首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Canary Islands a number of factors, both natural and induced by human activity, act on the fragile ecosystems and agricultural land to cause increasing problems with desertification and progressive degradation of soil productivity. the results of an assessment of soil degradation in the Canary Islands, The processes, causes and impacts, are presented in this paper. Although several processes and factors contribute to soil degradation in the Canary Islands, two have been found to exert a greater qualitative influence: (a) accelerated erosion (water and aeolian); (b) salinization-sodification (natural and induced by agricultural use). Approximately 40 per cent of the Canary Islands' land is undergoing rapid erosion. the factors involved May, be grouped into: natural erosion—torrential rainfall, sparse vegetation, high soil erodibility, rugged relief; and erosion due to human activities—unsuitable management of arable soils on the steep slopes, overgrazing and deforestation. About 60 per cent of the surface of the archipelago, including areas given over to intensive agriculture, is affected by salinization.The main factors responsible are: natural—an arid climate and a regime of oceanic winds; and human activities—overexploitation of the aquifers, irrigation with water having a high salt and/or sodium content, intensive monoculture, and excessive and indiscriminate use of chemical fertilizers and other agrochemicals.  相似文献   

2.
Soil chemical, biochemical, biological and structural properties were measured in two New Zealand loessial soils that were topsoil-mined 10 and 25 years ago respectively. Measurements at the 10-year site were compared to some earlier measurements made at this site and the data combined in a chronological sequence for analysis. Topsoil mining had a large, detrimental impact on the soil microbial biomass, the earthworm populations, easily mineralizable N and soil enzyme activities. However, most of these properties substantially recovered, to 80-90 per cent of the levels in unmined soils, within 10-25 years of restoration under pasture. In contrast, while total soil C and N were less affected by topsoil mining, their recovery was much slower. Stabilities of macro-aggregates of soil had fully recovered within 10-25 years after topsoil mining. The apparent changes in all the measured properties between 10 and 25 years of restoration were small in comparison with changes between 0-10 years of restoration after topsoil mining. The total C content of both soils under pasture appeared unlikely to attain the levels present in unmined soils. In soils undergoing restoration, the ratio of microbial C/total soil C may be a useful index of soil ‘biological stability’. Sulphatase activity may reflect the recovery of pasture production.  相似文献   

3.
A soil organic matter turnover model has been developed to analyse soil carbon (soil organic-C) loss caused by organic matter decomposition and rainfall erosion in soils used for permanent cultivation. It has been used to build up model profiles of five soils, one occurring in temperate and four in tropical regions, on the basis of estimates for ‘natural’ organic matter input. Organic matter input data for different systems of cultivation were used to model the long-term decomposition of soil organic-C in these model profiles. The modelling results show that soil organic matter decomposition in the tropics is three to four times faster than in temperate regions, and that there is a marked influence of soil type and soil climate. Simulated losses of organic-C in the tropical soils, not accounting for erosion are 31 to 50 per cent after 50 years and 43 to 63 per cent after 100 years of continuous cultivation. The simulated loss of soil organic-C when rainfall erosion is also allowed for is 40 to 80 per cent. Erosion caused an extra loss of at least 7 per cent after 100 years. The initial input of charcoal from forest burning is lost through erosion at a rate of 50 to almost 100 per cent, depending on the severity of erosion. The sensitivity of modelling results to variations in input data was also analysed. The losses of soil carbon were also used to calculate the global flux of CO2 from soils. Soils are probably a small but not negligible source of CO2.  相似文献   

4.
The pedological characteristics, and physical, chemical and mineralogical properties are investigated for soils developed in a 1 m to 1.5 m layer of lacustrine clay material deposited on a former sand plain in the Lake Chad basin in north east Nigeria. (These soils are being developed for intensive production of rice, wheat and other crops under irrigation.) The surface layer of these soils has about 60 per cent clay, a pH of about 7.9, and a coarse, strong prismatic structure. The sub-soil is often notably higher in clay content, pH and exch. Na. The smectite content of the clay fraction (surface soil) is 35 to 45 per cent and the CEC 350 meq kg-1. The levels of montmorillonite and CEC, and the size of the cracks in dry soil, although the latter are appreciable, are all notably less than the values reported for the clay soils of the Sudan Gezira. The Lake Chad basin clay soils are not considered to be vertisols according to the FAO Soil Map of the World, on grounds of profile morphology, though it seems the French pedologists would regard them as paravertisols.  相似文献   

5.
北方地区滨海盐渍土型稻田土壤供氮能力的研究   总被引:1,自引:0,他引:1  
采用短期淹水密闭淋洗培养法(恒温30℃),研究北方地区滨海盐渍土型旱地土壤(种植苜蓿草)开垦种植水稻5年和30年稻田土壤供氮能力。结果表明:(1)3种土壤初始矿质氮主要分布在0~20 cm土层,且土壤初始矿质氮含量的高低顺序为旱地土壤>30年稻田土壤>5年稻田土壤;5年稻田土壤与旱地土壤之间初始矿质氮含量差异达5%显著水平。(2)相同土层,土壤矿化氮量高低顺序为30年稻田土壤>旱地土壤>5年稻田土壤;任意2种土壤之间矿化氮量差异均达1%显著水平。(3)相同土层,土壤供氮能力大小为30年稻田土壤>旱地土壤>5年稻田土壤;其中,在0~20 cm和40~60 cm土层,任意2种土壤之间供氮能力差异均达1%显著水平,在20~40 cm土层,30年稻田土壤与旱地土壤、5年稻田土壤之间供氮能力差异均达1%显著水平,而旱地土壤与5年稻田土壤之间供氮能力则无明显差异。这表明滨海盐渍土型旱地土壤开垦种植水稻后,不仅影响了土壤有机质(氮)含量,而且也影响了土壤有机氮品质,种植水稻5年使土壤供氮能力显著下降,而种植30年使土壤供氮能力显著上升。  相似文献   

6.
About 240 x 106 tonnes of industrial waste, 104 x 106 tonnes of municipal waste and more than 60 x 106 tonnes of sediment sludge are landfilled (65 per cent), incinerated (24 per cent) and partly recycled in Europe annually. About 60000-120000 landfill sites, occupying 800-1700 km2, are recorded in the EEC, of which a limited number are in operation. These sites generate 12.5 x 109 m3 of landfill gas annually, of which about 755 x 106 m3 are presently recovered, and 0-1-4-0 x 106 m3 of heavily polluted leachate, which is dispersed to ground and surface waters. the area with polluted groundwater increases annually by 1-10 per cent (1200-12000 km2 of contaminated land). Landfill gas contains carcinogenic and pathogenic components and contributes 2 per cent of the total emission of greenhouse gases; locally it is a potential hazard. Incinerators reduce the solid volume to about 30 per cent of the original but cause the atmospheric deposition of acids and dioxins. Emissions of landfill gas, leachate and atmospheric deposition have been recognized as potential chemical time bombs (CTBs). Models are currently available for the estimation of the time at which the effects of these CTBs will become manifest. It is recommended that an inventory of all landfills should be made to assess the potential hazards in detail, to encourage institutions to initiate the clean-up of contaminated sites and the aftercare of closed sites, and to set up a co-operative network within the EEC.  相似文献   

7.
Adverse environmental impacts of human activities are the main causes of soil degradation in the desert of Kuwait in general, and in Kabd area in particular. In this study, assessment of soil degradation in open and protected sites has been carried out using field measurements and laboratory investigations. The overall status of vegetation is nearly twice as low in vegetation cover in the open sites than in the protected ones due to overgrazing and off‐road transport. Compaction of soil due to pressure exerted on the soil by vehicles led to a significant reduction in its porosity, permeability and infiltration capacity. The average infiltration rate of the compacted soils is 51 per cent lower than that of the non‐compacted soils. The bulk density of the non‐compacted soils is 3.4 per cent lower than that of compacted soil. The average topsoil resistance of compacted soils has increased by 83 per cent in comparison with non‐compacted soil. Using the least squares method a relation between infiltration rate (IR) and penetration resistance (PR) of the topsoil for the study areas is found (i.e. IR = −0.148 PR + 1.85 with R2 = 25 per cent). Soil strength within the soil profile shows maximum penetration resistance readings at 11.5 cm depth in average in compacted soils, while it shows maximum readings at 34.6 cm depth in average in non‐compacted soils. The adverse changes in the chemical properties due to soil compaction is also investigated. A restoration plan is needed in order to reduce land degradation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Research was carried out in 1984–1990 in the region affected by the sulphur dioxide emission from one of the greatest oil refineries in Europe (P?ock, central Poland). The sulphate sulphur concentration in the vegetable crops (red beet, carrot, parsley, bean, cabbage and dill), the soil and in ground water was defined in selected allotment gardens of P?ock city and in a household garden located in the rural area about 25 km from the town. The highest amount of sulphate sulphur was found in the vegetable crops cultivated in the garden situated in the closest vicinity of the refinery. Sulphate sulphur contents harmful for plants (above 0.50 per cent d.m.) were noted in cabbage and carrot leaves in almost all the gardens (except one). The soil in all examined gardens was characterised by high sulphate sulphur concentration, which considerably exceeds the maximum amount admissible for light soils in Poland, i.e. 0.004 per cent Am. The sulphate sulphur concentration in ground water in all the gardens exceeded the highest permissible content in drinking water in Poland (200 mg*dm?3 of sulphate or about 67 mg*dm?3 of sulphate sulphur). The sulphate sulphur content in the soil and ground water was not significantly dependent on the garden's distance from the refinery. Generally, the abovenormal sulphate sulphur concentrations occurred quite universally in the examined region and they concerned all the considered environmental components (vegetable crops, soil, ground water) and all the gardens.  相似文献   

9.
Currently at least 20 per cent of the world's irrigated land is salt‐affected. However, projections of global population growth, and of an increased demand for food and fibre, suggest that larger areas of salt‐affected soil will need to be cropped in the future. About 60 per cent of salt‐affected soils are sodic, and much of this land is farmed by smallholders. Ameliorating such soils requires the application of a source of calcium (Ca2+), which replaces excess sodium (Na+) at the cation exchange sites. The displaced Na+ is then leached from the root zone through excess irrigation, a process that requires adequate flows of water through the soil. However, it must now be recognized that we can no longer conduct sodic soil amelioration and management solely with the aim of achieving high levels of crop productivity. The economic, social, and environmental impacts of different soil‐amelioration options must also be considered. A holistic approach is therefore needed. This should consider the cost and availability of the inputs needed for amelioration, the soil depth, the level to which sodicity needs to be reduced to allow cropping, the volume and quality of drainage water generated during amelioration, and the options available for drainage‐water disposal or reuse. The quality and cost of water available for post‐amelioration crops, and the economic value of the crops grown during and after amelioration should also be taken into account, as should farmers' livelihoods, the environmental implications of amelioration (such as carbon sequestration), and the long‐term sustainable use of the ameliorated site (in terms of productivity and market value). Consideration of these factors, with the participation of key stakeholders, could sustainably improve sodic soil productivity and help to transform such soils into a useful economic resource. Such an approach would also aid environmental conservation, by minimizing the chances of secondary sodicity developing in soils, particularly under irrigated agriculture. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
贵州喀斯特地区土壤石漠化的本质特征研究   总被引:28,自引:1,他引:28  
喀斯特土壤石漠化是我国西南喀斯特地区诱发重要地质灾害的生态环境问题,是制约区域社会经济发展的关键因素。通过分析贵州喀斯特地区土壤的机械组成、物质成分、理化性质和微生物特性,探讨了土壤石漠化的本质。结果表明:土壤侵蚀,细粒物质减少,表层土壤消失,岩土界面缺少风化母质的过渡层,或者被裸露基岩取代;土壤质地出现砂化,颗粒变粗;土壤有机质及养分含量减少,保水保肥性能减弱;土壤微生物功能多样性降低;超载的社会经济压力等是导致喀斯特地区土壤石漠化最重要的驱动力。  相似文献   

11.
贵州喀斯特地区土壤石漠化的本质特征研究   总被引:19,自引:1,他引:19       下载免费PDF全文
龙健  江新荣  邓启琼  刘方 《土壤学报》2005,42(3):419-427
喀斯特土壤石漠化是我国西南喀斯特地区诱发重要地质灾害的生态环境问题,是制约区域社会经济发展的关键因素.通过分析贵州喀斯特地区土壤的机械组成、物质成分、理化性质和微生物特性,探讨了土壤石漠化的本质.结果表明土壤侵蚀,细粒物质减少,表层土壤消失,岩土界面缺少风化母质的过渡层,或者被裸露基岩取代;土壤质地出现砂化,颗粒变粗;土壤有机质及养分含量减少,保水保肥性能减弱;土壤微生物功能多样性降低;超载的社会经济压力等是导致喀斯特地区土壤石漠化最重要的驱动力.  相似文献   

12.
土壤的团聚状况是土壤重要的物理性质之一,团聚体数量是衡量和评价土壤肥力的重要指标。施用有机肥是提高土壤有机碳(SOC)含量、促进土壤团聚体形成和改善土壤结构的重要措施。本文以华北地区曲周长期定位试验站的温室土壤和农田土壤为研究对象,运用湿筛法,对比研究施用化肥(NP)、有机肥加少量化肥(NPM)、单施有机肥(OM)3种施肥方式对温室和农田两种利用方式土壤水稳性团聚体含量、分布和稳定性的影响,以提示施肥措施对不同土地利用方式土壤水稳性团聚体特征的影响。结果表明:在温室土壤和农田土壤中,OM处理较NP和NPM处理显著降低了土壤容重,增加了土壤有机质含量(P0.05),且在0~10 cm土层中效果最为明显。其中在温室土壤0~10 cm土层,单施有机肥处理(OM1)的土壤容重为1.17 g·cm~(-3),分别较施用化肥(NP1)和有机肥加少量化肥(NPM1)处理降低12.0%和8.6%,OM1的土壤有机质含量为54.81 g·kg~(-1),较NP1和NPM1增加104.8%和35.7%;在农田土壤0~10 cm土层,单施有机肥处理(OM2)的土壤容重为1.19 g·cm~(-3),较施用化肥(NP2)、有机肥加少量化肥(NPM2)分别降低8.5%和7.0%,OM2的土壤有机质为22.67 g·kg~(-1),较NP2、NPM2分别增加23.1%和15.0%。温室土壤和农田土壤中,0~10 cm、10~20 cm和20~40 cm层土壤团聚体的平均重量直径(MWD)和几何平均直径(GMD)均为OMNPMNP;OM处理下水稳性团聚体的分形维数(D)值最低,NP处理下最大。OM处理显著降低0~20 cm土层内水稳性团聚体的D值,表层0~10 cm土层效果最为明显,土壤结构明显得到改善;相比农田土壤,温室土壤稳定性指标变化最为明显,团聚体结构改善效果最好。土壤有机质含量与0.25 mm水稳性团聚体含量间呈极显著正相关关系(P0.001),说明土壤有机质含量越高,0.25 mm水稳性团聚体的含量就越高,土壤团聚体水稳性越强,土壤结构越稳定。因此有机施肥方式能在补充土壤有机碳库和有效养分含量的同时,显著增加土壤中大团聚体的含量及其水稳性,是提高华北平原农田土壤、尤其是温室土壤结构稳定性和实现土壤可持续发展的有效措施。  相似文献   

13.
长期不同施肥对稻田土壤有机质和全氮的影响   总被引:32,自引:4,他引:28  
李新爱  童成立  蒋平  吴金水  汪立刚 《土壤》2006,38(3):298-303
通过对湖南新化、宁乡、株洲、桃江、武岗5个国家级稻田肥力长期定位试验点18年的田间定位试验,研究了不同施肥方式下0-20 cm土层土壤有机质和全N含量的演变规律。结果显示,中量和高量有机肥与化肥配合处理在提高土壤有机质和全N含量方面效果明显优于单施化肥和秸秆还田处理,且随有机肥用量的增加而增加,表明有机肥与化肥配合施用是提高土壤有机质和N素肥力的重要措施。在不同施肥方式下,稻田土壤有机质总体上呈现出上升或者下降的趋势,但在不同的年份会有波动。  相似文献   

14.
After recent unanticipated occurrences of environmental pollution caused by the time-delayed and sudden release of contaminants previously believed to be held firmly in soils, awareness has increased that the vulnerability of soils to chemical degradation needs to be assessed and mapped. Although some soils appear to be capable of receiving and holding chemical compounds while at the same time retaining their ecological functions, others are readily damaged. Procedures for identifying areas where vulnerable soils occur are presented, with special reference to the minimum soil data sets that would be required in a small scale study at the European level using geographical information systems. These data can readily be compiled, stored and processed with the relational database management system developed for SOTER, The 1:1 million world soil and terrain digital database project of the International Society of Soil Science, which is co-ordinated by the International Soil Reference and Information Centre. the proposed initial soil vulnerability programme would essentially serve to increase awareness about areas prone to chemical soil degradation, and will form the basis for implementing soil pollution assessment programmes at larger scales (1:1 M to 1:250 000). the latter national or regional programmes would include the identification of the major sources of soil pollution, and measurement of the accumulated load and the rate of loading according to uniform and standardized procedures, providing the conceptual basis for developing process based models to assess where particular types of soil degradation are likely to occur.  相似文献   

15.
Soil management practices can have negative or positive effects on soil quality. Our objective was to assess the effect of long‐term agricultural practices by evaluating selected soil physical and chemical properties. Soil samples were collected from two depths (0 to 15 and 15 to 30 cm) within a native pasture and an adjacent agricultural field that was being used for three different crop rotations. Soil quality was quantified using aggregate stability, bulk density, soil texture and available water content as physical properties and pH, electrical conductivity, organic matter and available phosphorus as chemical properties. The farmland soils were functioning at 71 and 70 per cent of their full potential at the 0‐ to 15‐ and 15 to 30‐cm‐depth increments, respectively, whereas those from the pasture were functioning at 73 and 69 per cent, respectively. The assessment showed substantial loss in soil organic carbon following 50 years of farmland cultivation. Tillage and fertilizer applications were presumably the primary reasons for weaker spatial dependence within farmland at the 0‐ to 15‐cm depth. Grazing was postulated as the main reason for weaker spatial dependence within the pasture soils at the 15‐ to 30‐cm depth. Overall, we conclude that 50 years of cultivation has not caused soil quality to decline to a point that threatens sustainability of the agricultural fields. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
黄河三角洲县域尺度的盐渍化土壤化学参数特征研究   总被引:2,自引:1,他引:1  
地处黄河三角洲的山东省垦利县土地资源丰富、土地利用率低,但区域内土壤盐渍化程度高,理化性质空间变异大,严重制约土地的有效开发利用。本研究通过在县域范围内进行面上布点采样及实验室化学分析,系统研究了垦利县县域尺度0~20及20~40 cm土层土壤盐分及其化学参数间的通径关系及土壤盐渍化的空间分异特征。结果表明:调查期间的垦利县0~20 cm土层土壤盐分高于20~40 cm土层,除pH外两层土壤各项化学参数的变异系数都在中等变异以上;影响0~20及20~40 cm两层土壤盐分(EC5:1)的直接土壤化学参数为Cl~–、Na~+、Ca~(2+),4个参数有非常好的线性回归曲线;0~20 cm土层土壤沿海岸线表现出强烈的盐化和钠质化现象,而20~40 cm土层整体上盐分和钠吸附比均小于表层土壤,盐化和钠质化较弱;土壤p H则表现为20~40 cm土层高于0~20 cm土层,其碱化现象较为明显。研究结果为垦利县土壤盐分研究提供可靠的基础数据及经验公式,同时可为垦利县土壤盐渍化治理提供科学依据及理论指导。  相似文献   

17.
The mineralogical composition of clays (< 2μm) in representative profiles of all soil types of Israel was investigated. The soils were classified according to their clay mineral assemblages into three groups. I. Montmorillonitic soils. Montmorillonite is the dominant mineral and exceeds 65 per cent of the total minerals found; each of the other minerals comprises less than 15 per cent. 2. Montmorillonitic-kaolinitic soils. The soil clay fractions contain 50-60 per cent montmorillonite and 15-25 per cent kaolinite, generally adding up to more than 75 per cent of the clay fraction. 3. Montmorillonitic-calcitic soils. The clays contain more than 10 per cent calcite. Montmorillonite is the dominant clay mineral (except for one soil type, mountain rendzina, where calcite is dominant). The first and second assemblages are typical of the soils of the Mediterranean zone, whereas the soils of the desert zone are characterized by the third assemblage. The origin of montmorillonite, kaolinite, and illite, the three main clay minerals, was found to be detritic, as was the origin of palygorskite which was mainly found in the calcite rich soils of the desert zone. The cation exchange capacity of montmorillonite seems to be higher under higher precipitation. Montmorillonite content and cation exchange capacity of the clays were found to be highly correlated. The carbonate content of the clay fraction and the amount of carbonate in the soil were also highly correlated.  相似文献   

18.
Mined areas are a continuing source of heavy metals and acidity that move off site in response to erosion. Revegetation of the mine tailings could limit the spread of these heavy metals and acidity. This study was conducted to evaluate, at four tailings on opencast mines of Galicia (Touro: copper mine; and Meirama: lignite mine, NW Spain), the chemical and physical soil quality indicators and limiting edaphic factors concerning forest production. Selected zones were: (1) The tailings formed by the waste materials from the depleted Touro mine; (2) the decantation site of deposited sludge coming from the copper extraction in the flotation stage; (3) and (4) tailings of 3 and 10 years old of the Meirama lignite mine. The main physical limitations of the mine soils are the low effective depth (<50 cm), high stoniness (>30 per cent) and high porosity (>60 per cent); which make them vulnerable to soil erosion and seriously interferes with the forest production. Soils coming from the decantation site of copper mine do not have physical limitations. The main chemical limitations of mine soils are their acidity (pH from 3·62 to 5·71), and aluminium saturation (>60 per cent in copper mine soils, and >20 per cent in lignite mine soils), low CECe (from 5·34 to 9·47 cmol(+) kg−1), organic carbon (from 0·47 to 7·52 mg kg−1) and Ca2+ and Mg2+ contents, and imbalance between exchange bases. Mine soils coming from the decantation site of copper mine soils are strongly limited by the high Cu content (1218 mg kg−1). Lime and organic amendments are the most important factors in providing a suitable medium for plant growth. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
南方花岗岩区不同侵蚀土壤治理效果的研究   总被引:7,自引:0,他引:7  
花岗岩红色风化壳广泛分布于我国南方山地丘陵区.其中的红色粘土层质地粘重且被铁铝氧化物胶结,与其下部的砂土碎屑层相比具有很强的抗蚀能力,对该区侵蚀的发展和治理具有重要意义.本研究通过对保留红色粘土层和砂石碎屑层裸露两种类型的侵蚀土壤在治理过程中保持措施的选择、植被和土壤肥力的恢复与土壤发育特点进行对比,说明了花岗岩区的侵蚀土壤在保留红土层时,土壤退化的程度轻,治理较容易,植被和土壤生产力的恢复较快;一旦红土层被侵蚀贻尽,侵蚀的速度加快,治理过程中植被和土壤生产力的恢复也慢.  相似文献   

20.
The aim is to assess whether soil microbial biomass carbon (biomass C) could be used as an indicator of environmental change in natural and semi-natural ecosystems. Biomass C was measured by fumigation-extraction in soils from two sites at Rothamsted. One was a plot from the Broadbalk Wheat Experiment, given inorganic fertiliser and chalk, which has been in continuous cultivation for more than 150 yr. The other was a similar sized area, from Geescroft Wilderness, which has been left to revert to woodland since 1885, after being an arable field. Other soil properties (pH, soil organic C and exchangeable cations) were also measured to compare with biomass C. The coefficients of variation (cvs) of the properties measured were calculated for comparison, little difference was found between the cvs for biomass C from each site: cv=26% for Broadbalk and 23% for Geescroft. The cvs for the other, chemical properties, were mostly <10% for Broadbalk and generally >25% for Geescroft, as expected, given the different cultivation histories. Statistical analysis of the variation in biomass C concentration revealed that such measurements would not be valid indicators of environmental change, without processing impossibly large numbers of samples. To decrease the least significant percentage change to less than 5% after three samplings, 320 samples would have to be taken each time. This would be also be true of the other chemical properties in Geescroft Wilderness, where the measured background variation would mask any subtle environmental change. This indicates that, for some properties at least, statistically significant changes will only be detected in the longer term with regular sampling, e.g. 30-40 yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号