首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field trial investigated the early performance of six tree species planted into an acidic minespoil ameliorated by ploughing or incorporation of 10 per cent by weight of pulverized fuel ash (PFA). Common alder, Italian alder and silver birch produced the greatest total shoot extensions for PFA-ameliorated minespoil. Rowan, sycamore and aspen were unsatisfactory for both ameliorative treatments. PFA increased the pH of the minespoil for a period of time potentially beneficial for the establishment of the tree species. For the rate of PFA application studied, general salinity effects and cold-water-soluble boron both presented problems for successful tree growth.  相似文献   

2.
Experiments that investigated the performance of nine tree species planted in pulverized fuel ash (PFA) and gypsum power stattion wastes are described. Lombardy and white poplars, common alder and false acacia were the most successful in gypsum and PFA-gypsum mixtures, but tree growth in pure PFA was unsatisfactory. Co-disposal of gypsum and PFA is the best means of promoting the growth of tolerant species planted in power station wastes. Tree performance is improved if these materials are covered by a soil layer, which promotes tree rooting into the underlying wastes.  相似文献   

3.
4.
硼作为一种植物必需元素,在土壤中过量存在会对植物产生毒害,硼对植物的毒害作用以及利用植物修复高硼土壤已经日益受到关注。目前,硼对不同类型植物的毒害特点,植物的耐受机制还不十分清楚。特别是对于硼污染的植物修复,其研究还处于起步阶段。本文分别从植物的表观症状、生理生化和基因水平等层次,综述了过量硼对植物的毒害,并从高耐受性、超富集能力植物筛选,以及转基因技术应用等角度回顾了硼污染的植物修复研究进展。在此基础上,提出了当前相关研究存在的主要问题,并对未来的研究进行了展望。  相似文献   

5.
Abstract

Radlands Crimson strawberries were grown in a glasshouse with 7 rates of applied boron. Wood shavings mulches with different boron concentrations were also applied as separate treatments. Boron toxicity symptoms were produced in leaves by boron rates of 0.32 kg ha‐1 and greater on a soil containing 1.6 ug B g‐1 of hot water extractable boron. Concentrations greater than 123 μg B g‐1 in old leaves were associated with boron toxicity symptoms.

In the B rate experiment, soil boron concentrations greater than 1.9 μg B g‐1 soil were associated with leaf toxicity symptoms which increased in severity with increasing soil boron concentrations up to 4.1 μg B g‐1 soil. Wood shavings mulch containing 17 μg B g‐1 caused boron toxicity symptoms in older leaves whereas mulches containing less than 6 μg B g‐1 did not produce toxicity symptoms.  相似文献   

6.
Abstract

This investigation was conducted during two successive seasons (2014/2015) and (2015/2016) using 15?years old productive mango (Mangifera indica) trees cv. Zebda. The trees were grown at AlMalak Valley Farm, El-Sharkeya Governorate- Egypt (30–51° North; 32–53° East). Trees were planted 8?×?8 meter within and between rows in sandy soil under drip irrigation system using the Nile water. The objective of this study is to alleviate alternate bearing in cv. Zebda using mineral nutrients (nitrogen in the on year and boron in the off year). Treatments included three concentrations of nitrogen (1000, 1250, 1500?g/tree/year) and three concentrations of boron (0.0, 250, 500?mg L?1). Nitrogen was applied to the soil as ammonium sulfate and boron was applied as foliar spray of boric acid. The extra amount of nitrogen fertilizer (250 and 500?g N/tree) was applied at three installments in (May, June and July). Treatment was arranged in a factorial Completely Randomized Block Design with three replicates for each treatment. Results show that the on-year nitrogen fertilization significantly increased mango tree vegetative growth (number of shoot/branch, shoot length, shoot thickness, number of leaves/meter and leaf area) and yield. The average yield in the on year is 85.5?kg/tree at 1250?g N/tree but 67.4?Kilogram/tree at 1000?g N/tree (the control treatment). While in the off year boron foliar application resulted in a significant increase in flowering, initial fruit set, final fruit set and fruit yield. The average yield in the off year is 47?kg/tree at 250?mg L?1 boron but 9?kg/tree at 0.0?mg L?1 boron rate (the control treatment).The interaction treatment of 250?mg L?1 boron + 1500?g nitrogen/tree is the best treatment as it resulted in the highest values for all the tested parameters. The average yield of this treatment is 53.5?kg/tree. This treatment helps alleviate alternate bearing phenomenon by 41% and obtain the highest economic yield in the off-year, i.e. increased yield by 5.9 fold.  相似文献   

7.
Abstract

A field experiment was conducted at Al Malak Valley Farm, El-Sharkeya Governorate-Egypt (30°–51° N; 32°–53° E) using 15 years old productive mango (Mangifera indica L.) trees cv. Zebda. The experiment was repeated for two successive seasons (2014/2015) and (2015/2016). The trees were planted 8×8 meters apart in sandy soil under drip irrigation system using the Nile water. Treatments included three concentrations of boron (0.0, 250, 500?mg L?1) and three concentrations of nitrogen (1000, 1250, 1500?g nitrogen/tree/year). Boron was applied as foliar spray of boric acid and nitrogen was applied to the soil as ammonium sulfate. Treatments were arranged in a factorial Completely Randomized Block Design with three replicates for each treatment. Results show that boron application has improved mango tree nutritional status. Leaf nitrogen, phosphorus, potassium and boron concentrations significantly increased as the boron application rate increased. In addition, boron application resulted in significant increase in leaf total chlorophyll, total carbohydrates, total sugars, carbon/nitrogen (C/N) ratio and decrease in total phenol content. Boron showed higher impact than nitrogen on all tested parameters. The interaction treatment of 250?mg L?1 boron and 1500?g/tree nitrogen proved to be the best treatment.  相似文献   

8.
The lower and upper critical boron levels in cotton (Gossypium herbaceum-Etawa), which are not estimated, were determined to provide guideline values for estimating the boron status from deficiency to toxicity. Cotton plants were grown under greenhouse conditions in complete nutrient solution containing boron at levels ranging from 0 to 50 ppm. Plants were harvested after 40 days and analysed for B, Zn, Fe, Mn and Cu. The lower critical levels for boron in roots, young leaves and old leaves were 103, 61 and 78 ppm, while critical nutrient toxicity levels were 129, 80 and 91 ppm, respectively. For the Gossypium herbaceum-Etawa cultivar, the maximum growth was obtained when 1 ppm boron was applied as H3BO3 in the nutrient solution. High boron concentrations in the nutrient solution were associated with low content of Zn, Fe and Mn in the plants, while boron and Cu concentrations increased with boron supply. Significant correlations were found between B treatments and most response parameters measured.  相似文献   

9.
【目的】比较加硼和不加硼条件下豌豆根尖细胞壁组分对铝的吸附解吸特征的差异,探讨硼对植物铝胁迫的缓解机制。【方法】以中豌6号豌豆(Pisum Sativum)为试验材料,在硼(0.6μmol/L)水平下水培6天,提取豌豆根尖1 cm段细胞壁各组分并进行铝吸附解吸试验,根尖细胞壁各组分分别为螯合态果胶(果胶1),碱溶态果胶(果胶2),半纤维素和纤维素,并分析3个不同硼处理(无硼、50μmol/L H3BO3和50μmol/L3-硝基苯硼酸)条件下各组分对铝吸附解吸的影响。【结果】豌豆根尖细胞壁各组分含量为:纤维素>半纤维素>果胶2>果胶1。硼能够与果胶1和果胶2发生络合反应,与半纤维素也可能发生络合反应,从而影响果胶1、果胶2和半纤维素对铝的吸附解吸。在铝胁迫下,根尖细胞壁中的果胶是主要的铝结合位点,以果胶2结合最多。与对照比,硼处理显著提高了果胶2对铝的吸附量,但解吸量变化不显著。pH 3.5条件下,硼酸与3-硝基苯硼酸处理相比,更能有效地影响果胶对铝的吸附解吸。因此将铝固定在细胞壁的果胶2内,可能是硼酸缓解铝毒的重要机制之一。【结论】细胞壁是铝的主要结合部位,细胞壁果...  相似文献   

10.
  【目的】  准确及时诊断硼毒害,了解硼毒害对叶片造成的生理影响,为硼毒害的有效防治提供理论依据。  【方法】  通过田间调查和叶片养分含量测定,明确福建省安溪县椪柑叶片黄化和脱落是由硼中毒引起的。分别采集不同程度硼毒害椪柑叶片,测定叶片光合作用速率、叶绿素荧光特性和细胞膜透性。  【结果】  在正常、中度黄化和重度黄化叶片中,钾、镁、锌含量均处于椪柑适宜范围内,而中度黄化和重度黄化叶片的硼含量比正常叶片分别提高了11.11和19.71倍,显示硼毒害是造成椪柑叶片黄化的原因。椪柑叶片硼毒害症状有两种表现形式:一是症状由叶尖沿主脉向下发展,叶肉和叶脉均褪绿黄化,黄化部位可见棕褐色的坏死斑点;二是症状由叶缘向主脉发展,主脉保持绿色,叶片呈不规则的黄、绿斑驳黄化。硼毒害椪柑叶片的光合色素含量、有效光化学效率 (Fv'/Fm')、电子传递效率 (ETR)、有效量子产额 (ΦPS II) 和光化学淬灭系数 (qP) 随症状的加重而下降,而非光化学淬灭系数 (NPQ)、过剩激发能 (E) 和天线热耗散 (D) 则随症状的加重而提高,引起光合作用速率、淀粉和可溶性糖含量下降,硼毒胁迫下椪柑叶片细胞膜透性明显提高。  【结论】  过量喷施硼肥所造成的硼毒害会导致椪柑叶片黄化、异常落叶,硼毒害使椪柑光合作用受抑、光合产物合成受阻,细胞膜受到伤害。柑橘生产上应重视含硼叶面肥的合理使用,以免造成硼中毒现象。有关椪柑硼毒害的防治措施还有待进一步研究。  相似文献   

11.
The objective of this study is to investigate the effect of different time and rates of boron (B) foliar application on olive (Olea europaea L.) tree's tissue boron concentration, total phenol, chlorophyll, total soluble sugars, and endogenous hormones. A field experiment was conducted during two successive seasons 2010/2011 and 2011/2012 using 20 years old olive trees cv. Frantoio. The trees are grown in sandy soil planted at 5 × 5 m apart under drip irrigation system at the Nuclear Research Center Experimental Farm, Inshas, El-Qaliubiya Governorate, Egypt. Boron was applied foliarly as boric acid at the following rates (0.0, 100, 200, 300, 400, 500 mg L?1) at flower initiation and after 1 and 2 months from flower initiation. Results showed that boron was significantly effective in increasing leaf, bud, and fruit boron concentration. Total phenol concentration in leaves and buds were significantly highest in the control treatment, significantly decreased as the boron application rate increased. Total chlorophyll, chlorophyll a and b, and total soluble sugars significantly increased as the boron application rate increased and the highest increase was achieved at 200 mg L?1 boron concentration rate. Leaf and bud endogenous indole acetic acid (IAA) and abscisic acid (ABA) were highest in the control treatment; they decreased as the boron application rate increased. However, gibberellic acid (GA3) increased in response to boron treatments compared with the control. The maximum increase was observed at 200 mg L?1 boron rate. We concluded that boron is mobile in olive tree as reproductive organs accumulated more boron than vegetative organs. There is evidence that boron is involved in reduction of phenols, increase in fruit set, and in sugar transport. A balance in endogenous hormones (IAA, GA, ABA) concentrations in olive tree has induced the maximum fruit set and yield.  相似文献   

12.
为减轻高硼(B)对小麦的毒害作用,研究了不同土壤B浓度下磷(P)素对小麦生长的影响。结果表明,增施P素能减轻小麦B毒害症状,小麦平均黄叶率由9.95%降至7.60%;促进小麦生长,B浓度为50mg/kg时,小麦根系和地上部分生物量分别增加44.9%和11.72%,30cm以下土层根系平均增加2.1%,促进了小麦对深层养分和水分的利用。  相似文献   

13.
The ALBIOS project was conducted to examine the influence of acidic deposition on aluminum transport and toxicity in forested ecosystems of eastern North America and northern Europe. Patterns of aluminum chemistry were evaluated in 14 representative watersheds exposed to different levels of sulfur deposition. Controlled studies with solution and soil culture methods were used to test interspecific differences in aluminum sensitivity for one indicator species (honeylocust - Gleditsia triacanthos L. ) and six commercial tree species (red spruce - Picea rubens Sarg., red oak - Quercus rubra L., sugar maple - Acer saccharum Marsh., American beech - Fagus grandifolia Ehrh., European beech - Fagus sylvatica, and loblolly pine - Pinus Taeda L. ). Overall, red spruce was the tree species whose growth was most sensitive to soluble aluminum, with significant biomass reductions occurring at Al concentrations of approximately 200–250 umol/L. Analyses of soil solutions from the field sites indicated that the conditions for aluminum toxicity for some species exist at some of the study areas. At these watersheds, aluminum toxicity could act as a contributing stress factor affecting forest growth.  相似文献   

14.
Six potato cultivars grown in Turkey in boron-prone areas and differing in their tolerance towards high boron were studied to reveal whether boron causes oxidative stress. To assess stress level, chlorophyll fluorescence and growth parameters were measured. Oxidative damage was assessed as malondialdehyde level, and antioxidant protection was evaluated as ascorbate (AA), dehydroascorbate, reduced glutathione (GSH) and oxidized glutathione amounts and superoxide dismutase, catalase, ascorbate peroxidase (APX) and glutathione reductase (GR) activities. High boron stress affected photosynthesis negatively in a threshold-dependent manner and inhibited growth. No pronounced changes in oxidation of lipids occurred in any cultivar. Activation of APX suggested the involvement of an ascorbic acid–reduced glutathione cycle in the protection against oxidative stress caused by high boron. Efficient work of this antioxidant system was probably hindered by boron complexation with NAD(P)+/NAD(P)H and resulted in the inhibition of GR and a decrease in AA and GSH. Hence, oxidative stress associated with high boron is a secondary component of boron toxicity which arises from metabolic changes caused by boron interference with major metabolites. Potato cultivars tolerate excess boron stress well and show damage only in very high boron concentrations. The potato cvs best suited for high boron soils/breeding purposes are cvs Van Gogh and Agria.

Abbreviations: AA: ascorbic acid; APX: ascorbate peroxidase; CAT: catalase; DHA: dehydroascorbic acid; DHAR: dehydroascorbate reductase; DTNB: 5; 5′-dithiobis-2-nitrobenzoic acid; DTT: dithiotreitol; Fv/Fm: photosynthetic efficiency at the dark-adapted state; GR: glutathione reductase; GSH: reduced glutathione; GSSG: oxidized glutathione; MDA: malondialdehyde; ROS: reactive oxygen species; SOD: superoxide dismutase; TCA: trichloroacetic acid  相似文献   


15.
This study was conducted to investigate the various boron fractions in olive tree grown soils. The correlations between boron fractions in leaves, fruits and soil properties were examined. For this purpose cv “Gemlik” olive (Olea europaea L.) orchards were visited. Soil samples from 0–30 cm and 30–60 cm deep, the leaf and fruit samples were collected. The greatest proportion of total soil boron is present in residual form (85–88%). It is followed by organically bound B (2.84–4.50%), specifically adsorbed on soil colloid surfaces (0.93–1.31%), oxides (manganese oxyhydroxides, amorphous Fe and Al oxides, crystalline Fe and Al oxides) bound B (7.27–8.31%). The smallest one readily soluble (extracting plant available) boron values were composed of only 0.40–0.50% of total boron ranging. To determine readily soluble boron five different extraction solutions were in the order Hot water ? 0.01 M CaCl2 ? 1 M NH4OAc ? 0.1 M KCl ? 0.005 M DTPA. Fruit boron concentration and soil boron fractions showed close correlations than leaf boron concentration.  相似文献   

16.
Writing nutrient management plans for Christmas tree production requires accurate values for nutrient removal and harvest records. Freshly cut trees of each of Norway spruce (Picea abies), Canaan fir (Abies balsamea var. phanerolepis), and Douglas fir (Pseudotsuga menziesii) were collected in December 2005. Minimum, maximum, and mean cut tree size measurements were documented. Nutrient contents were calculated and there were no significant differences in nutrient uptake values among species. In a spacing of 1.5 m × 1.5 m (4302 trees per hectare), a clear-cut harvest would remove on average (kg/ha) 560 nitrogen (N), 60.87 phosphorus (P), 168 potassium (K), 243.51 calcium (Ca), 37.75 magnesium (Mg), 28.25 sulfur (S), 0.54 boron (B), 3.39 iron (Fe), 4.74 manganese (Mn), 0.11 copper (Cu), 2.79 zinc (Zn), 2.92 aluminum (Al), 105.85 chlorine (Cl), 0.02 molybdenum (Mo), and 1.44 sodium (Na). Except for Mn and Na, nutrient removal increased linearly as dry weight of whole tree increased.  相似文献   

17.
This study investigated the effect of different boron concentrations on growth and physiological characteristics of olive plants. The absorption of some macronutrients and distribution of boron were also examined. This research was carried out in a completely randomized design with factorial arrangements including six boron levels (0.2, 10, 20, 30, 40 and 50 mg L?1) and two cultivars (Amygdalolia and Konservolia), with four replications for each treatment. Two-year old seedlings were treated with Hoagland nutrient solution containing different boron (B) concentration for 4 months. Chlorophyll fluorescence, fresh and dry weight of leaves, stems and roots as well as absorption of macronutrients decreased in both cultivars as the boron level were increased. Diagnostic symptoms of boron toxicity appeared 45 and 75 days after planting for Amygdaloila and Konservolia at 30, 40 and 50 mg L?1; and 40 and 50 mg L?1 of boron, respectively. Our results showed that at a higher level of B, the Konservolia cultivar maintained more B concentration in its root than Amygdalolia cultivar; however, B content in young leaves of Amygdalolia was higher than Konservolia. It seems that Konservolia cultivar could accumulate B in its roots and prevents its translocation to the leaves through an internal tolerance mechanism; therefore, Konservolia shows greater tolerance to high concentrations of boron compared to Amygdalolia.  相似文献   

18.
The programmed nutrient addition technique was used in a series of 5 experiments to determine the response in growth and micronutrient content of cassava (Manihot esaulenta Crantz) cv. M Aus 10, to 8 supply levels of boron, copper, iron, manganese and zinc respectively. The experiments were of 9 weeks duration and utilized 22 litre pots of nutrient solution. The supply levels for each micronutrient covered the range from severe deficiency to toxicity. Critical tissue concentrations for deficiencies determined by relating total dry matter production to the nutrient concentration in the youngest fully expanded leaf blades were (μg/g): boron 35, copper 6, manganese 50, and zinc 30. Likewise, critical concentrations for toxicities in the same index tissue were (μg/g): boron 100, copper 15, manganese 250, and zinc 120. In the iron experiment, the data were too variable to allow precise determination of critical concentrations for deficiency and toxicity. Critical micronutrient concentrations in the petioles of the youngest fully expanded leaves were also determined, but offered no advantage over the leaf blades.  相似文献   

19.
In the late 1980s, citrus plantations in the area of Villarreal (Spain) showed injuries similar to those previously reported for boron and fluorine toxicity. The area was affected by the disposal of industrial wastewater, mainly from ceramic industries. Conjunctive uses of surface water, groundwater and wastewater for irrigation had taken place. A survey was conducted at 25 orchards to assess leaves and soil for their boron, fluorine, lead, nickel and zinc contents. Wastewater and groundwater were also analyzed to corroborate the presence of these pollutants. The results showed that both boron and fluorine contents were greater than those reported as excess at the most part of the orchards included in the study. Heavy metals toxicity effects were not confirmed. Boron pollution was attributed to industrial wastewater spills and fluorine contamination from atmospheric pollution.  相似文献   

20.
Because of its marked toxicity to plants even when present in relatively small amounts, boron has assumed unique importance in agriculture. High amounts of boron are usually found in soils of arid and semi-arid regions which are not sufficiently leached due to scarcity of rainfall and other wather resources. Ravinkovitch (18) has found that the soils of the Negev desert in Israel contained water soluble boron from 0.4 to 1.2 ppm with an average of 0.9 ppm boron in the surface soil. Whetstone et al. (21) have reported that desert soils of Nevada in the United States contained 10 to 133 ppm of total boron 0.5 to 127 ppm water-soluble boron in the surface soils and 0.3 to 51.0 ppm water-soluble boron in the sub-surface soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号