首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
多点源滴灌条件下红壤水分溶质运移试验与数值模拟   总被引:4,自引:0,他引:4  
为了掌握红壤多点源滴灌条件下水分溶质运移规律,为红壤丘陵地区脐橙滴灌灌溉设计和管理提供参考,建立了5个不同红壤容重下滴灌水分和硝态氮运移的数学模型。借助Hydrus-3D模型模拟了不同红壤容重、同一滴头流量和施氮量时土壤水分溶质分布特征和湿润锋推移和交汇过程。模拟结果与试验对比表明:模拟的湿润锋运移交汇过程、湿润体内土壤含水率以及NO_3~--N含量与实测值之间的偏差均在9.5%以内;模拟值和实测值具有很好的一致性,并显示在湿润锋交汇处土壤含水率和NO_3~--N含量低于同一深度滴头下方的土壤,另外高容重红壤阻碍湿润锋的推进速度。总体而言,Hydrus-3D可以用于红壤滴灌施肥灌溉条件下湿润体范围以及水分和氮素运移和分布的模拟。  相似文献   

2.
根据室内实验和数值模拟数据,分别以土壤含水率和溶质质量浓度的实测值与其计算值标准差最小为优化目标,建立溶质和水分运移参数识别的多目标优化模型,采用遗传算法、有限差分法和线性加权法相结合的计算方法,对模型进行优化求解。分别以单组、2组和3组时刻实验数据组合作为参数优化初始数据,获取了土壤非饱和水分和溶质运移参数值,并以1 345 min时刻实验数据进行验证。含水率计算值与实测值相关系数的最大值和最小值分别为0.975 3和0.945 0;溴离子溶液质量浓度的计算值与实测值相关系数最大值和最小值分别为0.964 6和0.935 2,实测值与计算值吻合较好,表明用这一方法识别非饱和水分-溶质运移参数是可行的。  相似文献   

3.
目前溶质运移的模型主要采用水动力弥散方程来实现,但水动力弥散方程不能考虑到溶解在地下水中的溶质因为溶解-沉淀作用形成结晶而积聚在土壤中的事实,这部分结晶相溶质不能直接通过水动力弥散作用而随地下水迁移。将土壤中的溶质分解成溶解相溶质和结晶相溶质,试图对溶质在随地下水-土壤水分运动而迁移,并同步沉积、释放的动态变化过程进行定量化的描述,建立起更为合理的地下水中溶质迁移和积聚的动态数学模型。  相似文献   

4.
为了利用解析模型模拟土壤溶质迁移过程、估计土壤溶质迁移参数,在假定土壤溶质质量浓度分布为n次幂函数的基础上,结合边界层方法,将描述土壤溶质质量浓度分布的低次幂函数进一步推广,得到土壤溶质迁移的n次幂函数近似解析模型.在2个时刻(t=360,720 min)、较大距离(120~450 cm)时,利用不同次幂函数模型对溶质迁移过程进行比较分析,模拟结果表明孔隙水流速度较小(v=0.01 cm/min)时,在短历时(t=360 min)、长距离(x>50 cm)处,六次幂边界层解与其他次幂边界层解相比具有较高精确度;对边界层距离公式受各参数的影响进行模拟计算,分析结果表明:较小的孔隙水流速度(v≤0.01 cm/min)对边界层距离影响甚小;基于较小土壤孔隙水流速(v=0.01 cm/min)及测量仪器的不同灵敏度,利用不同次幂边界层距离公式对土壤溶质迁移参数进行数值计算比较及误差分析,结果表明用较高灵敏度的仪器进行测量,结合六次幂的边界层距离公式可准确地推求土壤溶质迁移参数弥散系数D及延迟因子R.  相似文献   

5.
为了利用解析模型模拟土壤溶质迁移过程、估计土壤溶质迁移参数,在假定土壤溶质质量浓度分布为n次幂函数的基础上,结合边界层方法,将描述土壤溶质质量浓度分布的低次幂函数进一步推广,得到土壤溶质迁移的n次幂函数近似解析模型.在2个时刻(t=360,720 min)、较大距离(120~450 cm)时,利用不同次幂函数模型对溶质迁移过程进行比较分析,模拟结果表明孔隙水流速度较小(v=0.01 cm/min)时,在短历时(t=360 min)、长距离(x>50 cm)处,六次幂边界层解与其他次幂边界层解相比具有较高精确度;对边界层距离公式受各参数的影响进行模拟计算,分析结果表明:较小的孔隙水流速度(v≤0.01 cm/min)对边界层距离影响甚小;基于较小土壤孔隙水流速(v=0.01 cm/min)及测量仪器的不同灵敏度,利用不同次幂边界层距离公式对土壤溶质迁移参数进行数值计算比较及误差分析,结果表明用较高灵敏度的仪器进行测量,结合六次幂的边界层距离公式可准确地推求土壤溶质迁移参数弥散系数D及延迟因子R.  相似文献   

6.
横坡垄作下土壤湿润速率对褐土坡面侵蚀特征的影响   总被引:2,自引:0,他引:2  
不同土壤湿润速率和侵蚀类型下团聚体破碎存在较大差异,进而诱发坡面侵蚀特征变化。横坡垄作特有的侵蚀过程可能改变土壤湿润速率对坡面侵蚀特征的影响效应。以褐土横垄为研究对象,基于室内模拟降雨试验,研究5个土壤湿润速率下(10、20、30、60、90 mm/h)不同侵蚀阶段的产流产沙和团聚体迁移规律。结果表明,细沟间阶段径流量随土壤湿润速率的增大而增加,而细沟阶段不同土壤湿润速率间的径流量无显著差异。2个阶段内,侵蚀量均随土壤湿润速率的增大而增加,与土壤湿润速率10 mm/h相比,20、30、60、90 mm/h速率下的侵蚀量分别显著增加25.16%~115.51%、95.02%~144.34%、151.03%~164.49%、249.42%~398.91%。细沟间阶段,土壤湿润速率的变化仅改变了产沙过程,而细沟阶段产流产沙过程均随土壤湿润速率发生了改变。主要迁移粒级-微团聚体流失所增加的细沟间和细沟侵蚀阶段分别主要来自2~5 mm和0.25~0.5 mm团聚体的破碎,而相应控制这2个粒级破碎的关键土壤湿润速率分别为20 mm/h和10 mm/h。不同阶段下迁移团聚体平均重量直径由大到小依次为细沟阶段、湿润处理后、细沟间阶段。  相似文献   

7.
鲁舒心  万愉快  孙伯颜  农睿  朱磊 《节水灌溉》2023,(8):102-109+128
为探究降水条件下水分与溶质在地表和土壤中的运动规律,分别采用二维扩散波方程和传统的三维Richards方程描述地面径流和土壤水分运动,选用双层结点法对两者进行耦合,根据达西定律和地表与土壤水中的溶质浓度,计算地面径流和土壤水分的溶质交换量,从而构建地表水土壤水运动与溶质运移全耦合数值模型。选取已发表文献中的物理模型实验进行数值模拟,算例1和算例2中地表径流数值模拟结果和模型实验结果的平均相对误差分别小于14.8%和21.5%,均方根误差分别小于0.147 cm2/s和0.833 cm2/s;算例2中径流硝态氮浓度的数值模拟结果和模型实验结果的平均相对误差小于24.7%,均方根误差小于1.334 mg/L。物理实验和数值模拟所得地表径流量和溶质浓度数据的对比分析验证了模型的合理性和准确度。研究结果可为地表水土壤水水分运动与溶质运移耦合分析提供理论支持。  相似文献   

8.
为了研究VG模型中5个参数的扰动对压力水头和溶质运移的影响,采用Hydrus-1d构建一维非饱和数值模型,以NaCl为模拟溶质,以壤土的经验参数构建基准模型,并在基准情景的基础上对VG模型各参数上下扰动5%、10%,代入模型重新模拟,得到各情景下压力水头和溶质浓度随深度的变化规律,并在此基础上对各参数进行了敏感性分析。结果表明:5个参数对压力水头和溶质运移的影响规律不尽相同,压力水头对5个参数的敏感度大小关系为:θrαnK_sθ_s,而溶质运移对5个参数的敏感度大小关系为:θ_rαK_sθ_sn;θ_r、n、K_s的影响规律均为正相关,其负扰动对压力水头的影响大,而正扰动对溶质运移的影响大;θ_s、α的影响为负相关,其正扰动对压力水头的影响大,而负扰动对溶质运移的影响大;随着模拟时间的推移,θ_s、K_s、n对压力水头的敏感度指数呈上升趋势,而α和θ_r则呈先上升后下降的趋势;n、θ_s、K_s、α、θ_r对溶质运移的敏感度均呈现先增大后减小的趋势。  相似文献   

9.
为了研究VG模型中5个参数的扰动对压力水头和溶质运移的影响,采用Hydrus-1d构建一维非饱和数值模型,以NaCl为模拟溶质,以壤土的经验参数构建基准模型,并在基准情景的基础上对VG模型各参数上下扰动5%、10%,代入模型重新模拟,得到各情景下压力水头和溶质浓度随深度的变化规律,并在此基础上对各参数进行了敏感性分析。结果表明:5个参数对压力水头和溶质运移的影响规律不尽相同,压力水头对5个参数的敏感度大小关系为:θr<α相似文献   

10.
钠盐离子对黏性红壤水力特征的影响及其模拟   总被引:1,自引:0,他引:1  
通过一维水平土柱入渗模拟试验,研究了不同质量浓度钠盐溶液下红壤水分运移特征,并确定了水力参数。结果表明,Kostiakov模型可以很好地描述累积入渗量与时间的关系,且累积入渗量与钠盐质量浓度负相关;湿润锋与时间呈良好幂函数关系,湿润锋推进速度随钠盐质量浓度的增加而减慢,土柱中含水率和土壤扩散度有减小趋势;黏性红壤土水入渗特征在钠盐质量浓度5~10g/L之间存在拐点。  相似文献   

11.
A methodology for up-scaling irrigation losses   总被引:1,自引:1,他引:0  
This paper presents a methodology for up-scaling field irrigation losses and quantifying relative losses at the irrigation area level for potential water savings. Two levels of analysis were considered: First, the field level where irrigation is applied. Second, the irrigation area level, where the field level losses are aggregated, or up-scaled, using average loss functions. In this up-scaling approach, detailed crop-soil-water modelling can capture the variability of physical parameters (such as soils, crops, water table depth, and management practices) at the field level which are then used to derive loss functions for aggregating losses at higher scales (irrigation area level). This allows potential field-level adaptations and water management changes made by individual farmers to be assessed for impact at the larger irrigation area level. The APSIM farming systems model was used for simulation of crops (wheat, rice, and soybean) and their interaction with the wider system processes at the field level. Given the climate, soil, and management information (sowing, fertilisation, irrigation, and residue management), the model simulates infiltration, the soil moisture profile, plant water uptake, soil evaporation, and deep drainage on a daily basis. Then, by placing the field level analysis in the context of the wider irrigation system or catchment, it is possible to correlate field level interventions (e.g. water savings measures) with water requirements at these higher levels. Application of this method in the Coleambally Irrigation Area in NSW, Australia, demonstrated that an exponential function can describe the relationship between deep drainage losses and the water table depth for different soil, crop, and water table depth combinations. The rate of loss increase (slope of the curve) with the water table depth is higher on lighter (higher intake rates) soils than on heavy soils and is more pronounced in areas under rice cultivation. We also demonstrate that this analysis technique can assist in identifying spatial distribution of losses in irrigation areas, considering water table depth as an additional factor, leading to targeted areas for water-saving measures.  相似文献   

12.
Designing drip irrigation systems involve selection of an appropriate combination of emitter discharge rate and spacing between emitters for any given set of soil, crop, and climatic conditions, as well as understanding the wetted zone pattern around the emitter. The exact shape of the wetted volume and moisture distribution will depend on many factors, including soil hydraulic characteristics, initial conditions, emitter discharge rate, application frequency, root characteristics, evaporation, and transpiration. Multi-dimensional nature of water flow, plant uptake and high frequency of water application increase the complexity in modelling soil moisture dynamics from trickle irrigation. Researchers used analytical methods, semi-analytical methods and numerical methods to Richards’ equation using certain boundary conditions to model the infiltration from point source irrigation for use in design, install, and manage of drip irrigation systems due to their merits over direct measurements. Others developed models based on Green-Ampt equation, empirical models using regression techniques/dimensional analysis techniques/moment approach techniques/artificial neural networks on this topic to describe infiltration from a point/line sources. A review on these models developed under each category is presented in this study. Other knowledge gaps identified include (a) effect of variations in initial moisture content and packing conditions, (b) precision in observing the wetting front and soil–water content, (c) validity of soil surface boundary conditions, (d) effect of crop root architecture and its withdrawal pattern for different input parameters, (e) effects of gravitational gradients, (f) stratification in the soils, and (g) impact of soil hysteresis. The review promotes better understanding of the soil water dynamics under point source trickle emitters and helps to identify topics for more emphasis in future modelling activity.  相似文献   

13.
Deterioration of soil physical conditions occurs when rain or irrigation water displaces soluble salts during reclamation and subsequent management of salinesodic soils. Damage, which depends primarily on the presence of exchangeable Na+, appears to be ameliorated during leaching by exchange of Ca2+ and Mg2+ for Na+ and loss of exchangeable Na+ by hydrolysis. The extent of these processes has been measured by leaching columns of repacked soil with water after preparation with Na+ and Ca2+ or Na+ and Mg2+ as the exchangeable cations and high or low (1 or 0.1 molcl–1) initial salinities. Structural deterioration was monitored by changes in flow rate, and soil properties were measured both initially and after cutting the leached columns into layers. Preliminary studies established reliable methods for measuring exchangeable cations and cation exchange capacity in the saline soils. In a sandy loam (Na-Ca system), clay dispersion and movement occurred particularly in the upper layers as measured both by decreases in CEC and by the amount of clay in the leachate. Cation exchange and hydrolysis of exchangeable Na+ during leaching reduced the exchangeable Na+ percentage, although cation exchange was restricted to columns with high initial salinity. In a clay textured soil (Na-Ca system) there was negligible clay movement, and cation exchange and hydrolysis occurred in columns with both high and low initial salinities: cation exchange may have been encouraged by diffusion limited preferential release of Na+ from aggregates during by-pass flow. In the sandy loam (Na-Mg system) Mg2+ increased the preference of the soil for exchangeable Na+ compared to the Na-Ca system. There was no cation exchange even in columns with high initial salinity. The amounts of clay movement and hydrolysis were similar in the two systems. Conditions conductive to cation exchange are a high initial salinity, a Na-Ca rather than a Na-Mg system and, possibly, restricted release of the divalent cation from within soil aggregates. Attempts to model these changes are complicated by difficulties in predicting the effects of hydrolysis and by-pass flow.  相似文献   

14.
为了对斥水土壤的入渗特性及形成机理作进一步研究,分别对4种不同质地的斥水土壤进行了一维土柱垂直积水入渗试验.作图分析了斥水土壤入渗过程中累积入渗量、入渗率、湿润锋的变化情况及入渗结束后剖面含水率的分布,并采用4种入渗模型对入渗率随时间变化情况作了对比;对累积入渗量与湿润深度之间的关系采用线性关系进行了描述.结果表明:与亲水土壤相比,4种斥水土壤在入渗过程中自某一时刻会出现入渗特性的改变:I-t,zf-t及zf-I曲线均会自某点起发生转折,以此转折点可以将整个入渗过程分为转折前和转折后进行分析.Kostiakov公式可以较好地描述亲水土壤在整个入渗过程中及斥水土壤入渗转折前的i-t关系;不同质地的斥水土壤在入渗转折后入渗率变化情况差异较大;斥水土壤湿润锋与累积入渗量之间的关系可以在转折前后采用两段线性公式进行较好地描述;发现了斥水土壤剖面较上层土壤含水率大于亲水土壤的现象.  相似文献   

15.
灌溉水质对土壤饱和导水率和入渗特性的影响   总被引:7,自引:0,他引:7  
为研究淡水与微咸水降水头入渗的差异,采用矿化度为1.0 g/L的微咸水与去离子淡水,对滨海围垦区粉砂土与南京黄棕壤土进行了一维降水头积水入渗试验。试验结果表明,采用微咸水入渗可以增大2种土壤的入渗能力,且对黄棕壤土的影响更为明显。利用Philip入渗模型对试验数据进行拟合,结果表明,模型可以较为精确地描述2种土壤的微咸水降水头入渗过程,且模型对黄棕壤土入渗过程的拟合精度更高。土壤水分与盐分再分布过程中,在粉砂土上层,微咸水灌溉对盐分的淋洗效果与淡水灌溉相近,但在土壤深层微咸水灌溉使土壤的积盐量显著高于淡水。采用淡水灌溉的黄棕壤土,土壤表层脱盐、深层积盐;采用微咸水灌溉的土柱剖面均明显积盐,且因表层土壤孔隙结构被破坏,持水能力增强,使表层土壤与深层土壤均积累了较高含量盐分。  相似文献   

16.
Knowledge of the wetted perimeter of soil arising from infiltration of water from trickle irrigation drippers is important in the design and management of efficient systems. A user-friendly software tool, WetUp, has been developed to help highlight the impact of soils on water distribution in trickle-irrigated systems. WetUp determines the approximate radial and vertical wetting distances from an emitter in homogeneous soils calculated using analytical methods, and then uses an elliptical plotting function to approximate the expected wetted perimeter. In this paper we describe WetUp and use examples to demonstrate how it can be applied. We also compare the wetted perimeter predicted using WetUp with that predicted by other methods. Results show that the wetting pattern is well described by the ellipsoidal approximation for slowly permeable soils, but that it tends to underestimate the radial wetting in highly permeable soils, particularly as the volume of applied water increases. The error is, however, small in most cases, and of minimal concern when applying WetUp to illustrate the important role that soil hydraulic properties play in determining wetting patterns.Communicated by J. Annandale  相似文献   

17.
18.
[目的]探究沼液灌施对黄淮海平原土壤团聚体结构的影响.[方法]以黄淮海平原潮土为研究对象,根据等氮量原则,采用干湿筛法对连续4a进行沼液灌施(BS)、化肥施用(CF)、沼液与化肥灌施(BS+CF)以及空白对照(CK)共4种处理的农田表层土壤(0~20cm)进行团聚体筛分并计算稳定性指标.[结果]沼液灌施影响黄淮海平原表...  相似文献   

19.
Soil physical characteristics are important input parameters for simulation modelling of unsaturated flow in soils and associated solute flow. The determination of soil water retention and hydraulic conductivity curves in the laboratory is laborious and expensive. For modelling studies that require characteristics for many soil horizons, such as regional studies or scenario studies, it may be impossible to measure all the necessary characteristics. An alternative would be to use characteristics inferred from readily available soil data by class-pedotransfer functions. In this study such a comparison was made for six sites on sandy soils in the Netherlands using the soil-water model SWACROP with soil physical characteristics from either laboratory measurements or from a standard series as input. For this the simulated pressure head values and moisture content values were compared with measured values at eight different depths using statistical criteria. Furthermore two functional criteria, i.e. the number of workable days and number of days with possible drought, were inferred from simulated pressure head values and again the different results were compared. It was found that simulation results were not significantly different, implying that standard series or class-pedotransfer functions could be used in studies like these for simulating the unsaturated water flow regime in sandy soils on field/farm level or regional level. Differences for specific criteria for individual sites were sometimes substantial and in such cases (at field level) it will make a difference which soil physical characteristics are used.  相似文献   

20.
In this study, sulphur transport processes and effect of flow rate on sulphate breakthrough curves (BTCs) were studied on six undisturbed large soil monoliths (each having roughly a volume of 0.5 m3), collected from two different agricultural soils being loamy and sandy loam. In the laboratory, each monolith was equipped with different measuring devices to monitor soil water content, bulk soil electrical conductivity (ECa), soil temperature, pressure head, outlet flux, and pH. Four unsaturated steady state experiments were carried out on each monolith using two different imposed fluxes (referred to as low and high). First a chloride breakthrough experiment was performed to identify the basic transport processes followed by sulphate breakthrough experiment for the identification of the important sulphate transport processes. Water and solute (chloride and sulphate) mass balances were made to evaluate effective sulphate transformations at the scale of the monolith.The relative water mass balance errors ranged between −4.0% and 5.0%. The chloride mass balances were almost as good as those obtained for water, whereas the sulphate mass balance revealed that sulphate was subjected to adsorption and immobilization during the transport. The high flux sulphate experiments resulted in relatively large mass balance discrepancies compared to the low flux sulphate experiments. The sulphate breakthrough curves (BTCs) were somewhat retarded in the loamy monoliths whereas both chloride and sulphate BTCs were significantly affected by preferential flow in the sandy loam monoliths. Standard batch experiments showed that the adsorption isotherm was linear and immobilization occurred in both soils studied whereas net mineralization was essentially low. The effect of flow rate on the BTCs and influence of water content on immobilization process was not apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号