首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为了解地面灌施条件下土壤水氮运移的规律,通过室内垂直土柱试验,研究了不同土壤体积质量(1.3、1.4、1.5g/cm3)和不同肥液浓度(300、500、700、900mgN/L)对水氮运移的影响。结果表明:0~55cm范围内同一土层土壤含水率随着土壤体积质量的增加而增加,55cm以下的土壤,土壤体积质量越大含水率越小,肥液浓度对含水率分布规律基本没有影响;0~60cm范围内硝态氮含量小于本底值,75cm以下,硝态氮含量为本底值的5~8倍,同一土层硝态氮含量随着体积质量的增大而降低。肥液浓度对硝态氮分布影响不大,但在湿润峰处,硝态氮含量随着肥液浓度的增大而减少;地表铵态氮含量随着时间的增加而降低,铵态氮含量随深度先增大后减小,地表铵态氮含量大于本底值,距离地面15cm达到最大,之后逐渐减小,湿润峰处铵态氮含量小于本底值。0~25cm范围内,体积质量越大铵态氮含量越高,25cm以下的土壤则相反。肥液浓度对铵态氮分布影响不大,但对铵态氮含量影响显著,肥液浓度越大,铵态氮含量越高,肥液浓度差值越大,铵态氮含量相差也越大。该研究对提高地面灌施条件下的水氮利用率具有重要意义。  相似文献   

2.
为探讨土壤容重对蓄水坑灌入渗和水氮分布的影响,试验采用30°扇柱体有机玻璃土箱,高120 cm,半径100 cm,设置3个土壤容重水平:1.3、1.4、1.47 g/cm3。通过室内入渗试验,研究了土壤容重对肥液入渗、含水率分布、铵态氮和硝态氮含量的影响。结果表明:蓄水坑灌条件下,累积入渗量随土壤容重的增大而减小,不同容重下累积入渗量与入渗时间之间均符合Kostiakov入渗模型。随土壤容重的增大,湿润体范围逐渐减小,在分布1 d内,0~60cm深度土壤体积含水率随土壤容重的增大而增大。土壤铵态氮含量随土壤容重的增大在不同径向方向上变化不一致。不同容重下深层湿润锋处土壤硝态氮的累积量为:1.47 g/cm31.4 g/cm31.3 g/cm3。  相似文献   

3.
为了明确灌后复水(降水)对土壤中水氮分布的影响以及选择合理的灌施方式,通过室内模型试验,研究了在蓄水多坑肥灌条件下不同降水量(30.624,37.334,43.56 mm)所对应单坑不同复水量(140.1,228.7,400.5 mm)和不同复水时间(灌后1,5,10 d)对土壤水氮运移的影响.研究结果表明:复水后土壤含水率增大,复水量为228.7 mm及以上时,30~80 cm深度范围内土壤含水率均达到田间持水率的80%以上,且复水量越大或复水时间间隔越短,复水后水分分布越均匀;硝态氮在湿润锋处积累明显,复水后坑壁附近土壤硝态氮质量浓度降低,硝态氮质量浓度峰值向远处推进,复水量越大或复水时间间隔越短,硝态氮推进越远且向深处迁移越明显;复水后铵态氮质量分数在近坑处降低,在距坑较远处增加,但变化幅度均不大,复水量越大,或复水时间间隔越短,对铵态氮质量浓度影响越大,复水后土壤铵态氮分布越均匀.  相似文献   

4.
通过研究体系温度对蓄水坑灌施条件下土壤水分及氮素运移转化的影响,明确蓄水坑灌土壤水氮时空分布特征,探究土壤水氮运移迁移转化机理,以期为水肥合理灌施提供理论基础。通过模拟构建蓄水坑灌模型,以大型控温箱精确控制土壤温度,采用克里克空间插值法分析了蓄水坑灌条件不同体系温度下的水分、硝态氮、铵态氮时空分布特征,结果显示7 h左右土壤水分、养分完成入渗进入再分布阶段,土壤水分随着时间的推移其垂向和径向迁移距离均逐渐增大,同一时刻,温度越高其横向与径向迁移距离越大,且靠近蓄水坑壁区域的土壤含水率相对越低;土壤中铵态氮含量在不同温度下随时间推移均呈现先增后减的现象,低温下第15 d时土壤养分再分布核心区出现下降趋势,中、高温第10 d时已出现下降趋势,且其迁移距离远低于水分、硝态氮的迁移距离;土壤中硝态氮含量在10℃下第10 d时出现增高现象,而20、25、35℃下第5 d时已出现增高现象,由蓄水坑周边至湿润体边缘呈现"低-高-低"的分布态势。表明再分布阶段温度升高能提高水分的再分布速率,提高脲酶活性加快尿素水解转化为铵态氮,同时促进硝化反应进程抑制铵态氮在土壤中的积累,当土壤含水量过高时,会抑制土壤中氮素的硝化作用。  相似文献   

5.
【目的】探究河套灌区滴灌条件下玉米各生育期土壤水氮变化规律及不同灌水量对土壤硝态氮累积量的影响。【方法】通过田间试验,设置高灌水量(D1:76 mm)处理和低灌水量(D2:60 mm)处理,分析土壤含水率和土壤氮素(铵态氮和硝态氮)的动态变化规律,利用HYDRUS-2D模型进行模拟验证与预测。【结果】各处理灌水后土壤含水率呈增加趋势;而土壤铵态氮和硝态氮在灌水施肥后迅速升高,随后下降,D1处理和D2处理不同生育期0~10 cm土层铵态氮量和硝态氮量的平均降幅分别为60.0%~62.0%和40.0%~46.7%。拔节期、抽雄期和灌浆期各土层灌水后D1处理相比D2处理的土壤含水率分别增加了5.9%、8.0%和6.7%,而土壤铵态氮量和硝态氮量随着土层深度的增加而降低。不同生育期硝态氮累积量为拔节期>抽雄期>灌浆期,随着生育期的推进,硝态氮累积量呈降低趋势。土壤含水率及氮素模拟值与实测值的吻合度较高,R2、RMSE和d均介于合理范围内。【结论】玉米生育期120 mm的灌溉定额可有效降低0~60 cm土层的硝态氮累积量,可降低硝态氮在60~100 cm土层的积累量。该研究可为当地灌...  相似文献   

6.
为了探究蓄水坑灌下不同施肥管理方式下土壤矿质氮及肥料氮素的分布规律,并为苹果园氮肥管理方式的优选提供参考,本试验设置4个处理,包括两个施氮量水平(300; 600kg/hm~2),两个施肥次数(单次施肥;两次施肥)以及两种灌溉方式(地面灌溉;蓄水坑灌)。通过苹果园原位试验,检测不同土层中氨氮和硝氮的含量,同时利用~(15)N同位素示踪技术,检测不同土层中的肥料氮素的丰度,分析土壤中肥料氮素的分布规律,以及不同灌溉施肥管理方式下,苹果产量的响应。结果表明:①蓄水坑灌条件下,施肥量的增加明显提高0~60 cm土层氨氮含量和80~160 cm土层硝氮含量;而分次施用可以有效减少氨氮的大量累积,同时也可以在一定程度上增加硝氮含量。土壤氨氮和硝氮均主要集中于土壤中层,分别占比52.87%和56.06%。蓄水坑灌法促进土壤矿质氮集中于苹果根系吸收层。②地面灌溉条件下,肥料氮素主要集中于0~60 cm土层中。蓄水坑灌处理中,肥料氮素明显向下扩散,0~100 cm土壤中肥料氮素占比95.75%。蓄水坑灌可以有效促使肥料氮素扩散至中层土壤,并显著减少0~40 cm浅层土壤肥料氮素累积。③相较于地面灌溉,蓄水坑灌可以有效提高产量,约13.7%。同时,可以提高可溶性固形物含量,约29.8%。因此,在试验条件下,最优施肥管理方式为中施氮量(300 kg/hm~2)同时采用两次施肥的管理方式。  相似文献   

7.
【目的】研究红壤区涌泉根灌双点源入渗土壤水氮运移分布规律,为提高涌泉根灌水氮利用效率和灌水器合理埋深提供理论依据。【方法】在大田通过灌水器埋深分别为30、45、60cm的硝酸铵钙溶液入渗试验,研究了灌水器埋深对涌泉根灌双点源交汇入渗土壤的入渗能力、湿润锋运移距离、土壤水分以及铵态氮和硝态氮运移特性的影响,并建立了红壤涌泉根灌土壤累计入渗量及湿润锋运移距离与入渗历时的关系模型。【结果】灌水器埋深分别为30、45和60 cm时,红壤累计入渗量和稳定入渗率分别为18.84 L和0.035 cm/min、17.09 L和0.031 cm/min以及14.37 L和0.024 cm/min,即灌水器埋深越大,土壤的累计入渗量和稳渗率就越小,且累计入渗量与入渗历时之间均符合幂函数关系;灌水器埋深分别为30、45和60 cm时,交汇入渗发生的时间分别为168、187和197 min,交汇发生时间增幅依次为10.16%和5.56%,湿润锋运移距离随埋深的增大而减小,运移距离与入渗历时之间均符合对数函数关系,且竖直向下的运移距离均大于竖直向上;土壤含水率均随着土层深度的增加而先增加后减小,对于同一土层,灌水器处土壤含水率最大,其次为交汇面处,而距离灌水器12.5cm处土壤含水率最小;土壤铵态氮和硝态氮均随土层深度的增加而先增加后减小,在水平方向,距离灌水器越近,铵态氮的质量浓度越大,对于硝态氮而言,灌水器埋深不同,硝态氮的分布存在明显差异。【结论】灌水器埋深对涌泉根灌双点源交汇入渗红壤的水氮运移分布均有显著影响,且埋深超过60 cm时,氮肥淋失风险较大,且对作物吸收不利。  相似文献   

8.
为探究蓄水坑灌灌施条件下灌水量对苹果园土壤氮素分布规律的影响,本文通过田间实验就蓄水坑灌灌施条件下灌水量对苹果园土壤氮素分布规律进行了研究.结果表明:灌水量对土壤碱解氮和硝态氮分布影响范围基本一致,硝态氮和碱解氮浓度峰值集中在蓄水坑坑壁外围水平10 cm范围内,随着与蓄水坑坑壁距离的增加而降低.随着灌水量的增加,蓄留在蓄水坑坑壁外围水平10 cm范围内碱解氮和硝态氮量减少;随着土层深度和径向距离的增加,各处理间碱解氮和硝态氮量随着灌水量的增加而增加.该试验条件下,碱解氮和硝态氮相关系数为0.926,硝态氮量占碱解氮量百分比较大,建立了碱解氮和硝态氮的相关关系式.  相似文献   

9.
蓄水坑灌条件下不同土温对土壤水氮运移规律的影响   总被引:1,自引:0,他引:1  
为了明确不同土壤温度对土壤中水氮分布的影响以及选择合理的灌施方式,通过室内模型试验,研究了在蓄水单坑肥灌条件下不同土壤温度(20,25,30℃)所对应单坑灌水量(7L)和灌后不同时间(灌后1,5,10,15d)对土壤水氮运移的影响。研究结果表明:在径向距离r=25cm处,土壤温度分别为20,25,30℃,含水率空间分布基本一致,变化幅度不大;土壤温度为20,25℃时,土壤铵态氮含量随分布时间的延长先增大后减小,20℃时第10d土壤铵态氮含量达到最大值,25℃时第5d土壤铵态氮含量达到最大值,土壤温度为30℃时,随着时间的延长,土壤铵态氮含量逐渐减小;在同一分布时刻,土壤硝态氮含量随土壤温度的升高而增大。  相似文献   

10.
吴娇  尹娟  耿浩杰  刘宇朝 《节水灌溉》2019,(1):22-25,31
通过大田膜下滴灌试验,研究了不同灌水处理下马铃薯根区水分和硝态氮的运移规律以及不同灌水处理对马铃薯产量的影响,为宁夏干旱地区防止土壤中硝态氮淋移渗漏、提高土壤水肥利用效率提供理论依据。该试验以灌溉定额900、1 260、1 620 m^3/hm^2为变量,采用随机区组试验方法,试验结果表明:土壤含水率随着灌溉定额的增大而增加且随着土层深度的增加不断减少;随着灌水后天数的推移,各个处理不同深度土壤含水率不断降低;表层土壤(0~20 cm)含水率随着灌溉定额的增加而增大,30~40 cm土壤含水率不断降低,50~100 cm土壤含水率不断降低的幅度随着灌溉定额的增加而降低; 30~50 cm土层硝态氮含量低于0~20 cm土层的,60~100 cm土层硝态氮的含量在0.2 mg/kg基础上以0~0.11 mg/kg上下浮动;在该试验中,灌溉定额在一定范围内可以促进马铃薯产量的增加,但是当灌水量超过1 620 m^3/hm^2时,产量与灌水量呈负相关关系。试验条件下,灌溉定额为1 260 m^3/hm^2时,马铃薯产量最高,高达25.88 t/hm^2,不同深度土层含水率和硝态氮含量均为马铃薯生长发育对水分的最优需求。  相似文献   

11.
蓄水坑灌肥液入渗下土壤水氮运移特性试验研究   总被引:2,自引:1,他引:2  
为探讨蓄水坑灌肥液入渗下土壤水氮运移特性,通过室内试验对湿润体内土壤水分、NH+4-N和NO3--N的运移分布规律及氨挥发特性进行了系统研究。结果表明,蓄水坑灌肥液入渗下土壤水分主要分布在20~80 cm深层范围,表层土壤含水率较低,土壤水分的扩散分布主要集中在前9 d,再分布过程中,深层土壤含水率的增幅大于表层;氨挥发主要发生在蓄水坑边壁界面,占氨挥发总量的72.41%,且最大日均氨挥发量出现在第7天,达34.08 mg/(m~2·d);NH+4-N主要分布在地表以下30~60 cm范围,再分布10 d内NH+4-N质量分数随时间的延长逐渐增加,且第7天增加较快,15 d后减小;NO3--N主要分布在土壤湿润锋边缘,再分布15 d内,土壤NO3--N质量分数均随时间的延长逐渐增加。蓄水坑灌肥液入渗下,可提高地表以下30~60 cm土壤水分和NH+4-N质量分数,减小土壤表层氨挥发损失,增强90~100 cm深层土壤的硝化作用。  相似文献   

12.
为解决宁南山区旱地经济林干旱缺水的现状及小降雨(4~16 mm)无法入渗到根系(20~40 cm)分布范围,设计了一种降雨集流渗灌装置,通过室内土箱试验,以降雨量作为控制因子,研究不同雨量条件下径向和垂向土壤水分的运动特征.结果表明:随雨量增加累计入渗量逐渐增大,入渗速率逐渐减小;不同雨量条件下土壤含水率增量在垂向0~...  相似文献   

13.
土壤水分条件是棉花生长和发育的重要因素。为了研究塔里木灌区膜下滴灌棉田土壤水分特征,于2014年4月18日至10月31日采用中子仪对膜下滴灌棉田0~120cm土壤水分进行观测,分析了不同生育期土壤含水率的时空变化,采用水量平衡原理计算了膜下滴灌棉田耗水量。结果表明:4月中旬到7月中旬为土壤水分稳定期,7月中旬到8月底为土壤水分剧烈变化期,8月底到10月底为缓慢消耗期;0~20cm为土壤水分活跃层,20~60cm为土壤水分次活跃层,60~120cm为土壤水分稳定层;灌溉入渗水主要分布在0~40cm;膜下滴灌棉田苗期、蕾期、花铃期、吐絮期的耗水强度分别为0.63、2.62、7.01、0.71mm/d。  相似文献   

14.
通过田间试验对不同水肥条件下土壤NO3--N、速效磷、速效钾、盐分分布进行研究,结果表明:在滴灌施肥条件下,土壤剖面NO3--N分布主要集中在湿润体边缘,速效磷主要分布在0~30cm范围,速效钾主要分布在0~40cm范围;合理水肥比例可提高红枣对养分的吸收和减少养分在土壤中的积累且影响土壤盐分分布。试验结果为盐渍化土壤水肥一体化管理提供参考。  相似文献   

15.
新疆滴灌技术已在小麦作物上推广应用,但滴灌小麦农田大多受盐碱危害,为研究滴灌小麦水盐分布特点,通过测坑试验,分析了小麦各生育期土壤剖面上的水盐分布,结果表明,小麦滴灌条件下土壤水盐分布垂直方向受影响深度主要在0~60cm土层,在0~20cm土层水盐变化最为剧烈。土壤盐分分布变化范围和水分变化范围基本吻合。在0~100cm土壤剖面内,土壤含水量的分布呈随土层深度呈先降低后升高的趋势,而土壤盐分则基本上呈现先增加后减少再增加的分布特点。  相似文献   

16.
秸秆覆盖与耕作方式对土壤水分特性的影响   总被引:7,自引:0,他引:7  
通过分析不同秸秆覆盖量以及耕作方式对0~20 cm、20~40 cm、40~60 cm土层土壤孔隙度、土壤持水性、土壤供水能力以及土壤水分有效性的影响,揭示黑土区秸秆覆盖、耕作方式对土壤水分特性的影响机制。结果表明:土壤持水性、土壤供水能力及土壤水分有效性与土壤孔隙度密切相关。0~20 cm、20~40 cm、40~60 cm土层的土壤总孔隙度、毛管孔隙度、相同土壤水吸力下土壤含水率、比水容量以及有效水含量,在传统耕作条件下,秸秆覆盖均高于无覆盖;在秸秆覆盖条件下,免耕均高于传统耕作。免耕秸秆覆盖处理影响土壤孔隙度、土壤持水性、土壤供水能力及土壤水分有效性,随秸秆覆盖量增加,土壤总孔隙度、毛管孔隙度、相同土壤水吸力下土壤含水率、比水容量以及有效水含量逐渐增大,随土层加深,各处理土壤孔隙度、土壤持水性及土壤供水能力逐渐减小。本研究区最适宜的秸秆覆盖与耕作方式为免耕150%秸秆覆盖处理。  相似文献   

17.
以季节性冻融期系列田间试验资料为基础,探求不同水肥耦合下非饱和冻融土壤介质中含水率的时空变化特征。结果表明:封冻前N_0W_0含水率较灌水地块低。快速冻结阶段水分运移主要受冻结作用形成的附加基质势驱动,土壤聚墒区为20~50 cm,N_(500)W_(750)和N_(300)W_(375)处理峰值聚墒量高于其他处理。稳定冻结期土壤聚墒区范围延伸至60 cm处,含水率峰值下移至50 cm,由大到小为:N_(300)W_(750)、N_(300)W_(375)、N_(500)W_(750)、N_0W_0、N_(500)W_(375)、N_(100)W_(750)、N_(100)W_(375)。解冻后N_(300)和N_(500)地块0~60 cm土层略高于自然储水量;封冻前后表土层(0~20 cm)灌溉效应衰减随深度增加而延迟。N_(500)W_(750)和N_(300)W_(375)地块10~20 cm冻结含水峰值呈现时间比N_0W_0提前7 d。灌水后30~40 cm含水率峰值高于N_0W_0,冻结聚墒峰值出现时间随肥量的增加而缩短,消融期N_(500)W_(750)和N_(300)W_(375)处理对水分的吸持作用更强。N_(300)W_(750)和N_(300)W_(375)处理50~60 cm的含水率峰值较高,消融期增幅最为明显,分别为2.00%和0.9%。冻融期各处理土壤含水率与N_0W_0绝对关联度整体随深度增加而减小,说明水氮量组合对冻融期0~60 cm含水率时程动态的影响随深度增加而递减。  相似文献   

18.
内蒙古河套灌区不同灌溉模式对土壤温度及盐分的影响   总被引:2,自引:0,他引:2  
针对内蒙古河套灌区井渠结合膜下滴灌这一灌排发展趋势,分别选取了黄灌(H)、井灌(J)、滴灌(D)3种灌溉模式,研究了土壤温度时空变化规律和生育期盐分平衡状况。结果表明:玉米生育期内不同灌溉模式膜内膜外土壤温度月季下降明显,且膜内外土壤温度差异随着时间的推移越来越小;玉米需水旺季(6、7月)膜内5cm土壤日温度受灌水影响程度依次是滴灌井灌黄灌,平均温度黄灌较井灌高0.47℃,较滴灌高1.18℃;自6月下旬开始膜内5cm 10日平均土壤温度黄灌始终高于井灌0.35~1.53℃,滴灌基本小于井灌;30日平均温度黄灌较井灌温度始终高0.34~1.02℃,较滴灌高1.12~1.98℃。生育期黄灌、井灌、滴灌0~100、0~60cm土壤均积盐,膜外积盐率0~60cm远大于0~100cm。若地面灌溉一年一洗盐,滴灌0~100cm盐分累积至井灌土壤盐分水平需2年一次秋浇洗盐。  相似文献   

19.
地下滴灌条件下棉花土壤水分运移田间试验研究   总被引:6,自引:1,他引:6  
在棉花大田实地测量的基础上,对地下滴灌条件下棉花不同生育期内土壤含水量进行分析,同时对实际应用效果进行监测,结果表明:地下滴灌影响土壤水分变化深度主要为20~60 cm,棉花根系主要集中在15~50 cm。通过对棉花常规地面沟灌、膜下滴灌和地下滴灌土壤水分变化试验研究分析和应用效果监测,棉花地下滴灌节水增产效果显著。  相似文献   

20.
利用时域反射仪,对不同灌水次数下土壤含水量的变化进行了研究,分析了不同灌水定额下的土壤含水量随深度变化的特征。结果表明:土壤含水量变化的深度一般在0-100cm内,尤其0~60cm土层变化尤为激烈,在100~180cm范围内各处理土壤水分变化不明显,按枸杞土壤水分运移规律将0~180cm土层进行划分,土壤湿度垂直分布分...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号