首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Soil water and nutrients play an important role in increasing sorghum (Sorghum bicolor L. Moench) yields in the Vertisols of semi-arid tropics during post-rainy season. The effects of tillage practices, organic materials and nitrogen fertilizer on soil properties, water conservation and yield of sorghum were evaluated during winter seasons of 1994–1995 and 1995–1996 on deep Vertisols at Bijapur in the semi-arid tropics of Karnataka State (Zone 3) of south India. Conservation and availability of water and nutrients during different stages of crop growth were increased by deeper tillage resulting in increased grain yield of winter sorghum. Medium and deep tillage increased the grain yield by 23% (1509 kg ha−1) and 57% (1919 kg ha−1) during 1994–1995 and 14% (1562 kg ha−1) and 34% (1835 kg ha−1) during 1995–1996, respectively, over shallow tillage. Water use efficiency increased from shallow (4.90 kg ha−1 mm−1) to deep tillage (7.30 kg ha−1 mm−1). Greater water use efficiency during 1994–1995 as compared to 1995–1996 was attributed to lower consumptive use of water during 1994–1995. Among organic materials, application of Leucaena loppings conserved larger amounts of water and increased winter sorghum yield and water use efficiency. Application of Leucaena loppings increased the winter sorghum grain yield by 9% (mean of 1994–1995 and 1995–1996) as compared to vermicompost. Significantly (P < 0.05) higher water use efficiency of 6.32 kg ha−1 mm−1 was observed in Leucaena loppings incorporated plots compared to 5.72 kg ha−1 mm−1 from vermicompost. Grain yield increased by 245 kg ha−1 with application of 25 kg N ha−1 in 1994–1995, and a further increase in N application to 50 kg ha−1 increased the grain yield by about 349 kg ha−1 in 1995–1996. Deep tillage with application of 25 kg N ha−1 resulted in significantly higher sorghum yield (2047 kg ha−1) than control during 1994–1995. Deep tillage with integrated nutrient management (organic and inorganic N sources) conserved higher amount of soil water and resulted in increased sorghum yields especially during drought years.  相似文献   

2.
In Vertisols of central India erratic rainfall and prevalence of drought during crop growth, low infiltration rates and the consequent ponding of water at the surface during the critical growth stages are suggested as possible reasons responsible for poor yields (<1 t ha−1) of soybean (Glycine max (L.) Merr.). Ameliorative tillage practices particularly deep tillage (subsoiling with chisel plough) can improve the water storage of soil by facilitating infiltration, which may help in minimizing water stress in this type of soil. In a 3-year field experiment (2000–2002) carried out in a Vertisol during wet seasons at Bhopal, Madhya Pradesh, India, we determined infiltration rate, root length and mass densities, water use efficiency and productivity of rainfed soybean under three tillage treatments consisting of conventional tillage (two tillage by sweep cultivator for topsoil tillage) (S1), conventional tillage + subsoiling in alternate years using chisel plough (S2), and conventional tillage + subsoiling in every year (S3) as main plot. The subplot consisted of three nutrient treatments, viz., 0% NPK (N0), 100% NPK (N1) and 100% NPK + farmyard manure (FYM) at 4 t ha−1 (N2). S3 registered a significantly lower soil penetration resistance by 22%, 28% and 20%, respectively, at the 17.5, 24.5 and 31.5 cm depths over S1 and the corresponding decrease over S2 were 17%, 19% and 13%, respectively. Bulk density after 15 days of tillage operation was significantly low in subsurface (15–30 cm depth) in S3 (1.39 mg m−3) followed by S2 (1.41 mg m−3) and S1 (1.58 mg m−3). Root length density (RLD) and root mass density (RMD) of soybean at 0–15 cm soil depth were greater following subsoiling in every year. S3 recorded significantly greater RLD (1.04 cm cm−3) over S2 (0.92 cm cm−3) and S1 (0.65 cm cm−3) at 15–30 cm depth under this study. The basic infiltration rate was greater after subsoiling in every year (5.65 cm h−1) in relation to conventional tillage (1.84 cm h−1). Similar trend was also observed in water storage characteristics (0–90 cm depth) of the soil profile. The faster infiltration rate and water storage of the profile facilitated higher grain yield and enhanced water use efficiency for soybean under subsoiling than conventional tillage. S3 registered significantly higher water use efficiency (17 kg ha−1 cm−1) over S2 (16 kg ha−1 cm−1) and S1 (14 kg ha−1 cm−1). On an average subsoiling recorded 20% higher grain yield of soybean over conventional tillage but the yield did not vary significantly due to S3 and S2. Combined application of 100% NPK and 4 t farmyard manure (FYM) ha−1 in N2 resulted in a larger RLD, RMD, grain yield and water use efficiency than N1 or the control (N0). N2 registered significantly higher yield of soybean (1517 kg ha−1) over purely inorganic (N1) (1392 kg ha−1) and control (N0) (898 kg ha−1). The study indicated that in Vertisols, enhanced productivity of soybean can be achieved by subsoiling in alternate years and integrated with the use of 100% NPK (30 kg N, 26 kg P and 25 kg K) and 4 t FYM ha−1.  相似文献   

3.
A field experiment was conducted for two crop cycles during 2003–2005 and 2004–2006 at the Indian Institute of Sugarcane Research, Lucknow in subtropical India. Trichoderma viride and Gluconacetobacter diazotrophicus amended farm yard manure (FYM) increased organic carbon (19.44 Mg ha−1) and available nitrogen (260 kg N ha−1) content of soil from 14.78 Mg ha−1 (OC) and 204 kg N ha−1 observed under farmer's practice (sole N application). Application of bioagents amended FYM improved soil porosity and reduced compaction (bulk density—1.39 Mg m−3 over 1.48 Mg m−3 under farmer's practice). Sugarcane ratoon crop removed the highest amount of nitrogen (N—165.7 kg ha−1), phosphorus (P—24.01 kg ha−1) and potassium (K—200.5 kg ha−1) in the plots receiving FYM with Trichoderma and Gluconacetobacter. Inoculation of FYM with bioagents improved population of ammonifying and nitrifying bacteria in the soil. Phosphorus and potassium uptake of the crop was greatest in the plots receiving FYM, Trichoderma and Gluconacetobacter. Bioagents (Trichoderma and Gluconacetobacter) amended FYM increased ratoon cane (70.2 Mg ha−1) and sugar yields (7.93 Mg ha−1) compared with control (62.3 and 7.06 Mg ha−1 ratoon cane and sugar yields, respectively).  相似文献   

4.
High population pressure in the central highlands of Kenya has led to continuous cultivation of land with minimal additional inputs leading to soil nutrient depletion. Research work has reported positive results from use of manure and biomass from Tithonia, Calliandra, Leucaena, Mucuna and Crotolaria for soil fertility replenishment. An experimental field was set up in Chuka Division to test different soil nutrient replenishment treatments. The experimental design was randomised complete block with 14 treatments replicated three times. At the beginning and end of the experiment, soil was sampled at 0–15 cm depth and analysed for pH, Ca, Mg, K, C, N and P. End of the 2000/2001 short rains (SR) season and 2001 long rains (LR) season, soil samples were taken at 0–30, 30–100 and 100–150 cm for nitrate and ammonium analysis. All the treatments received an equivalent of 60 kg N ha−1, except herbaceous legume treatments, where N was determined by the amount of the biomass harvested and incorporated in soil and control treatment received no inputs. Results indicate soil fertility increased slightly in all treatments (except control) over the 2-year study period. Average maize grain yield across the treatments was 1.1, 5.4, 3.5 and 4.0 Mg ha−1 during the 2000 LR, 2000/2001 SR, 2001 LR and 2001/2002 SR, respectively. The reduced yield in 2000 LR and 2001 LR are attributed to poor rainfall distribution during the two seasons. On average, Tithonia with half recommended rate of inorganic fertilizer recorded the highest (4.8 Mg ha−1) maize yield followed by sole Tithonia (4.7 Mg ha−1). Highest average concentration (144.8 and 115.5 kg N ha−1) of mineral N was recorded at the 30–100 cm soil depth at the end of both 2000/2001 SR and LR, respectively. The lowest average concentration (67.1 kg N ha−1) was recorded in the 100–150 cm soil depth in both seasons, while during the 2001 LR, the 0–30 cm soil depth recorded the lowest concentration (52.3 kg N ha−1). The residual mineral N in the 100–150 cm soil depth doubled at the end of the LR 2001 compared to what was present and the end of the SR 2000/2001 season in all treatments. This shows that there is substantial amount of mineral N that is being leached below the rooting zone of maize in this region.  相似文献   

5.
Crop water parameters, including actual evapotranspiration, transpiration, soil evaporation, crop coefficients, evaporative fractions, aerodynamic resistances, surface resistances and percolation fluxes were estimated in a commercial mango orchard during two growing seasons in Northeast Brazil. The actual evapotranspiration (Ea) was obtained by the eddy covariance (EC) technique, while for the reference evapotranspiration (E0); the FAO Penman–Monteith equation was applied. The energy balance closure showed a gap of 12%. For water productivity analysis the Ea was then computed with the Bowen ratio determined from the eddy covariance fluxes. The mean accumulated Ea for the two seasons was 1419 mm year−1, which corresponded to a daily average rate of 3.7 mm day−1. The mean values of the crop coefficients based on evapotranspiration (Kc) and based on transpiration (Kcb) were 0.91 and 0.73, respectively. The single layer Kc was fitted with a degree days function. Twenty percent of evapotranspiration originated from direct soil evaporation. The evaporative fraction was 0.83 on average. The average relative water supply was 1.1, revealing that, in general, irrigation water supply was in good harmony with the crop water requirements. The resulting evapotranspiration deficit was 73–95 mm per season only. The mean aerodynamic resistance (ra) was 37 s m−1 and the bulk surface resistance (rs) was 135 s m−1. The mean unit yield was 45 tonne ha−1 being equivalent to a crop water productivity of 3.2 kg m−3 when based on Ea with an economic counterpart of US$ 3.27 m−3. The drawback of this highly productive use of water resources is an unavoidable percolation flux of approximately 300 mm per growing season that is detrimental to the downstream environment and water users.  相似文献   

6.
A field trial was conducted during the kharif (rainy) seasons of 2002 and 2003 at the Research Farm, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India. The trial was carried out to study the effect of planting methods, sources and levels of nitrogen on soil properties, yield and NPK uptake by rice (Oryza sativa L.) under direct seeded condition. Planting methods significantly influenced the physical, chemical and biological properties of soil. Bulk density (1.385 g cm−3), organic carbon (0.43%) and soil moisture content (15.46%) were higher in zero till seeding plots than rotavator and conventional seeding. However, infiltration rate, soil temperature, pH and electrical conductivity showed a declining trend under this treatment and were found maximum (11.54 mm h−1, 36.21 °C at 55 DAS, 30.65 °C at harvest, 7.59 and 0.47 ds m−1) with conventional seeding. The maximum population of bacteria (25.60 × 105), fungi (14.26 × 104) and azotobactor (10.19 × 103) were found in the plot with zero till seeding while in case of actinomycetes the highest population (25.61 × 105) was found in conventional seeding. Nitrogen sources as well as levels failed to bring about any significant change in the soil properties. The highest grain (3825 kg ha−1) and straw yields (5446 kg ha−1) and N, P, K uptake were recorded in conventional seeding and were found significantly superior to zero till seeding (3144 kg ha−1) but it remained at par with rotavator seeding (3585 kg ha−1). Among the nitrogen sources, neem (Azadirachta indica) coated urea produced significantly higher grain (3761 kg ha−1) and straw yields (5396 kg ha−1) with greater NPK uptake than prilled urea and prilled urea + spent mentha. (The distillation waste of mint (Mentha arvensis) herbage is known as spent mentha.) Application of 150 kg N ha−1 produced maximum grain (3828 kg ha−1) and straw yields (5460 kg ha−1) although it remained at par with 100 kg N ha−1 (3738 and 5393 kg ha−1).  相似文献   

7.
Management of N is the key for sustainable and profitable wheat production in a low N soil. We report results of irrigated crop rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residue retention, fertilizer N application and mung bean (Vigna radiata) on crop and N yields of wheat and soil organic fertility in a mung bean–wheat sequence. Treatments were (a) crop residue retained (+residue) or (b) removed (−residue), (c) 120 kg N ha−1 applied to wheat, (d) 160 kg N ha−1 to maize or (e) no nitrogen applied. The cropping system was rotation of wheat with maize or wheat with mung bean. The experiment was laid out in a spit plot design. Postharvest incorporation of crop residues significantly (p < 0.05) increased the grain and straw yields of wheat during both years. On average, crop residues incorporation increased the wheat grain yield by 1.31 times and straw yield by 1.39 times. The wheat crop also responded strongly to the previous legume (mung bean) in terms of enhanced grain yield by 2.09 times and straw yield by 2.16 times over the previous cereal (maize) treatment. Application of fertilizer N to previous maize exerted strong carry over effect on grain (1.32 times) and straw yield (1.38 times) of the following wheat. Application of N fertilizer to current wheat produced on average 1.59 times more grain and 1.77 times more straw yield over the 0 N kg ha−1 treatment. The N uptake in wheat grain and straw was increased 1.31 and 1.64 times by residues treatment, 2.08 and 2.49 times by mung bean and 1.71 and 1.86 times by fertilizer N applied to wheat, respectively. The soil mineral N was increased 1.23 times by residues, 1.34 times by mung bean and 2.49 times by the application of fertilizer N to wheat. Similarly, the soil organic C was increased 1.04-fold by residues, 1.08 times by mung bean and 1.00 times by the application of fertilizer N. We concluded that retention of residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping system and enhances crop productivity in low N soils.  相似文献   

8.
Soil organic matter (SOM) contributes to the productivity and physical properties of soils. Although crop productivity is sustained mainly through the application of organic manure in the Indian Himalayas, no information is available on the effects of long-term manure addition along with mineral fertilizers on C sequestration and the contribution of total C input towards soil organic C (SOC) storage. We analyzed results of a long-term experiment, initiated in 1973 on a sandy loam soil under rainfed conditions to determine the influence of different combinations of NPK fertilizer and fertilizer + farmyard manure (FYM) at 10 Mg ha−1 on SOC content and its changes in the 0–45 cm soil depth. Concentration of SOC increased 40 and 70% in the NPK + FYM-treated plots as compared to NPK (43.1 Mg C ha−1) and unfertilized control plots (35.5 Mg C ha−1), respectively. Average annual contribution of C input from soybean (Glycine max (L.) Merr.) was 29% and that from wheat (Triticum aestivum L. Emend. Flori and Paol) was 24% of the harvestable above-ground biomass yield. Annual gross C input and annual rate of total SOC enrichment were 4852 and 900 kg C ha−1, respectively, for the plots under NPK + FYM. It was estimated that 19% of the gross C input contributed towards the increase in SOC content. C loss from native SOM during 30 years averaged 61 kg C ha−1 yr−1. The estimated quantity of biomass C required to maintain equilibrium SOM content was 321 kg ha−1 yr−1. The total annual C input by the soybean–wheat rotation in the plots under unfertilized control was 890 kg ha−1 yr−1. Thus, increase in SOC concentration under long-term (30 years) rainfed soybean–wheat cropping was due to the fact that annual C input by the system was higher than the required amount to maintaining equilibrium SOM content.  相似文献   

9.
In sandy soils of the southeastern USA coastal plains, crop production is limited by low water holding capacity and compacted soil layers that reduce root growth and productivity. Polyacrylamide (PAM) was added to sandy coastal plain soils to improve physical properties and yield. Soils were amended with linear and cross-linked PAMs. Treatments and controls included the following: (1) spraying a 600 mg kg−1 solution of linear PAM behind a subsoil shank at a rate of 3.93 kg ha−1, (2) spraying a 100 mg kg−1 solution at 0.66 kg ha−1, (3) spraying only water at 13.1 m3 ha−1, (4) dropping a dry PAM powder formulation (3005 KB) behind a subsoil shank at 300 kg ha−1, (5) dropping another dry PAM powder formulation (3005 K2) at 230 kg ha−1, (6) dropping a dry PAM powder formulation 3005 K2 at a lower rate of 55 kg ha−1, (7) applying nothing behind a subsoil shank, and (8) not subsoiling. In each of the 3 years of the experiment, new sets of treatments were set up while the old ones were maintained to look at longevity of the PAM effect. Though treatment effects were dominated by the tillage, the cross-linked PAMs were the only treatments more effective than tillage alone. The cross-linked PAMs may have been more effective because we could add more in dry form than in the spray form. The effect diminished with time similar to or faster than the results seen in tillage only. Though some PAM applications may have reduced cone indices, yields were not affected.  相似文献   

10.
Evaluating the effects of management practices on soil physical and chemical properties would be valuable to explain field-level variability in crop production. A 23-year-old experiment on a Muscatune soil (fine-silty, mixed, superactive, mesic, Aquic Argiudolls) in Illinois with five N rates [0 (N0), 70 (N1), 140 (N2), 210 (N3) and 280 (N4) kg N ha−1] and two cropping systems [continuous corn (Zea mays L.) (CC), and corn–soybean (Glycine max (L.) Merr.) rotation (CS)] was evaluated. Specific objectives were to: (i) evaluate the effects of long-term N fertilization and cropping systems on field level changes in soil physical and chemical properties and crop yield, (ii) identify the most responsive soil physical and chemical properties to N fertilizer and crop management, and (iii) investigate the relationship between the selected soil properties and crop yield. Soil was collected in May 2004 to 30 cm depth and 20 soil physical and chemical properties were measured. The univariate analysis indicated that 14 soil properties were significantly influenced by at least one treatment effect (crops, N or crops × N). Due to multicollinearity among soil properties, principal component analysis (PCA) was used to group correlated properties, resulting in five soil properties such as soil organic carbon stock (OC stock), mean weight diameter (MWD), soil C:N ratio, exchangeable potassium (K+) and gravimetric moisture content (ω). Finally, the multiple regression analysis performed between PCA derived soil properties and corn and soybean yields retained all the representative soil properties from PCA except ω as yield predictors for corn (P < 0.001, R2 = 0.39) from CC system, whereas none of the soil properties were significantly related to corn and soybean yields from CS system. The soil properties most influenced by long-term N fertilization of continuous corn were successfully identified with PCA and multiple regression. The insignificant relationship between corn and soybean yields from CS system and PCA derived soil properties might be due to the lack of response of soybean to N fertilization. This study shows the integrated use of multivariate and regression analyses in identifying yield determining soil properties by eliminating the multicollinearity among soil properties.  相似文献   

11.
Field experiments were conducted at Fort Vermilion (58°23′N 116°02′W), Alberta, to determine phosphorus (P) release patterns from red clover (Trifolium pratense) green manure (GM), field pea (Pisum sativum), canola (Brassica rapa) and monoculture wheat (Triticum aestivum) residues in the 7th and 8th years of conventional and zero tillage. Phosphorus contained in crop residues ranged from 1.5 kg ha−1 in pea to 9.2 kg ha−1 in clover GM, both under zero tillage. The patterns of P release over a 52-week period sometimes varied with tillage, i.e., a greater percentage of GM residue P was released under conventional tillage than under zero tillage in the first 2–10 weeks of residue placement. Wheat residues resulted in net P immobilization under zero tillage, but the amounts immobilized were less than 1 kg ha−1. When net P mineralization occurred, the percentage of P released ranged from 24% of wheat P under conventional tillage to 74% of GM P under conventional tillage. The amounts of P released were 0.4 kg ha−1 from wheat, 0.8 kg ha−1 from canola, 0.4 kg ha−1 from pea and 5.1–5.6 kg ha−1 from clover GM residues. Therefore, only GM residues recycled agronomically significant amounts of P for use by subsequent crops in rotation. Phosphorus release was positively correlated with residue P concentration and negatively correlated with C/P and lignin/P ratios.  相似文献   

12.
The productivity of upland rice in Japan as well as in the world is low and unstable owing to scarce and unpredictable rainfall. The objective of this study was to examine whether agronomic methods could enhance grain yield of upland rice. Four field experiments were conducted from 2001 to 2003 in Nishitokyo, Japan, under upland conditions with different water supplies, in order to quantify the effects of deep tillage combined with deep placement of manure (50-cm depth), straw mulch (6 t ha−1), or their combinations on the growth and grain yield of rice. Mulch kept surface soil moisture higher than without mulch even at reproductive stage, and it increased yield to the greatest extent under the most favourable conditions with much rainfall before heading (i.e., 2003). Deep tillage with deep placement of manure induced deep root proliferation and higher nitrogen uptake, increasing biomass production, and panicle number, and consequently grain yield was enhanced under the two lowest yielding environments with less rainfall before heading. Rice plants with deep tillage with deep manure application without mulch tended to have lower leaf water potential and higher diffusion resistance during drought, and negative effects on grain filling and harvest index in some experiments compared with the control. When deep tillage with deep placement of manure was combined with mulching in two experiments in 2002 and 2003, grain yield always enhanced compared with the control (P < 0.10, 6.0 t ha−1 versus 5.4 t ha−1 on average), suggesting their synergetic mechanisms for yield increase and stabilization. The results showed that deep tillage or mulching can improve grain yield of rice under drought-prone rainfed upland conditions in a temperate climate on an Andosol, and their combination had more consistent and greater positive effects.  相似文献   

13.
No-tillage (NT) is becoming increasingly attractive to farmers because it clearly reduces production costs relative to conventional tillage (CT). However, many producers in southern Italy are reluctant to adopt this practice because NT can have contrasting consequences on grain yield depending on weather conditions. The effect of NT and CT on continuous durum wheat (Triticum durum Desf.) under rainfed Mediterranean conditions was studied, over a 3-year period (2000–2002) at two locations (Foggia and Vasto) in southern Italy. Yield, grain quality [thousand kernel weight (TKW), test weight (TW) and protein content (PC)] and soil water content were assessed.Higher yield was obtained with NT than CT in the first 2 years at Foggia. In contrast, mean yield and quality parameters at Vasto were similar for the two treatments, except in the third year in which CT produced more than NT (4.6 Mg ha−1 versus 2.9 Mg ha−1). At Foggia, TW and TKW were higher in NT than CT in all years. Highest PC was obtained under CT (19.6% and 15.5% for CT versus 14.7% and 11.4% for NT, respectively, in the growing season 2000–2001 and 2001–2002) indicating that grain was shriveled with low starch accumulation.At Foggia, where this study was part of a long-term experiment started in 1995, a strong correlation was observed between yield and rainfall during the wheat growing season. The coefficient of determination (R2) values for CT and NT were 0.69* and 0.31 ns, respectively, and the regression straight line crossed around 300 mm of rainfall. These results indicate that NT was superior below this rainfall value, whereas more rainfall enhanced yield in CT. We conclude that NT performed better at Foggia with limited rainfall during the durum wheat growing season. The superior effect of NT in comparison to CT, was due to lower water evaporation from soil combined with enhanced soil water availability.  相似文献   

14.
Information on N cycling in dryland crops and soils as influenced by long-term tillage and cropping sequence is needed to quantify soil N sequestration, mineralization, and N balance to reduce N fertilization rate and N losses through soil processes. The 21-yr effects of the combinations of tillage and cropping sequences was evaluated on dryland crop grain and biomass (stems + leaves) N, soil surface residue N, soil N fractions, and N balance at the 0–20 cm depth in Dooley sandy loam (fine-loamy, mixed, frigid, Typic Argiboroll) in eastern Montana, USA. Treatments were no-tilled continuous spring wheat (Triticum aestivum L.) (NTCW), spring-tilled continuous spring wheat (STCW), fall- and spring-tilled continuous spring wheat (FSTCW), fall- and spring-tilled spring wheat–barley (Hordeum vulgare L.) (1984–1999) followed by spring wheat–pea (Pisum sativum L.) (2000–2004) (FSTW-B/P), and spring-tilled spring wheat–fallow (STW-F). Nitrogen fractions were soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), potential N mineralization (PNM), NH4-N, and NO3-N. Annualized crop grain and biomass N varied with treatments and years and mean grain and biomass N from 1984 to 2004 were 14.3–21.2 kg N ha−1 greater in NTCW, STCW, FSTCW, and FSTW-B/P than in STW-F. Soil surface residue N was 9.1–15.2 kg N ha−1 greater in other treatments than in STW-F in 2004. The STN at 0–20 cm was 0.39–0.96 Mg N ha−1, PON 0.10–0.30 Mg N ha−1, and PNM 4.6–9.4 kg N ha−1 greater in other treatments than in STW-F. At 0–5 cm, STN, PON, and MBN were greater in STCW than in FSTW-B/P and STW-F. At 5–20 cm, STN and PON were greater in NTCW and STCW than in STW-F, PNM and MBN were greater in STCW than in NTCW and STW-F, and NO3-N was greater in FSTW-B/P than in NTCW and FSTCW. Estimated N loss through leaching, volatilization, or denitrification at 0–20 cm depth increased with increasing tillage frequency or greater with fallow than with continuous cropping and ranged from 9 kg N ha−1 yr−1 in NTCW to 46 kg N ha−1 yr−1 in STW-F. Long-term no-till or spring till with continuous cropping increased dryland crop grain and biomass N, soil surface residue N, N storage, and potential N mineralization, and reduced N loss compared with the conventional system, such as STW-F, at the surface 20 cm layer. Greater tillage frequency, followed by pea inclusion in the last 5 out of 21 yr in FSTW-B/P, however, increased N availability at the subsurface layer in 2004.  相似文献   

15.
Hardsetting and crusting are forms of soil structure degradation associated with the collapse of macroaggregates during wetting and are responsible for poor seedling emergence, crop establishment and yields of food crops especially in semi-arid environments. This study investigated the effects of applying of 3.0 t ha−1 phosphogypsum, 1.0 t ha−1 polymer gel, 3.0 t ha−1 grass mulch and 5.0 t ha−1 cattle manure to the topsoil (0–15 cm) of a soil with hardsetting and crusting behavior and observed changes on aggregation under field conditions for two consecutive seasons. There were significant improvements in soil aggregate properties in the amended soil over the control. Both aggregate size distribution and wet aggregate stability showed significant differences between the amendments in the two seasons. The mean weight diameters of aggregates were 4.23 mm (mulch), 3.31 mm (manure), 2.17 mm (polymer gel), 2.23 mm (phosphogypsum) and 1.36 mm (control). The aggregates (2–4 mm) from amended soil were consistently more stable than the control and were in the order polymer gel = manure > mulch > gypsum > control. Tensile strength and bulk density of aggregates, on the other hand, were significantly higher (P < 0.05) in the unamended than amended soil.The application of soil amendments, especially mulch, significantly increased the soil water content over the two seasons and this was associated with lower soil penetration resistance in the latter. The reduced soil strength in the amended soils contributed to higher pegging, podding and grain yields of bambara groundnut (Vigna subterranean). This was confirmed by significantly higher correlations between soil aggregate characteristics, soil water, penetrometer resistance and growth and yield of bambara groundnut. The study concluded that significant improvements in soil aggregation can be obtained over a relatively short period and this can improve the yield of food crops.  相似文献   

16.
Nitrous oxide (N2O) and methane (CH4) emitted by anthropogenic activities have been linked to the observed and predicted climate change. Conservation tillage practices such as no-tillage (NT) have potential to increase C sequestration in agricultural soils but patterns of N2O and CH4 emissions associated with NT practices are variable. Thus, the objective of this study was to evaluate the effects of tillage practices on N2O and CH4 emissions in long-term continuous corn (Zea mays) plots. The study was conducted on continuous corn experimental plots established in 1962 on a Crosby silt loam (fine, mixed, mesic Aeric Ochraqualf) in Ohio. The experimental design consisted of NT, chisel till (CT) and moldboard plow till (MT) treatments arranged in a randomized block design with four replications. The N2O and CH4 fluxes were measured for 1-year at 2-week intervals during growing season and at 4-week intervals during the off season. Long-term NT practice significantly decreased soil bulk density (ρb) and increased total N concentration of the 0–15 cm layer compared to MT and CT. Generally, NT treatment contained higher soil moisture contents and lower soil temperatures in the surface soil than CT and MT during summer, spring and autumn. Average daily fluxes and annual N2O emissions were more in MT (0.67 mg m−2 d−1 and 1.82 kg N ha−1 year−1) and CT (0.74 mg m−2 d−1 and 1.96 kg N ha−1 year−1) than NT (0.29 mg m−2 d−1 and 0.94 kg N ha−1 year−1). On average, NT was a sink for CH4, oxidizing 0.32 kg CH4-C ha−1 year−1, while MT and CT were sources of CH4 emitting 2.76 and 2.27 kg CH4-C ha−1 year−1, respectively. Lower N2O emission and increased CH4 oxidation in the NT practice are attributed to decrease in surface ρb, suggesting increased gaseous exchange. The N2O flux was strongly correlated with precipitation, air and soil temperatures, but not with gravimetric moisture content. Data from this study suggested that adoption of long-term NT under continuous corn cropping system in the U.S. Corn Belt region may reduce GWP associated with N2O and CH4 emissions by approximately 50% compared to MT and CT management.  相似文献   

17.
Although the Midwestern United States is one of the world's major agricultural production areas, few studies have assessed the effects of the region's predominant tillage and rotation practices on greenhouse gas emissions from the soil surface. Our objectives were to (a) assess short-term chisel (CP) and moldboard plow (MP) effects on soil CO2 and CH4 fluxes relative to no-till (NT) and, (b) determine how tillage and rotation interactions affect seasonal gas emissions in continuous corn and corn–soybean rotations on a poorly drained Chalmers silty clay loam (Typic Endoaquoll) in Indiana. The field experiment itself began in 1975. Short-term gas emissions were measured immediately before, and at increasing hourly intervals following primary tillage in the fall of 2004, and after secondary tillage in the spring of 2005, for up to 168 h. To quantify treatment effects on seasonal emissions, gas fluxes were measured at weekly or biweekly intervals for up to 14 sampling dates in the growing season for corn. Both CO2 and CH4 emissions were significantly affected by tillage but not by rotation in the short-term following tillage, and by rotation during the growing season. Soil temperature and moisture conditions in the surface 10 cm were significantly related to CO2 emissions, although the proportion of variation explained by temperature and moisture was generally very low (never exceeded 27%) and varied with the tillage system being measured. In the short-term, CO2 emissions were significantly higher for CP than MP and NT. Similarly, mean seasonal CO2 emissions during the 2-year period were higher for CP (6.2 Mg CO2-C ha−1 year−1) than for MP (5.9 Mg CO2-C ha−1 year−1) and NT (5.7 Mg CO2-C ha−1 year−1). Both CP and MP resulted in low net CH4 uptake (7.6 and 2.4 kg CH4-C ha−1 year−1, respectively) while NT resulted in net emissions of 7.7 kg CH4-C ha−1 year−1. Mean emissions of CO2 were 16% higher from continuous corn than from rotation corn during the two growing seasons. After 3 decades of consistent tillage and crop rotation management for corn and soybean producing grain yields well above average in the Midwest, continuous NT production in the corn–soybean rotation was identified as the system with the least soil-derived C emissions to the atmosphere from among those evaluated prior to and during corn production.  相似文献   

18.
In Tigray (Northern Ethiopia), soil moisture has been identified as the most limiting factor in agricultural production; on the other hand, loss of rain water through runoff as well as the induced soil loss has been determined as a critical problem in the region in the last two to three decades. To alleviate the above paradox, the government has mobilized communities and resources for the construction of physical soil and water conservation structures (stone bunds, terraces) in almost all land uses. However, yield improvement was mainly concentrated within the vicinity of the structures and runoff continued to overtop the structures, as no measures for in situ soil conservation were taken. The terwah system, consisting of traditional ploughing followed by making every 1.5–2 m contour furrows, and permanent raised beds with contour furrows at 60–70 cm interval treatments, were considered and evaluated as practices that could increase the efficiency of in situ water utilization and soil conservation. An experiment was started in Gum Selasa, which is one of the drought prone areas in Tigray, whereby runoff volume and sediment load were measured after every rain event. Permanent raised beds with contour furrows at 60–70 cm interval significantly (P < 0.05) reduced runoff volume, runoff coefficient and soil loss as compared to traditional ploughing: 255, 381 and 653 m3 ha−1 runoff was recorded from permanent bed, terwah and traditional ploughing, respectively during the whole cropping season. The above runoff induced 4.7 t ha−1 soil loss from permanent bed, 7.6 t ha−1 from terwah and 19.5 t ha−1 from traditional ploughing. Overall, contour furrows and permanent raised beds can be part of the ongoing intensification process which includes physical soil and water conservation, slope reforestation, irrigation development and agro forestry in crop lands. Moreover, the use of permanent raised beds if combined with crop mulching and crop diversification is an important component for the development of sustainable conservation agriculture practices in the region.  相似文献   

19.
Conservation tillage practices are commonly used to reduce erosion; however, in fields that have been in no-tillage (NT) for long periods, compaction from traffic can restrict infiltration. Rotational tillage (RT) is a common practice that producers use in the central corn-belt of the United States, and could potentially reduce soluble nutrient loads to surface waters. The objectives of this study were to determine the first year impacts of converting from long-term NT to (RT) on N and P losses through runoff. Plots (2 m × 1 m) were constructed in two fields that had been in NT corn–soybean rotation for the previous 15 years. One field remained in NT management, while RT was initiated prior to planting corn in the other field using a soil finisher. Variable-intensity rainfall simulations occurred before and after fertilization with urea (224 kg N ha−1) and triple superphosphate (112 kg P ha−1). Rainfall was simulated at (1) 50 mm h−1 for 50 min; (2) 75 mm h−1 for 15 min; (3) 25 mm h−1 for 15 min; (4) 100 mm h−1 for 15 min. Runoff volumes and nutrient (NH4-N, NO3-N and dissolved P [DP]) concentrations were greater from the NT field than the RT field before and after fertilization.Dissolved P concentrations in runoff prior to fertilization were greater during the 50 mm h−1 rainfall period (0.09 mg L−1) compared to the other periods (0.03 mg L−1). Nutrient concentrations increased by 10–100-fold when comparing samples taken after fertilization to those taken prior to fertilization. Nutrient loads were greater prior to and after fertilization from the NT treatment. Prior to fertilization, NT resulted in 83 g ha−1 greater NH4-N and 32.4 g ha−1 greater dissolved P losses than RT treatment. After fertilization, NT was observed to lose 5.3 kg ha−1 more NH4-N, 1.3 kg ha−1 more NO3-N, and 2.4 kg ha−1 more dissolved P than RT. It is typically difficult to manage land to minimize P and N losses simultaneously; however, in the short term, tillage following long-term NT resulted in lowering the risk of transport of soluble N and P to surface water.  相似文献   

20.
Soybean (Glycine max (L.) Merr.) is an important crop in the southeastern United States, and thus there is a need for additional information on the effects of tillage, weed control methods and row spacing on soybean yields, weed populations and soil properties. The objective of this study was to determine the effects of three weed control methods (none, cultivation, and herbicide) and three row spacings (45, 60 and 90 cm) on soybeans planted in a conventionally prepared seedbed or planted in wheat stubble (no-till (NT)) on a Decatur silty clay loam (Rhodic Paleudult) soil during the 1987 and 1988 growing seasons. Following NT planting, soybean plots produced a seed yield of 3102 kg ha−1 with herbicide, 2911 kg ha−1 with cultivation and 2216 kg ha−1 with no weed control. On a conventionally prepared seedbed, herbicide and cultivation resulted in almost equal seed yields (3898 kg ha−1 and 3954 kg ha−1 respectively) which were significantly higher than those from the no weed control plots (3151 kg ha−1). Soybeans in narrow (45 cm) rows (3997 kg ha−1) consistently out-yielded those in the wider 60 cm rows (3130 kg ha−1) and 90 cm rows (2490 kg ha−1) in both growing seasons, results averaged across years showed that conventionally planted soybeans produced higher yields (3668 kg ha−1) than NT planted soybeans (2743 kg ha−1). The weed infestation was significantly less with herbicide or cultivation than with no weed control and also less in narrow rows (45 cm) than in wider rows (60 and 90 cm). Data on the soil properties (from a depth of 0–15 cm) showed that moisture content, organic matter content and total soil nitrogen were higher in NT plots than in conventional plots. Similarly, disease ratings and infestation of bacterial blight of soybean were significantly higher in NT than in conventional tillage systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号