首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吴龙平  明斐卿  付丽  王云  唐颖浩 《油气储运》2013,(10):1072-1075,1079
介绍了储罐标准规范GB 50341、JIS B 8501、BSEN14015及API 650的罐壁厚度计算公式;比较分析了4个标准规范在罐壁厚度计算公式、罐壁钢板许用应力、罐壁焊接接头系数方面的差异.通过比较分析发现,除了许用应力、焊接接头系数不同外,罐壁计算厚度的设计液位高度也不一样,对设计液位高度的不同理解是引起罐壁厚度差异的主要原因.分析结果表明:采用GB 50341与采用其他储罐标准规范中罐壁厚度计算公式确定的罐壁厚度是一致的.为使罐壁计算厚度与国际标准规范相同,给出了许用应力的确定原则,同时重新定义了设计液位高度.通过实例证明,许用应力的确定原则是合理可靠的.  相似文献   

2.
梁斌  马永利 《油气储运》1997,16(6):34-35,47
在施工安装过程中,立式钢制储油罐常因焊缝密集,应力状况复杂,造成油罐形体尺寸难以控制,影响了油罐的安装质量。从罐壁和罐底的焊接过程和焊接工艺方面,分析了出现焊接变形的原因及其它因素对焊拉的影响。同时提出了在施焊过程中的焊接变形应采取的措施。  相似文献   

3.
大型拱顶储罐的有限元计算   总被引:4,自引:0,他引:4  
尹晔昕  王瑜 《油气储运》2003,22(1):23-26
按照设计规范规定,顶板带肋拱顶(内浮顶)储罐的直径不宜大于32m。为解决大跨度拱顶(内浮顶)储罐的计算问题,拱顶储罐大型化的关键是储罐拱顶的大型化,采用有限元技术,给出了储罐有限元计算的主要步骤。对于20000m^3拱顶储罐,建立了满足精度的计算模型,对内压强度,稳定性以及外压稳定性进行了计算,计算结果可为工程设计提供理论依据。  相似文献   

4.
基于工业通风中的全面通风原理,可以计算LNG储罐吹扫过程任意时刻罐内的水蒸汽及氧气的质量浓度,或者罐内水蒸汽及氧气达到某一质量浓度所需的时间.介绍了湿空气参数含湿量和相对湿度的计算方法,以江苏LNG接收站为例,对吹扫时间进行了理论计算.当氮气输入量为2 000 m3/h时,要达到EN-14620规定的罐内水蒸汽和氧气质量浓度的要求,储罐的理论吹扫时间为18 d,但实际吹扫时间需要33 d,二者相差较大.结合工程实际分析了计算误差产生的原因,同时介绍了储罐串、并联吹扫的优缺点,提出了相关建议.  相似文献   

5.
本文介绍了地上设置的液化石油气常温储罐安全阀的选型与计算,并阐述了安全阀的设置、消防冷却设施及洒水强度等。  相似文献   

6.
乔桢遴 《油气储运》2003,22(5):24-26
液压安全阀和机械呼吸阀是保证储罐安全运行的重要设备,前者可在后者失灵时工作。液压安全阀液封的高度若按正确的计算结果确定,则既可减少轻油气的挥发损耗,又能防止储罐产生超压和负压,保证储罐的安全运行。给出了液封高度的计算公式,介绍了公式的推导过程和计算结果应用于生产的实际效果。  相似文献   

7.
随着我国进口LNG量的快速增长,LNG储罐已成为接收站的重要储存设施,其容量大小不仅直接影响接收站LNG的接收和天然气的外输,而且直接影响接收站的投资和运行的经济性。由于LNG接收站的存储特点,其存储能力会受到许多因素的影响,包括LNG运输船的运输方案、天然气外输方案、接收站的作业特点等。通过分析,确定了影响LNG储罐罐容的因素和罐容的计算方法,并对不同计算方法进行了讨论。  相似文献   

8.
刘佳  袁玲  唐悦影  卢向红 《油气储运》2013,32(4):421-425
基于石油储罐设计日益大型化和浮放式的现状,对比分析了现行中美大型储罐设计标准GB50341--2003和API650—2012关于抗震计算的相关规定,总结了其在抗震设防基准、设计准则、数学模型及其参数和计算方法等方面的差异。依据两国标准规定的方法,对某项目5000m。内浮顶罐的抗震计算不同,尤其是罐壁临界许用应力,两标准的计算结果相差近3倍,是所有计算结果中差别最大的参数,也是两者设防目标不同在数值上的表现。GB50341-2003规定储罐上部自由空间即为晃动波高,而API650—2012规定储罐上部自由空间的确定需要充分考虑储罐地震用途组别等因素,更有针对性地定义了储罐上部自由空间与晃动波高的关系。(表3,参8)  相似文献   

9.
分析了三类成品油长输管道储罐容量的计算方法,不同计算方法考虑的侧重点不同。通过比较,认为采用混油完全回掺方法确定批次和批量所得罐容最经济。提出了在储罐容量计算方法实际应用中尚需考虑的一些因素,认为在采纳《输油管道工程设计规范》推荐的计算方法的同时,应综合考虑管道能力、油源保证情况及油库销售与管理状况。  相似文献   

10.
王振国 《油气储运》2008,27(1):51-54
目前大型油罐泡沫液储备量主要根据《低倍数泡沫灭火系统设计规范》或依据浮顶油罐泡沫发生器保护周长来确定,而在扑救大型油罐火灾的实际过程中发现,两种计算方法都过于理想化,仅适用于油罐罐壁与泡沫堰板成矩型的设计,讨论了大型油罐泡沫液储备量的计算方法,并针对如何提高灭火效率提出了改进意见。  相似文献   

11.
立式储油罐(100~100000m~3)底板焊接接头型式为搭接接头,表面为平角焊缝。因受特定的安装工艺、结构形式、施工条件所限,底板背面(与基础接触面)焊缝无法施焊,形成单面搭接接头。这种接头  相似文献   

12.
以16×104 m3大型全容液化天然气储罐为例,描述其结构,介绍其静态蒸发率(BOR)的测试原理,详细论述了测试过程中的热量计算方法,并根据实测经验,对测试过程中储罐的静置、静置前相关阀位的隔离设置、现场数据测量、测后数据处理及完成测试后流程恢复进行分析梳理,提出针对此类测试的相关工艺操作建议,最后对测试结果的影响因素进行探讨,可为以后该类LNG储罐BOR的测试提供参考.  相似文献   

13.
为了准确计算LNG储罐在不同工况下的温度场,基于ANSYS软件建立了全容式LNG储罐温度场数值计算模型,计算了稳态工况下储罐罐体的温度场分布,进而根据计算结果,对不同环境温度、液位高度、对流换热系数对储罐温度场分布的影响规律进行分析。模拟结果表明:环境温度对罐壁漏热量影响较大,环境风速对罐顶漏热量影响较大,液位高度对罐壁和罐底的漏热量有一定影响,环境风速对储罐整体漏热量影响不大,该模拟结果对全容式LNG储罐的结构设计与优化具有参考意义。  相似文献   

14.
为研究带有裂纹损伤管道剩余寿命的计算方法,针对正常使用环境下的钢制管道提出了同时考虑变形和承载力要求的含裂纹管道的使用寿命模型,该模型包括2个阶段,即裂纹萌生阶段和裂纹扩展阶段。对裂纹萌生阶段和裂纹扩展阶段分别采取局部应力应变状态方法和弹塑性断裂力学裂纹扩展理论方法进行分析,推导出管道在2个阶段剩余寿命的计算方法。在此基础上综合考虑环境以及平均应力对裂纹扩展速率的影响,根据安全系数法的原则,讨论了含裂纹钢制管道剩余寿命的计算问题,给出了含裂纹钢制管道剩余寿命的计算公式,为工程实践提供了理论依据。  相似文献   

15.
宋鹏飞  陈峰  侯建国  周婵 《油气储运》2015,(3):316-318,339
LNG储罐是LNG接收站投资费用最高的关键核心设施,前期设计阶段通过静态经验公式合理估算罐容及数量至关重要。LNG储罐数量及罐容的计算方法需要因地制宜,不同的设计公司采用的计算方法不尽相同。选取3种国内外LNG接收站设计公司常用的静态计算方法,对具体设计案例分别进行计算,结果表明:对于不承担调峰,外输相对均匀的LNG接收站或大型LNG接收站后期增罐的情况,采用法国某设计公司的计算方法较为合理;对于市场用气波动较大又兼顾调峰的LNG接收站,采用日本某设计公司和库存量法的计算方法更为合理。最后,针对3种公式的不足,给出了优化的计算公式,并针对不同类型接收站推荐适用的计算方法。  相似文献   

16.
为了便于钢制焊接储罐设计人员合理地选取设计规范进行储罐罐壁抗震计算,简要介绍了储罐设计规范GB 50341-2003、API 650-2013中底圈罐壁最大轴向应力和底圈罐壁许用临界应力的计算方法。分别对15×104 m3、10×104 m3双盘式浮顶油罐进行了底圈罐壁最大轴向应力、底圈罐壁许用临界应力的计算,结果表明:在计算底圈罐壁最大轴向应力时,GB 50341-2003与API 650-2013的计算结果相同;GB 50341-2003与API 650-2013在计算底圈罐壁许用临界应力方面都是安全的,但GB 50341-2003在确定罐壁许用临界应力方面相对保守。GB 50341-2003与API 650-2013中罐壁许用临界应力的计算公式可用一个公式来代替,当底圈罐壁最大轴向应力不大于底圈罐壁许用临界应力时,储罐底圈罐壁在地震作用下是安全的。  相似文献   

17.
以API STD 2000-2014《常压和低压储罐的泄压》为指导原则,结合国内外工程经验,分析了润滑油储罐可能遇到的超压和负压工况,计算了不同工况下储罐安全保护装置所需的呼吸量,重点探讨了非正常工况下呼吸量的计算方法,确定氮气调节阀、呼吸阀及紧急泄压人孔的流通量。结果表明:非正常工况的润滑油储罐所需安全保护装置的最大呼气量和最大吸气量分别为876.3 m3/h、501.8 m3/h,大于正常操作下的液体最大进出量和大气热效应造成的呼吸量。因此,实际工作中需要对储罐运行的各种情况逐一分析,以确定安全保护装置的规格。研究结果对于润滑油储罐安全保护装置的设计,尤其是海外项目的设计具有一定的参考意义。  相似文献   

18.
大型LNG储罐通常在微正压低温条件运行,无论静态还是动态工况运行,环境热量漏入均会导致LNG闪蒸气化,造成气损,增加生产成本,并有可能造成LNG分层而发生翻滚,使罐内压力上升带来安全威胁。根据大型LNG储罐的结构特征,给出了较为简便的日蒸发率计算方法;提出了光照对储罐漏热量的影响,并给出不同条件下储罐表面温度的简便计算公式。将该计算方法应用于某16×104 m3的LNG储罐日蒸发率计算,其计算结果达到大型LNG储罐蒸发率的通用要求;运用液位差间接法对储罐实际蒸发量进行了计算,其结果与上述简便公式计算值较为一致。该简便计算方法可为LNG储罐保冷设计、施工及生产过程中的绝热性能衡量提供较为准确的分析方法和依据。  相似文献   

19.
储罐的大型化给抗风圈、加强圈设计提出了新的要求.在比较目前国内外大型储罐抗风圈、加强圈设计标准的基础上,以某20×104 m3浮顶储罐抗风圈、加强圈的设计为例,分别根据中国标准GB 50341和美国标准API 650设计了其截面模量.运用ANSYS软件建立了其在不同荷载工况下的有限元数值计算模型,对抗风圈、加强圈分别进行了强度和稳定性计算,给出了罐壁的变形特点及极限风压值.对比分析根据GB 50341和API 650设计的抗风圈、加强圈的计算结果,给出了抗风圈、加强圈的设计计算建议,可为大型储罐的设计提供参考依据.  相似文献   

20.
液化烃储罐发生泄漏、火灾事故时,安全阀仅能将罐体压力限制在安全阀起跳压力和最大允许工作压力范围内,无法起到主动泄压的作用,设置泄压系统可以弥补这一不足。经计算分析发现,API 521-2014对泄压系统的通用性要求不适用于容积较大的液化烃储罐泄压系统的设计,故提出了以火灾工况、泄放阀(BDV)定压下最大泄放量所需的泄放面积作为动态泄压模块输入面积的计算方法。以容积为2 000 m~3的液化烃储罐为例,对10 h内液化烃储罐火灾泄放数据进行分析,结果:泄压系统的最高压力、最高温度、最大泄放量均出现在火灾开始阶段,且随着泄放时间的延长逐渐减小;轻组分在排放物料中所占比例逐渐减小,重组分在排放物料中所占比例则逐渐增大。利用该方法设计的泄压系统可以对液化烃储罐形成有效保护。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号