首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of endotoxin on the disposition kinetics of oxytetracycline (OTC) (10 mg/kg) was investigated in five healthy ruminating male crossbred calves. The serum concentration-time data of OTC before and after endotoxin challenge were best described by a two-compartment open model. Repeated administration of Escherichia coli endotoxin (1 microg/kg, i.v.) at an interval of 12 h up to 48 h produced a clear rise in the body temperature and an increase in the pulse and respiration rates. Endotoxin caused a significant reduction in mean transit time in tissue compartment (MTTT) (P < or = 0.05), mean residence time in the peripheral tissue compartment (MRTT) (P < or = 0.05), mean residence time in the body (MRTB) (P < or = 0.05), elimination half-life (t1/2lambda2) (P < or = 0.05) and distribution space in tissues (VT) (P < or = 0.01) and at steady-state (Vd(ss)) (P < or = 0.01). Endotoxin had no effect on the distribution clearance (ClD), systemic clearance (Cl) and distribution half-life of OTC, while the values of first order rate constant of transfer of drug from tissue to central compartment (K21) and the zero time intercept at terminal phase (C2) were significantly high. The drug dosage regimens to maintain serum OTC concentrations of 0.5, 1, 2, 4, 6 and 8 microg/mL were also determined in febrile and clinically healthy animals.  相似文献   

2.
In this study the pharmacokinetics and renal safety of gentamicin in healthy dogs was investigated after multiple dosing. Six adult male dogs received once-daily gentamicin (6 mg/kg) intramuscularly for 5 days. Serial blood samples were taken on days 1 and 5 of treatment, and at predose, 1 and 6 h on days 2, 3 and 4. Urinalysis, hematology and serum biochemistry evaluation were carried out before, 7 and 14 days after the first gentamicin administration. Mean value of the main pharmacokinetic parameters were: AUC (microg.h/mL), 97.4 and 100.2; terminal half-life (harmonic mean), 0.76 and 1.01 h; ClB/F (mL/min.kg), 1.24 and 1.10; VD(area)/F (L/kg), 0.084 and 0.10; MRT (h), 1.48 and 1.77; Cmax (microg/mL), 54.5 and 49.2; tmax (h), 0.40 and 0.48 for the first and last dose, respectively. Accumulation was determined as R1 = 0.97 and R2 = 1.22. Mean trough gentamicin serum concentrations were 0.06, 0.07, 0.09, 0.1 and 0.1 microg/mL for the first, second, third, fourth and fifth dose, respectively. Statistically significant increases (P < 0.05) were found for last dose MRT and fourth and fifth trough gentamicin serum concentrations. Laboratory tests detected a slight increase in serum creatinine and urea nitrogen concentrations (one dog), decreased specific urine gravity (one dog) and presence of few granular casts (two dogs). It is concluded that once-daily administration of gentamicin may provide adequate serum levels to treat most susceptible gram-negative infections with little or no nephrotoxicity in dogs.  相似文献   

3.
The pharmacokinetics and intramuscular (i.m.) bioavailability of cefoperazone and cefamandole (20mg/kg) were investigated in dogs and the findings related to minimal inhibitory concentrations (MICs) for 90 bacterial strains isolated clinically from dogs. The MICs of cefamandole for Staphylococcus intermedius (MIC(90) 0.125 microg/mL) were lower than those of cefoperazone (MIC(90) 0.5 micro/mL) although the latter was more effective against Escherichia coli strains (MIC(90) 2.0 microg/mL vs. 4.0 microg/mL). The pharmacokinetics of the drugs after intravenous administrations were similar: a rapid distribution phase was followed by a slower elimination phase (t((1/2)lambda2) 84.0+/-21.3 min for cefoperazone and 81.4+/-9.7 min for cefamandole). The apparent volume of distribution and body clearance were 0.233 L/kg and 1.96 mL/kg/min for cefoperazone, 0.190 L/kg and 1.76 mL/kg/min for cefamandole. After i.m. administration the bioavailability and peak serum concentration of cefamandole (85.1+/-13.5% and 35.9+/-5.4 microg/mL) were significantly higher than cefoperazone (41.4+/-7.1% and 24.5+/-3.0 micog/mL), but not the serum half-lives (t(1/2el) 134.3+/-12.6 min for cefoperazone and 145.4+/-12.3 min for cefamandole). The time above MIC(90) indicated that cefamandole can be administered once daily to dogs for the treatment of staphylococcal infections (T>MIC for S. intermedius 23.8+/-0.3 and for Staphylococcus aureus 21.6+/-0.6h).  相似文献   

4.
Pharmacokinetic parameters which describe the distribution and elimination of sulphadimidine were determined in normal dogs and dogs in which fever was produced by an intravenous injection of escherichia and staphylococcal species of bacteria. Sulphadimidine was injected as a single intravenous bolus at the dose of 100 mg/kg and the kinetics of the drug were described in terms of the bi-exponential expression: Cp = Ae -α t + Be -β t . The distribution half-times of the drug were 1.52 h in the normal and 0.81 h in the febrile dogs. The drug distribution was significantly more rapid ( P < 0.05) in febrile than in normal dogs. Average ± SD values for the half-lives of the drug were 16.2 ± 5.7 h in normal and 16.7 ± 4.7 h in the febrile dogs. The apparent volume of distribution ( V ' d (area)) was 628 ± 251 ml/kg in the normal dogs, and was not statistically different from 495 ± 144 ml/kg in the febrile dogs. The volume of the central compartment ( V ' c ) was 445 ± 55 ml/kg in normal dogs and this was significantly higher ( P < 0.01) than the V ' c of 246 ± 72 ml/kg in the febrile dogs. The body clearance was 22.4 ± 4.8 and 20.2 ± 3.6 ml/hour. kg in the normal and febrile dogs, respectively. The investigation revealed that the dosage regimen of sulphadimidine did not differ significantly between normal and febrile dogs.  相似文献   

5.
A series of in vivo, ex vivo and in vitro studies were conducted to determine the pharmacokinetic and pharmacodynamic properties of cefovecin, a new injectable cephalosporin, in dogs. Absolute bioavailability was determined in a two-phase cross-over study in dogs receiving 8 mg/kg bodyweight (b.w.) of cefovecin by either subcutaneous (s.c.) or intravenous (i.v.) route. After s.c. administration, cefovecin was fully bioavailable (100%), the mean maximum plasma concentration (Cmax) was 121 microg/mL and the mean apparent elimination half-life (t1/2) was 133 h. Clearance was measured to be 0.76 mL/h/kg after i.v. dosing. The concentration of cefovecin in urine measured 14 days after s.c. administration was 2.9 microg/mL. Plasma protein binding was determined by equilibrium dialysis; over concentrations ranging from 10 to 100 microg/mL (i.e. up to the approximate Cmax following an 8 mg/kg dose), protein binding of 98.7% to 96.0% was observed, however, binding was lower at higher concentrations. Total and free concentrations of cefovecin were determined in plasma, transudate and exudate collected from dogs previously implanted subcutaneously with tissue cages. Mean peak concentrations of free cefovecin were almost three times higher in transudate than in plasma and remained above 0.25 microg/mL for 19 days. The ex vivo antibacterial killing activity (vs. Staphylococcus intermedius, MIC 0.25 microg/mL) was measured in serum, transudate and exudate collected from dogs which had received 8 mg/kg b.w. of cefovecin subcutaneously. Transudate exhibited higher antimicrobial killing activity than serum. Activity in serum and exudate exhibited a mean reduction in bacterial counts of S. intermedius of at least three log units up to 72 h postadministration. Bactericidal activity (>3 log10 reduction of bacterial counts) was observed in transudate up to 12 days postadministration. The slow elimination and long lasting ex vivo antibacterial killing activity following administration of cefovecin are desirable pharmacokinetic and pharmacodynamic attributes for an antimicrobial drug with 14-day dosing intervals.  相似文献   

6.
Pharmacokinetic variables of fosfomycin were determined after administration of buffered disodium-fosfomycin intravenously (IV), intramuscularly (IM), subcutaneously (SC) and orally (PO), in mongrel dogs, at 40 and 80 mg/kgday for three days. Renal integrity was also assessed by measuring key serum variables. Day 1, day 2 and day 3 plasma concentration vs. time profiles were undistinguishable, but there appears to be a lineal increase in serum concentrations vs. time with the dose. A non-accumulative kinetic behavior was observed after three days with both doses and most pharmacokinetic variables remain unaltered. Considering a MIC range from 1 mirog/mL to 16 microg/mL of fosfomycin in serum for sensitive bacteria, and a negligible plasma protein binding of fosfomycin (<0.5%), useful plasma concentrations can only be achieved after the SC injection of 80 mg/kg every 12h, having a C(max)=18.96+/-0.3 microg/mL; a T(1/2beta)=2.09+/-0.06 microg/mL and a bioavailability of 84-85%. No alterations were observed in serum variables of kidney-related biochemical values.  相似文献   

7.
Seventy-two crossbred pigs (7.58 +/- 0.30 kg BW) weaned at 28 +/- 3 d of age were used to investigate the effects of fish oil supplementation on pig performance and on immunological, adrenal, and somatotropic responses following an Escherichia coli lipopolysaccharide (LPS) challenge in a 2 x 2 factorial design. The main factors consisted of diet (7% corn oil [CO] or 7% fish oil [FO]) and immunological challenge (LPS or saline). On d 14 and 21, pigs were injected intraperitoneally with either 200 microg/kg BW of LPS or an equivalent amount of sterile saline. Blood samples were collected 3 h after injection for analysis of interleukin-1beta (IL-1beta), prostaglandin E2 (PGE2), cortisol, growth hormone (GH), and insulin-like growth factor (IGF)-I. On d 2 after LPS challenge, peripheral blood lymphocyte proliferation (PBLP) was determined. Lipopolysaccharide challenge decreased ADG (487 vs. 586 g; P < 0.05) and ADFI (as-fed, 776 vs. 920 g; P < 0.05) from d 14 to 21 and ADG (587 vs. 652 g; P < 0.10) from d 21 to 28. Fish oil improved ADG (554 vs. 520 g; P < 0.10) and ADFI (891 vs. 805 g; P < 0.10) from d 14 to 21. On d 14, LPS challenge x diet interactions were observed for IL-1beta (P < 0.10), PGE2 (P < 0.001), and cortisol (P < 0.05) such that these measurements responded to the LPS challenge to a lesser extent (IL-1beta: 93 vs. 114 pg/mL, P < 0.05; PGE2: 536 vs. 1,285 pg/mL, P < 0.001; cortisol: 143 vs. 206 ng/mL, P < 0.05) in pigs receiving the FO diet than in pigs fed the CO diet. In contrast, among LPS-treated pigs, pigs fed the FO diet had higher IGF-I (155 vs. 101 ng/mL; P < 0.10) than those fed the CO diet. On d 21 among LPS-treated pigs, pigs fed FO had lower IL-1beta (70 vs. 84 pg/mL; P < 0.10) and cortisol (153 vs. 205 ng/mL; P < 0.05) than those fed CO. Pigs fed FO had lower PGE2 (331 vs. 444 pg/mL; P < 0.05) and higher IGF-I (202 vs. 171 ng/mL; P < 0.10) compared with those fed CO. Lipopolysaccharide challenge decreased GH (0.27 vs. 0.33 ng/mL; P < 0.05) on d 14, whereas it had no effect on GH on d 21. During both LPS challenge periods, the challenge increased PBLP when these cells were incubated with 8 (1.46 vs. 1.32; P < 0.10) or 16 microg/mL (1.46 vs. 1.30; P < 0.05) of concanavalin A. Fish oil had no effect on PBLP. These results suggest that FO alters the release of proinflammatory cytokines, which might lead to improved pig performance during an immunological challenge.  相似文献   

8.
Oral bioavailability and pharmacokinetic behaviour of clindamycin in dogs was investigated following intravenous (IV) and oral (capsules) administration of clindamycin hydrochloride, at the dose of 11 mg/kg BW. The absorption after oral administration was fast, with a mean absorption time (MAT) of 0.87+/-0.40 h, and bioavailability was 72.55+/-9.86%. Total clearance (CL) of clindamycin was low, after both IV and oral administration (0.503+/-0.095 vs. 0.458+/-0.087 L/h/kg). Volume of distribution at steady-state (IV) was 2.48+/-0.48 L/kg, indicating a wide distribution of clindamycin in body fluids and tissues. Elimination half-lives were similar for both routes of administration (4.37+/-1.20 h for IV, vs. 4.37+/-0.73 h for oral). Serum clindamycin concentrations following administration of capsules remained above the MICs of very susceptible microorganisms (0.04-0.5 microg/mL) for 12 or 10 h, respectively. Time above the mean inhibitory concentration (MIC) is considered as the index predicting the efficacy of clindamycin (T(>MIC) must be at least 40-50% of the dosing interval), so a once-daily oral administration of 11 mg/kg BW of clindamycin can be considered therapeutically effective. For less susceptible bacteria (with MICs of 0.5-2 microg/mL) the same dose should be given but twice daily.  相似文献   

9.
The pharmacokinetics of imidocarb, administered as an IV bolus dose (4 mg/kg), was studied in normal and Escherichia coli endotoxin-induced febrile dogs and goats. In the febrile group, the drug was administered 1 hour after injection of the endotoxin. The plasma and urine concentrations of imidocarb were measured by spectrophotometry. The decline in plasma drug concentrations in both species was analyzed, using a 2-compartment open model. With the exception of the coefficient A and the volume of central compartment, E coli endotoxin-induced fever produced the same changes in kinetic determinants in both species. Fever significantly decreased the distribution rate constant in both dogs (P less than 0.05) and goats (P less than 0.01). The elimination rate constant and, in turn, the half-life were not altered by the endotoxin-induced fever in either species. The volume of distribution at steady-state was significantly lower (P less than 0.01) in the febrile dogs and goats. The body clearance of imidocarb was also significantly lower in the febrile dogs (P less than 0.05) and goats (P less than 0.01). The decreased apparent volume of distribution and lower body clearance of imidocarb could explain the higher plasma values of the drug in the febrile, compared with normal, animals.  相似文献   

10.
Six pigs were used in a two-period crossover study to investigate the pharmacokinetics of amoxycillin after single intravenous and oral doses of 20 mg/kg bodyweight. Twelve pigs were used to study the residues of the drug in muscle, kidney, liver and fat after they had received daily oral doses of 20 mg/kg amoxycillin for five days. The mean (sd) elimination half life (t1/2beta) and mean residence time of amoxycillin in plasma were 3.38 (0.30) and 3.54 (0.43) hours, respectively, after intravenous administration and 4.13 (0.50) and 4.47 (0.30) hours, respectively, after oral administration. After oral administration, the maximum plasma concentration (Cmax) was 7.37 (0.42) microg/ml and it was reached after 0.97 (0.29) hours. Six days after the last oral dose, the mean concentration of amoxycillin in the pigs' kidneys was 21.38 ng/g and in the liver it was 12.32 ng/g, but no amoxycillin could be detected in fat or muscle; the concentrations of amoxycillin in edible tissues were less than the European Union maximal residue limit of 50 microg/kg.  相似文献   

11.
Endotoxin is a potent stimulator of the inflammatory response and is believed to initiate the pathology in gram-negative sepsis. Agents are being searched for that bind and neutralize or block the effects of endotoxin. The aim was to study the anti-endotoxic effects of polymyxin-E (colistin) in endotoxaemic dogs. The study included a total of 30 endotoxaemic dogs, which were divided into two groups (control = 15; test = 15) of both sexes, different breeds and ages. Hetastarch colloid solution (Expahes,10 mL/kg, i.v.) with lactated Ringer's solution (20 mL/kg, i.v., Q12 h) was given to all dogs. While ampicillin was administered (Alfasilin, 10 mg/kg, i.m., Q12 h) as an antibacterial to the control group, colistin (12,500 IU/kg, i.m., Q12 h) + ampicillin were administered to the test group. The clinical examination (body temperature, pulse and respiration rates, capillary filling times, peripheral pulse qualities, dehydration degrees), hematological and biochemical examinations (WBC, RBC, HGB, HCT, thrombocyte, serum urea, creatinine and TNF-alpha) were performed both before the treatment, and 2, 4, 12 and 24 h after the treatment. In comparison with the control group, it was observed that test group had shorter capillary filling time at 24 h (P < 0.001). Moreover, the degree of dehydration in test group, was significantly improved at 24 h (P < 0.01). While the differences in peripheral pulse qualities significantly differed between 0 and 2 h in controls, at 2, 4, 24 h after treatment it was found to be significantly increased when compared with 0 h in the test group. Serum TNF-alpha concentrations were statistically decreased in the test group between 0 h and other times (P < 0.01). When compared with controls, serum TNF-alpha concentrations were lower at 2, 4, 12 and 24 h in test group (P < 0.05). Results of the study indicated that polymyxin-E (colistin) has an anti-endotoxic effect and is safe for the dogs with endotoxemia at the dosage used in this study.  相似文献   

12.
This study was designed to evaluate the effects of vitamin E supplementation on pork quality of two genotypes with distinct differences in pork quality traits. Pigs (n = 240; BW = 87 +/- 0.35 kg) were allotted by weight to one of 20 treatments (4 pens/treatment, 3 pigs/pen) in a 2 x 2 x 5 factorial randomized complete block design. Factors included 1) genotype (Berkshire or Hampshire sired), 2) sex (gilts or barrows), and 3) vitamin E level (12.1, 54.7, 98.8, 174.0, and 350.6 IU of vitamin E/kg diet). Hampshire-sired pigs had greater average daily gain (1.05 vs 0.98 kg) and gain:feed (0.30 vs 0.27) and less average daily feed intake (ADFI) (3.46 vs 3.62 kg) than Berkshire-sired pigs (P < 0.001) for the 6-wk study. Hampshire-sired barrows consumed more feed (3.54 vs 3.38 kg/d) and were less efficient (0.29 vs 0.31) than Hampshire-sired gilts (P < 0.05), but this sex difference was not observed in Berkshire-sired pigs (interaction, P < 0.05). Berkshire-sired pigs had greater backfat (34.1 vs 21.1 mm; P < 0.001), reduced longissimus muscle area (37.6 vs 46.3 cm2; P < 0.001), reduced lean percentage (53.0 vs 55.8; P < 0.001), and a greater head-on yield (79.8 vs 79.2; P < 0.05). Vitamin E increased (P < 0.05) ADFI linearly (P < 0.05), but had no effects on carcass composition. Loin chops from Hampshire-sired pigs had reduced ultimate pH (5.64 vs 5.91), greater drip loss (92.2 vs 66.3 mg), and increased Minolta L* (52.6 vs 48.6), a* (8.9 vs 7.5), and b* (6.9 vs 5.2) values compared to Berkshire-sired pigs (P < 0.001). Vitamin E had no effect on pH, temperature, drip loss, and L* or a* values, but tended (P < 0.07) to increase b* values linearly (P < 0.06). Oxidation as indicated by thiobarbituric acid reactive substances (TBARS) was greatest in Hampshire-sired gilts at the lowest level of vitamin E, and decreased linearly (P < 0.001) with additional vitamin E. However, TBARS responded in a cubic fashion (P < 0.05) to vitamin E in Hampshire-sired barrows and were not affected in Berkshire-sired gilts or barrows (three-way interaction, P < 0.02). Hampshire-sired pigs had greater TBARS than Berkshire-sired pigs (0.053 vs 0.047 mg malondialdehyde equivalents/kg). Vitamin E supplementation increased serum concentrations of vitamin E on d 21 (1.06 to 4.79 microg/mL) and d 42 (1.02 to 2.82 microg/mL) and increased tissue concentrations of vitamin E (1.99 to 4.83 microg/g) linearly (P < 0.001). Vitamin E supplementation was not effective in improving fresh meat quality in genotypes with poor or superior meat quality traits.  相似文献   

13.
The pharmacokinetic properties and in vitro potency of nimesulide, a nonsteroidal anti-inflammatory drug (NSAID) were investigated in 8 or 10 dogs after intravenous (i.v.), intramuscular (i.m.) and oral (single and multiple dose) administrations at the nominal dose of 5 mg/kg. After i.v. administration, the plasma clearance was 15.3 +/- 4.2 mL/kg/h, the steady-state volume of distribution was low (0.18 +/- 0.011 L/kg) and the elimination half-life was 8.5 +/- 2.1 h. After i.m. administration, the terminal half-life was 14.0 +/- 5.3 h indicating a slow process of absorption with a maximum plasma concentration (6.1 +/- 1.5 microg/mL) at 10.9 +/- 2.1 h postadministration and the systemic bioavailability was 69 +/- 22%. After oral administration in fasted dogs, the maximal plasma concentration (10.1 +/- 2.7 microg/mL) was observed 6.1 +/- 1.6 h after drug administration, the plasma half-life was 6.2 +/- 1.9 h and the mean bioavailability was 47 +/- 12%. After daily oral administrations for 5 days, the average plasma concentration during the fifth dosage interval was 8.1 +/- 2.9 microg/mL and the overall bioavailability was 58 +/- 16%. The mean accumulation ratio was 1.27 +/- 0.4. In vitro nimesulide inhibitory potencies for cyclooxygenase (COX)-1 and COX-2 isoenzymes were determined using a whole blood assay. Canine clotting blood was used to test for inhibition of COX-1 activity and whole blood stimulated by lipopolysaccharide (LPS) was used to test for inhibition of COX-2 activity. The inhibitory concentration (IC50) for inhibition of COX-2 and COX-1 were 1.6 +/- 0.4 microM (0.49 +/- 0.12 microg/mL) and 20.3 +/- 2.8 microM (6.3 +/- 0.86 microg/mL) giving a nimesulide COX-1/COX-2 ratio of 12.99 +/- 3.41. It was concluded that at the currently recommended dosage regimen (5 mg/kg), the plasma concentration totally inhibits COX-2 and partly inhibits COX-1 isoenzyme.  相似文献   

14.
The pharmacokinetic properties of cefpodoxime, and its prodrug, cefpodoxime proxetil, were evaluated in two separate studies, one following intravenous (i.v.) administration of cefpodoxime sodium and the second after oral (p.o.) administration of cefpodoxime proxetil to healthy dogs. After cefpodoxime administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). A single i.v. administration of cefpodoxime sodium at a dose of 10 mg cefpodoxime/kg body weight resulted in a cefpodoxime average maximum plasma concentration (Cmax) of 91 (+/-17.7) microg/mL, measured at 0.5 h after drug administration, an average half-life (t1/2) of 4.67 (+/-0.680) h, an average AUC(0-infinity) of 454 (+/-83.1) h.microg/mL, an average V(d(ss)) of 151 (+/-27) mL/kg, an average Cl(B) of 22.7 (+/-4.2) mL/h/kg and an average MRT(0-infinity) of 5.97 (+/-0.573) h. When dose normalized to 10 mg cefpodoxime/kg body weight, cefpodoxime proxetil administered orally resulted in Cmax of 17.8 +/- 11.4 microg/mL for the tablet formulation and 20.1 +/- 6.20 microg/mL for the suspension formulation and an average AUC(0-LOQ) of 156 (+/-76.1) h.microg/mL for the tablet formulation and 162 (+/-48.6) h.microg/mL for the suspension formulation. Relative bioavailability of the two oral formulations was 1.04 (suspension compared with tablet), whereas the absolute bioavailability of both oral formulations was estimated to be approximately 35-36% in the cross-study comparison with the i.v. pharmacokinetics. Combined with previous studies, these results suggest that a single daily oral dose of 5-10 mg cefpodoxime/kg body weight as cefpodoxime proxetil maintains plasma concentrations effective for treatment of specified skin infections in dogs.  相似文献   

15.
OBJECTIVE: To determine the lowest of 5 doses of cosyntropin (1.0, 0.5, 0.1, 0.05, or 0.01 microg/kg) administered IV that stimulates maximal cortisol secretion in clinically normal dogs. ANIMALS: 10 clinically normal dogs. PROCEDURES: 5 dose-response experiments were performed in each of the dogs. Each dog received 5 doses of cosyntropin (1.0, 0.5, 0.1, 0.05, and 0.01 microg/kg) IV in random order (2-week interval between each dose). Serum samples for determination of cortisol concentrations were obtained before (baseline) and at 10, 20, 30, 40, 50, 60, 120, and 240 minutes after cosyntropin administration. RESULTS: Compared with baseline values, mean serum cortisol concentration in the study dogs increased significantly after administration of each of the 5 cosyntropin doses. Mean peak serum cortisol concentration was significantly lower after administration of 0.01, 0.05, and 0.1 microg of cosyntropin/kg, compared with findings after administration of 0.5 and 1.0 microg of cosyntropin/kg. After administration of 0.5 and 1.0 microg of cosyntropin/kg, mean peak serum cortisol concentration did not differ significantly; higher doses of cosyntropin resulted in more sustained increases in serum cortisol concentration, and peak response developed after a longer interval. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of cosyntropin IV at a dose of 0.5 microg/kg induced maximal cortisol secretion in healthy dogs. Serum cortisol concentration was reliably increased in all dogs after the administration of each of the 5 doses of cosyntropin. These data should be useful in subsequent studies to evaluate the hypothalamic-pituitary-adrenal axis in healthy and critically ill dogs.  相似文献   

16.
OBJECTIVE: To determine the pharmacokinetics of ceftazidime following subcutaneous administration and continuous IV infusion to healthy dogs and to determine the minimum inhibitory concentration (MIC) of ceftazidime for clinical isolates of Pseudomonas aeruginosa. ANIMALS: 10 healthy adult dogs. PROCEDURE: MIC of ceftazidime for 101 clinical isolates of P aeruginosa was determined in vitro. Serum concentrations of ceftazidime were determined following subcutaneous administration of ceftazidime (30 mg/kg of body weight) to 5 dogs and continuous IV infusion of ceftazidime (loading dose, 4.4 mg/kg; infusion rate, 4.1 mg/kg/h) for 36 hours to 5 dogs. RESULTS: The MIC of ceftazidime for P aeruginosa was < or = 8 microg/ml; all isolates were considered susceptible. Following SC administration of ceftazidime, mean beta disappearance half-life was 0.8 hours, and mean serum ceftazidime concentration exceeded the MIC for P aeruginosa for only 4.3 hours. Two dogs had gastrointestinal tract effects. Mean serum ceftazidime concentration exceeded 16 microg/ml during continuous IV infusion. None of the dogs developed adverse effects. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of ceftazidime subcutaneously (30 mg/kg, q 4 h) or as a constant IV infusion (loading dose, 4.4 mg/kg; rate, 4.1 mg/kg/h) would maintain serum ceftazidime concentrations above the MIC determined for 101 clinical isolates of P aeruginosa. Use of these dosages may be appropriate for treatment of dogs with infections caused by P aeruginosa.  相似文献   

17.
Pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin were investigated in normal, febrile and probenecid‐treated adult goats after single intravenous (i.v.) administration of enrofloxacin (5 mg/kg). Pharmacokinetic evaluation of the plasma concentration–time data of enrofloxacin and ciprofloxacin was performed using two‐ and one‐compartment open models, respectively. Plasma enrofloxacin concentrations were significantly higher in febrile (0.75–7 h) and probenecid‐treated (5–7 h) goats than in normal goats. The sum of enrofloxacin and ciprofloxacin concentrations in plasma ≥0.1 μg/mL was maintained up to 7 and 8 h in normal and febrile or probenecid‐treated goats, respectively. The t1/2β, AUC, MRT and ClB of enrofloxacin in normal animals were determined to be 1.14 h, 6.71 μg.h/mL, 1.5 h and 807 mL/h/kg, respectively. The fraction of enrofloxacin metabolized to ciprofloxacin was 28.8%. The Cmax., t1/2β, AUC and MRT of ciprofloxacin in normal goats were 0.45 μg/mL, 1.79 h, 1.84 μg.h/mL and 3.34 h, respectively. As compared with normal goats, the values of t1/2β (1.83 h), AUC (11.68 μg ? h/mL) and MRT (2.13 h) of enrofloxacin were significantly higher, whereas its ClB (430 mL/h/kg) and metabolite conversion to ciprofloxacin (8.5%) were lower in febrile goats. The Cmax. (0.18 μg/mL) and AUC (0.99 μg.h/mL) of ciprofloxacin were significantly decreased, whereas its t1/2β (2.75 h) and MRT (4.58 h) were prolonged in febrile than in normal goats. Concomitant administration of probenecid (40 mg/kg, i.v.) with enrofloxacin did not significantly alter any of the pharmacokinetic variables of either enrofloxacin or ciprofloxacin in goats.  相似文献   

18.
The efficacy of clavulanate-potentiated amoxycillin was compared with amoxycillin alone in experimental staphylococcal infection in dogs and in a controlled trial in clinical cases of skin infection in dogs and cats. The experimental infection was produced by subdermal inoculation with beta-lactamase producing (amoxycillin resistant) staphylococci absorbed in cotton dust. This produced discrete, localised lesions with no systemic involvement. In a cross over study, six animals were randomly allocated to treatment with either amoxycillin alone (10 mg/kg, dosed twice daily) or a formulation of clavulanate-potentiated amoxycillin (12.5 mg/kg, of a 1:4 ratio, dosed twice daily). The lesions of the animals treated with clavulanate-potentiated amoxycillin resolved more quickly than those treated with amoxycillin alone. The difference was significant (P less than 0.05) for both lesion diameter and inflammation score after day 6 of treatment. A trial was carried out in clinical cases of skin disease which were randomly allocated to twice daily treatment with either amoxycillin alone (10 or 20 mg/kg), or with clavulanate-potentiated amoxycillin (12.5 or 25 mg/kg of a 1:4 ratio). The required duration of treatment was shorter (P less than 0.5) for the potentiated amoxycillin treatments, and the success rate (judged by cure or substantial improvement) was higher (P less than 0.05) for this group, especially (P less than 0.01) where amoxycillin resistant organisms were isolated. It was concluded that clavulanate-potentiated amoxycillin was an effective treatment of skin infections both under experimental and clinical conditions.  相似文献   

19.
The pharmacokinetics and bioavailability of trimethoprim-sulfamethoxazole (TMP-SMX) were studied in six healthy male-castrate alpacas (Lama pacos) after intravenous (i.v.) or oral (p.o.) drug administration of 15 mg/kg TMP-SMX using a crossover design with a 2-week washout period. After 90 days one group (n = 3) was given a p.o. dose of 30 mg/kg TMP-SMX and the other group (n = 3) was given a p.o. dose of 60 mg/kg TMP-SMX. After i.v. administration of 15 mg/kg of TMP-SMX the mean initial plasma concentration (C0) was 10.75 +/- 2.12 microg/mL for trimethoprim (TMP) and 158.3 +/- 189.3 microg/mL for sulfamethoxazole (SMX). Elimination half-lives were 0.74 +/- 0.1 h for TMP and 2.2 +/- 0.6 h for SMX. The mean residence times were 1.45 +/- 0.72 h for TMP and 2.8 +/- 0.6 h for SMX. The areas under the respective concentration vs. time curves (AUC) were 2.49 +/- 1.62 microg h/mL for TMP and 124 +/- 60 microg h/mL for SMX. Total clearance (Clt) for TMP was 21.63 +/- 9.85 and 1.90 +/- 0.77 mL/min kg for SMX. The volume of distribution at steady state was 2.32 +/- 1.15 L/kg for TMP and 0.35 +/- 0.09 L/kg for SMX. After intragastric administration of 15, 30 and 60 mg/kg the peak concentration (Cmax) of SMX were 1.9 +/- 0.8, 2.6 +/- 0.4 and 2.8 +/- 0.7 microg/mL, respectively. The AUC was 9.1 +/- 5, 25.9 +/- 3.3 and 39.1 +/- 4.1 microg h/mL, respectively. Based upon these AUC values and correcting for dose, the respective bioavailabilities were 7.7, 10.5 and 7.94%. Trimethoprim was not detected in plasma after intragastric administration. These data demonstrate that therapeutic concentrations of TMP-SMX are not achieved after p.o. administration to alpacas.  相似文献   

20.
The pharmacokinetics of marbofloxacin was studied in eight healthy female Beagle dogs before and after moderate renal impairment was induced experimentally. A single intravenous (i.v.) administration and repeated administration for 8 days (2 mg/kg, once-a-day) of marbofloxacin were studied. Renal impairment was induced by a right kidney nephrectomy and electrocoagulation of the left kidney. An increase ( P  < 0.001) in the plasma concentrations of urea (from 3.8 ± 0.7 to 9.8 ± 2.1 mmol/L) and creatinine (from 78.8 ± 3.4 to 145.8 ± 22.3 μmol/L), and a significant decrease (2.9 ± 0.3 vs 1.5 ± 0.2 mL/kg/min) ( P  < 0.001) in glomerular filtration rate were observed in the renal-impaired dogs. The clearance of marbofloxacin was slightly decreased after the induction of renal failure (1.6 ± 0.2 to 1.4 ± 0.1 mL/kg/min) ( P  < 0.05), but no significant variation of volume of distribution at steady state ( V ss) and mean residence time ( MRT ) was observed after intravenous administration of marbofloxacin ( P > 0.05). Following oral administration of marbofloxacin, an increase in total area under the concentration time curve ( AUC ) was observed after renal failure (from 10372 ± 1710 to 11459 ± 1119 mg.min/L) ( P  < 0.05), but indices of accumulation were not modified. An increase ( P  < 0.01) in the AUC of N-oxide-marbofloxacin was observed after surgery. In conclusion, renal impairment has no biologically relevant influence on marbofloxacin disposition and there is no need for dosage adjustment of marbofloxacin in dogs with mild renal impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号