seedling growth. Foliar Zn increased paddy Zn concentration only when applied after flowering, with larger increases when applications were repeated. The largest increases of up to ten-fold were in the husk, and smaller increases in brown rice Zn. In the first few days of germination, seedlings from seeds with 42 to 67?mg Zn?kg?1 had longer roots and coleoptiles than those from seeds with 18?mg Zn?kg?1, but this effect disappeared later. The benefit of high seed Zn in seedling growth is also indicated by a positive correlation between Zn concentration in germinating seeds and the combined roots and shoot dry weight (r?=?0.55, p?相似文献   

10.
Ca2+对苯丙烯酸胁迫下黄瓜种子萌发特性的影响   总被引:1,自引:0,他引:1  
李延  谢丽静  焦存来  吴克珍 《核农学报》2010,24(6):1309-1313
以黄瓜(Cucumis Sativus L.)种子为材料,研究钙浸种对苯丙烯酸(CA)胁迫下黄瓜种子萌发的影响及其机理。结果表明,CA对黄瓜种子萌发有明显的抑制作用,且抑制程度随CA浓度(0.25~1.0mmol·L-1)的增加而提高。CA胁迫下,黄瓜种子的发芽势、发芽率下降,膜结构受损,透性增大,呼吸速率、α-淀粉酶和蛋白酶活性降低,淀粉、蛋白质消耗率下降,钙浸种(500 mg·L-1CaCl2)可以缓解CA对种子萌发的抑制作用,表现为发芽率提高,膜透性降低,呼吸速率、α-淀粉酶、蛋白酶活性以及淀粉和蛋白质消耗率提高。  相似文献   

11.
适宜浓度的硝酸稀土溶液浸种后 ,花生种子的发芽率、发芽势、平均生长势和活力指数得到提高 ,种子出苗期缩短 1~ 2天 ,出苗率明显提高。在干旱条件下 ,经处理后的花生其幼苗抗旱性明显增强 ,根系发达、植株矮化、单株叶面积增大 ,分枝数增多 ;花生幼苗叶片的叶绿素含量和净光合速率也较高 ,细胞质膜透性降低 ,脯氨酸含量增加。硝酸稀土处理后 ,花生幼苗在干旱条件下表现出较强的抗旱性和较好的光合效能。在 5种不同浓度处理中 ,以 5 0 0mg/L硝酸稀土溶液浸种效果更好  相似文献   

12.
Three plant-growth promoting, N2-fixing methylotrophic strains isolated from rice cultivars (Oryza sativa L.), viz, Methylobacterium sp. CBMB20, Enterobacter sp. CBMB30, Burkholderia sp. CBMB40, were selected, and their activities in promoting the early growth of rice were studied. Seeds treated with the methylotrophic strains improved seed germination, seedling vigor index (SVI), and biomass of rice seedlings. The methylotrophic population in the treated seedlings increased in the vegetative stages when compared to seeding stages. Treated seedlings showed a higher accumulation of plant hormones viz trans-zeatin riboside, isopentenyladenosine, and indole-3-acetic acid than untreated seedlings. Plant hormones were detected immunologically using the phytodetek kit. Conformational evidence suggested that cytokinins were produced by the epiphytic bacteria colonizing the plants rather than by the plants themselves. In addition, the inoculated early stage rice seedlings also exhibited a wide range of acetylene reduction activity. The results suggest the potential use of these bacteria to stimulate germination, SVI, and biomass production, which is mediated by production of plant hormone accumulation and nitrogen fixation.  相似文献   

13.
Five experiments were implemented to collect information related to the effects of fluazifop-p-butyl (active chemical in grass selective herbicides, Fusilade® and Fusilade Forte™) on seed germination, seedling emergence, growth and health of species native to southwest Australia (a grass and non-grasses), together with several co-occurring introduced species (grasses and a non-grass). Experiments investigated effects of herbicide concentrations, seed burial depths, seed-sowing times since herbicide application and application locations (foliage versus soil). Both herbicides, at half to quadruple strength of recommended field application concentrations, adversely affected development of native and introduced species, both grasses and non-grasses. Herbicidal effects were observed during the seed germination phase, and if germination had occurred, during seedling emergence and, finally, during plant establishment. However, effects were more pronounced after seed germination, particularly on development of seedlings and plants, with retardation and/or discoloration of either radicles or shoots. Not unexpectedly, seedlings from seeds buried deeper in the sand medium (20 mm) struggled to emerge. Both herbicides demonstrated residual characteristics by impeding seedling emergence and growth from seeds sown at various dates (up to maximum test duration of 3 weeks) following exposure of the sand medium to the herbicides. Further, herbicide application to sand only, produced effects on 5-6 months old plants that were similar as application to foliage only, demonstrating herbicide uptake from sand. While the findings support independent research, they contradict the purported herbicide characteristics by commercial sources - grass selective, post-emergent, non-residual, rapid breakdown and active through foliar application only. Implications of these herbicides for biodiversity conservation are discussed.  相似文献   

14.
The effect of seed vigor on seed emergence depends on the type of environmental stress present at the time of seed germination and establishment. Therefore, the aim of this study was to assess the interaction of environmental stresses and aging on soybean (Glycine max L.) seed emergence. A factorial arrangement of treatments imposed on a randomized complete block design with four replications was conducted. Treatments of seed aging for 12, 24, 36, and 48 h at 41°C, salinity (6 and 12 ds/m2), water deficiency (–4 and–9 MPa), and sowing at depths of 3 and 7 cm were selected. Growth measurements were completed 21 and 55 days after planting. Analysis of variance was performed using the regression method for quantitative treatments such as seed aging, and if interactions were significant, interaction slicing was utilized and means compared with least significant difference tests (0.05). For quantitative treatments, regression analysis was conducted and path analysis was performed on growth traits. Results showed that aging had a significant effect on maximum emergence and rate of emergence. The ranking of the stress factors from most to least injurious for maximum emergence were severe salinity, severe drought, medium salinity, sowing depth of 7 cm, and medium drought. Harmful stress conditions on the plant leaf area and seedling dry weight were severe salinity, medium salinity, severe drought, medium drought, and sowing depth of 7 cm (only for seedling dry weight). Relative growth rate, net absorption rate, and leaf area ratio were not affected by aging but were affected by environmental conditions. These findings indicate that the impacts of environmental conditions are at least partially controlled by seed vigor.  相似文献   

15.
提高发芽糙米得率的复合酶预处理工艺优化   总被引:2,自引:2,他引:0  
为解决传统工艺生产发芽糙米浸泡时间长、生产效率低等问题,提出以纤维素酶和木聚糖酶的复合溶液代替蒸馏水浸泡发芽前糙米的新工艺。以糙米为原料,探究复合酶预处理工艺中酶解时间、酶解温度、复合酶浓度及配比对发芽糙米得率的影响规律,采用二次正交旋转中心组合设计试验,建立了各因素对发芽糙米得率影响的数学模型。结果表明:酶解时间、酶解温度、复合酶浓度及酶配比对发芽糙米得率影响显著(P0.05),得到优化参数组合为:酶解时间135 min,酶解温度35℃,复合酶浓度0.57 g/L、纤维素酶和木聚糖酶质量比1.86:1,在此条件下,与传统工艺相比浸泡时间缩短62.5%、发芽糙米得率及γ-氨基丁酸含量分别提高约3.90%和3.86 mg/(100 g)。通过对酶解后糙米皮层微观结构的观察分析,糙米皮层在复合酶作用下部分降解,胚乳中淀粉更易与水分子相结合,从而吸水速率提升。研究结果可为发芽糙米生产提供参考。  相似文献   

16.
The present study evaluated effects of seed zinc (Zn) priming at concentrations from 0 to 25 mM ZnSO4 on seedling vigor and viability in rice (Oryza sativa L.). Zinc priming substantially increased Zn concentration in the husk, but not in brown rice. The movement of primed Zn from the husk into the inner layers of rice seed during germination was suggested by Zn concentration declining in the husk coinciding with the increase in brown rice over time (r = –0.62; p < 1%), which did not happen in unprimed seed. Zinc priming significantly enhanced seedling growth and development up to 5 mM. Germination rate, root number, and dry weight were much higher than in unprimed seed, but higher Zn concentrations (10 and 25 mM) depressed seedling vigor. Priming rice seed with 2.5 mM Zn also improved the germination rate of rice in a Zn‐deficient soil, with or without soil Zn application. The results confirm that priming rice seed with Zn can improve germination and seedling vigor and for the first time show how Zn requirement of germinating rice seed and seedlings can be met by the prime Zn accumulated in the husk.  相似文献   

17.
Various aspects of the nitrogen cycle are reviewed as a background for discussion of nitrogen balance and economy in plant communities. Even though fixation of atmospheric nitrogen generally exceeds losses of nitrogen from the biosphere it is pointed out that plants extract nitrogen from the soil faster than it can be mineralized from organic forms. This difference in rates leads to a nitrogen deficiency in plants, particularly in high yielding crop plants, and subsequently a protein deficiency in animals.Some facets of legume bacteriology are discussed also. In particular the introduction of legumes to new areas and the need for inoculation of seed with specific Rhizobium strains, importance of strain selection, testing and supply, legume inoculant quality and seed inoculation and pelleting.  相似文献   

18.
ABSTRACT

Growth of the weed Monochoria vaginalis (Burm. f.) Kunth under the conditions of organic rice production is a serious problem. The reason for the growth of M. vaginalis being dominant, especially in organic rice production, is not fully understood. In this study, laboratory experiments were conducted to analyze soil and seed factors in relation to the promotion of germination. (1) After incubation of flooded soil with or without the addition of rice bran (0.3%, 0.6%, and 0.9% in an air-dried soil basis), soil solutions were recovered and seeds of M. vaginalis were incubated in the soil solutions. Germination in the soils solutions without and with 0.3% rice bran was greater than that in distilled water. However, germination was suppressed in the presence of 0.6% and 0.9% of rice bran. These findings indicate that the solution from the soils with rice bran has different effects that may either increase or decrease germination. (2) A mixture of air-dried soil and distilled water was filtered to obtain a soil solution. Seeds were incubated in the soil solution (same as above). Environmental and physiological factors affected germination: exposure of seeds to light was an environmental factor and high germination activity and shallow dormancy of seed were physiological. The recovered soil solution promoted germination when these factors were not optimized. (3) There was a negative and significant correlation between dissolved oxygen (DO) in the soil solution and germination, indicating that a low content of DO was a promotive factor for germination. (4) Based on an experiment using pH buffers, germination increased with decrease in pH of soil solution, as long as the pH ranged from 4.0 to 7.0. This finding indicates that pH is also a factor that promotes germination.  相似文献   

19.
Greenhouse pot trials were conducted to compare the effects of compost sources and planting treatments on turfgrass germination and emergence. Eight seeding treatments and 4 turfgrass types were factorially combined and replicated four times in a completely randomized block design. The seeding treatments were: 1) seed planted on surface of 2.6 cm compost overlying soil, 2) seed planted on soil surface below 0.65 cm compost, 3) seed planted on soil surface below 1.3 cm compost, 4) seed planted on soil surface below 2.6 cm compost, 5) seed planted on soil surface covered with a 2.6 cm straw mat, 6) seed planted below 1.3 cm soil, 7) seed planted below 1.3 cm of 1:1 compost:soil mix, and 8) seed planted on soil surface. Tall fescue (Festuca arundinacea Schreb.), Kentucky bluegrass (Poa pratensis L.), bermudagrass (Cynodon dactylon L.), and zoysiagrass (Zoysia japonica Steud.) were used as the bioassay crops. The experimental design was repeated over time using composts produced with the following feedstocks: yard waste, food waste, dairy manure, biosolids, and paper mill sludge. Emerged seedlings were counted at 11 days for tall fescue, at 3 weeks for Kentucky bluegrass and at 7 weeks for bermudagrass and zoysiagrass. There were significant (P<0.05) effects of seeding treatment x turfgrass type on germination and emergence for each compost type. All of the composts appeared to be well stabilized using routine compost laboratory testing except the biosolids compost, whose use resulted in the lowest overall germination and emergence rate. The highest rates of germination and emergence occurred in the treatments in which the seeds were planted on the surface, regardless of whether the surface was compost or soil. The lowest rate of germination and emergence occurred where the seed was placed under 2.6 cm compost, regardless of compost maturity.  相似文献   

20.
为寻求较佳浸种方法,该文应用低场核磁共振检测技术,研究了不同的浸种方式及浸种溶剂对水稻种子吸水量的影响。试验利用横向弛豫时间 T2反演谱分析了水稻种子的水分状态变化及吸水特性,发现浸种过程改变了水稻种子内部的水分分布情况,水稻种子吸水量对初始含水率差异不显著(P>0.05),但对各种浸种方法差异显著(P<0.05)。研究表明,采用连续浸种4 h、浸种3 h-晾干1 h-浸种1 h、浸种2 h-晾干1 h-浸种2 h及浸种2 h-晾干2 h-浸种2 h这4种不同的浸种方式时,浸种2 h-晾干1 h-浸种2 h的间歇浸种方式吸水率较高;采用清水、强氯精300倍液、饱和澄清石灰水、质量分数为40%福尔马林的50倍液、100倍液及200倍液6种不同的浸种溶液时,应用质量分数为40%福尔马林50倍液药剂时吸水率较高。低场核磁共振检测技术揭示了水稻种子含水量的影响因素,为浸种过程中吸水量的测定提供了一种有效的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号