首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The effect of grazing pressure on infiltration, runoff, and soil loss was studied on a natural pasture during the rainy season of 1995 in the Ethiopian highlands. The study was conducted at two sites with 0–4% and 4–8% slopes at the International Livestock Research Institute (ILRI) Debre Zeit research station, 50 km south of Addis Ababa. The grazing regimes were: light grazing stocked at 0.6 animal-unit-months (AUM)/ha; moderate grazing stocked at 1.8 AUM/ha; heavy grazing stocked at 3.0 AUM/ha; very heavy grazing stocked at 4.2 AUM/ha; very heavy grazing on ploughed soil stocked at 4.2 AUM/ha; and a control with no grazing. Heavy to very heavy grazing pressure significantly reduced biomass amounts, ground vegetative cover, increased surface runoff and soil loss, and reduced infiltrability of the soil. Reduction in infiltration rates was greater on soils which had been ploughed and exposed to very heavy trampling. It was observed that, for the same % vegetative cover, more soil loss occurred from plots on steep than gentle slopes, and that gentle slopes could withstand more grazing pressure without seriously affecting the ground biomass regeneration compared to steeper slopes. Thus, there is a need for developing 'slope-specific' grazing management schedules particularly in the highland ecozones rather than making blanket recommendations for all slopes. More research is needed to quantify annual biophysical changes in order to assess cumulative long-term effects of grazing and trampling on vegetation, soil, and hydrology of grazing lands. Modelling such effects is essential for land use planning in this fragile highland environment.  相似文献   

2.
Commercial grazing is possible over much of arid Australia due to a high density of artificial watering points. The broadscale supplementation of drinking water has not only enhanced densities of sheep (Ovies aries), cattle (Bos taurus, Bos indicus) and goats (Capra hircus), but has also contributed to increased populations of native kangaroos (Macropus spp.) since pre-European times. Empirical data are compiled to identify threshold distances from water containing 95% of a population of grazing animals. For sheep the proposed threshold is 3 km, 6 km for cattle and 7 km for red kangaroos. Despite clear evidence of water-focussed grazing, evidence of decreased biodiversity in relation to distance to water is scant and conflicting between studies. Reasons for this include the limited power of sampling designs and further research is required to establish the value of water-remote areas as grazing-relief refuges and to demonstrate that the recovery of grazing sensitive species is achievable after grazing relief has been restored. An eastern Australian case study indicates that within some large areas used for commercial pastoralism, the density of water points is such that there is nowhere further than 7 km from water. Where water-remote areas persist, their maintenance should be paramount. In the context of rangeland pastoralism and high densities of water points, de-stocking and water-point closure over large areas will be the most effective means of achieving grazing relief and will require strategic land acquisition.  相似文献   

3.
Changes to soil physical properties after grazing exclusion   总被引:3,自引:0,他引:3  
Abstract. The potential for degraded physical properties of soil to regenerate naturally after exclusion of grazing animals was examined at a long-term stocking rate trial near Armidale, New South Wales, Australia. Unsaturated hydraulic conductivity was measured before grazing was excluded, and after 7 months and 2.5 years' grazing exclusion. These data were compared with controls grazed at 10,15 and 20 sheep/ha. After 2.5 years, there were significant increases in unsaturated hydraulic conductivity at 5 and 15 mm tension in the ungrazed treatments compared with the grazed controls. The unsaturated hydraulic conductivities and bulk density of surface soils under pasture which had been ungrazed for 2.5 years were comparable to those where the pasture had been ungrazed for 27 years. We speculate that the natural amelioration of soil physical properties in these soils was due to biological activity and wetting and drying cycles, in the absence of the compactive effect of animal treading.  相似文献   

4.
Northern Australian tropical savannas are subjected to pressures from both grazing and planned and unplanned burning. We know little about the effects of these processes on the below-ground environment. The aim of this study was to investigate the effects of fire, grazing and season on environmental and biological properties of the soil at the base of grass tussocks in a semi-arid savanna rangeland of north Australia. A long-term fire and grazing exclusion experiment was used to test the effects of season, fire and grazing on soil physicochemical factors (soil organic carbon, total nitrogen, ammonium, nitrate levels and bulk density) and soil mite abundance and diversity. Grazed plots were associated with small but significant reductions in total soil nitrogen and organic carbon when compared to 30 year old plots where grazing and fire had been excluded. This suggests slow, long-term losses of nitrogen and soil carbon from an ecosystem with limited available nutrients. Fire had a limited impact on soil properties, but this may reflect the modest experimental fire intensity resulting from fuel reduction due to grazing. Treatment effects on soil bulk density were also negligible. Season had a significant impact on total soil mite abundance and diversity, whereas burning and grazing treatments had no impact on soil mites. Only two morpho-species, one each from the families Cunaxidae and Stigmaeidae, decreased in abundance as a result of grazing. Increased moisture levels in the wet season were associated with increased total nitrogen and the highly mobile nitrate. Changes in mite abundance and diversity reflected these changes in levels of nitrogen and it is possible that increasing total nitrogen availability and soil moisture, is a determinant of mite abundance.  相似文献   

5.
利用遥感信息建立草原冷季载畜量计算模型的研究   总被引:5,自引:1,他引:5  
利用1988-1997年对内蒙古锡林郭勒盟不同草原类型观测的牧草产量、地面气象数据及相关的NOAA气象卫生遥感资料,分别建立了草甸草原、典型草原和荒漠草原牧草估产模型。在此基础上,根据冷季的草地牧草残留量、牧草贮存量、草场利用率、家畜采食率、冷季天数及草地积雪情况等建立了草原冷季载畜量计算模型,为草原生态系统的良性循环提供科学依据。  相似文献   

6.
In the Thar (Rajasthan) Desert of India, sand dunes and sandy plains dominate the landscape. Livestock raising and marginal land cultivation are the main occupations. Owing to the high growth rates of human and livestock populations and a decrease in pasture area and its primary productivity, these lands bear acute grazing pressure. Average rainfall is low and vegetation growth is restricted to the short rainy season of two to four months duration. Often there are years of lower than normal rainfall. In these circumstances, fenced areas, established to stabilize formerly active sand dunes, are increasingly opened to grazing to prevent high stock mortality during droughts. This study was conducted in four fenced and one open site, representative of the region's different vegetation types and grazing pressures. The impact of 2 and 5 per cent free grazing pressure on protected sand dune vegetation density and cover was tested in the two fenced sites. The vegetation data for grazed sites are compared with those for the two ungrazed fenced (protected) and one unfenced (open) site subjected to unlimited grazing pressure throughout the year. The vegetation sampling was carried out by the qaudrat and line-transect method before and after grazing from November 1984 to October 1986. It shows a significant reduction in the density and cover of many palatable species and an increase of unpalatable plants. The effect of vegetation degradation is greater in the unfenced area. The low grazing pressure on the fenced sand dunes sites can still cause drastic changes in the vegetation density and cover. Protection resulted in reduced sand erosion and enhanced growth of palatable plants in the fenced sites under similar climatic and edaphic conditions to the unfenced sites. The grazing pressure in the unfenced areas remains high to extreme during the year, due to low land productivity and high feed demand. The regeneration rate is very slow under the constant (3rd to 5th degree) overgrazing. Low intensity grazing pressure on the fenced sites during droughts can cause heavy utilization and mortality of palatable vegetation.  相似文献   

7.
A great deal of uncertainty is associated with estimates of global nitrous oxide (N2O) emissions because emissions from arid and polar climates were not included in the estimates due to a lack of available data. In particular, very few studies have assessed the response of N2O flux to grazing under future warming conditions. This experiment was conducted to determine the effects of warming and grazing on N2O flux at different time scales for three years under a controlled warming-grazing system. A free-air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures for both of growing (average 1.8 °C in 2008) and no-growing seasons (average 3.0 °C for 3-years) within 20-cm depth, but only warming reduced soil moisture at 10-cm soil depth during the growing season during the drought year of 2008. Generally, the effects of warming and grazing on N2O flux varied with sampling date, season, and year. No interactive effect between warming and grazing was found. Warming did not affect annual N2O flux when grazing was moderate during the growing season because the tradeoff of the effect of warming on N2O flux was observed between the growing season and no-growing season. No-warming with grazing (NWG) and warming with grazing (WG) significantly increased the average annual N2O flux (57.8 and 31.0%) compared with no-warming with no-grazing (NWNG) and warming with no-grazing (WNG), respectively, indicating that warming reduced the response of N2O flux to grazing in the region. Winter accounted for 36-57% of annual N2O flux for NWNG and NWG, whereas only for 5-8% of annual N2O flux for WNG and WG. Soil temperature could explain 5-35% of annual N2O flux variation.  相似文献   

8.
Intensive studies reveal that there is much uncertainty regarding how ecosystem and soil respiration will respond to warming and grazing, especially in the alpine meadow ecosystem. We conducted a first of its kind field-manipulative warming and grazing experiment in an alpine meadow on the Tibetan plateau to determine the effects of warming and grazing on ecosystem and soil respiration for 3-years, from 2006 to 2008. Generally, warming and grazing did not affect seasonal average ecosystem respiration (Re), and there was no interaction between grazing and warming. However, they significantly affected the Re early in the growing season and by the end of the growing season. Warming significantly increased seasonal average soil respiration (Rs) by 9.2%, whereas the difference mainly resulted from data gathered early in the growing season, before June 2007. Positive correlations between soil temperature and Re and Rs were observed, and soil temperature explained 63-83% of seasonal Re variations during the 3-year study and 19-34% of Rs variations in 2007. Seasonal Re in 2008 and Rs in 2007 were slightly negatively correlated to soil moisture, but interannual average Re decreased with a decrease in precipitation for all treatments. Warming and grazing reduced the Q10 value of Re in 2007 and 2008 but did not affect the Q10 value of Rs. The Q10 values of Rs were much lower than the Q10 values of Re in 2007. These results suggest that grazing may reduce the temperature sensitivity of Re and that Re was mainly controlled by soil temperature rather than moisture which varied with timescale in the alpine meadow.  相似文献   

9.
The effects of past grazing management practice on subsequent seedbed condition, draft requirements, fuel consumption, crop establishment and growth, and grain yield and quality were examined using three tillage systems on two sowing dates. The crop was wheat (Triticum aestivum), sown on a fragile sandy clay loam (red duplex soil) in a dryland agricultural area (307 mm average annual rainfall) of Western Australia. The three tillage-sowing systems investigated were: (i) scarifying followed by sowing with wide (180 mm) points; (ii) direct drilling with wide (180 mm) points; (iii) direct drilling with narrow (50 mm) inverted ‘T’-shaped Super-Seeder points. The two sowing dates provided differences in seedbed water content at sowing time. The three grazing management strategies practised in the previous pasture year were: (i) traditional set-stocking (where sheep were grazed continuously for 17 weeks, beginning soon after the start of the early winter rains); (ii) controlled grazing (where sheep were temporarily removed from the enclosure when the topsoil was close to its plastic limit); (iii) no grazing (where the pasture was mown to simulate grazing without trampling).Tillage prior to sowing with wide points reduced the mechanical impedance of the soil following set-stocking and provided a good seedbed for successful crop establishment and growth. In both the controlled-grazing management treatment and the treatment where the pasture had been mown the soil was suitable for direct drilling with both wide and narrow points (i.e. no pre-sowing tillage was required). The use of narrow points had the added advantage of requiring less fuel, but the need for a suitable implement to cover seeds was more critical than for wider sowing points. There were no advantages with respect to grain yield from adopting a controlled-grazing management practice owing to the lack of finishing rainfall. However, grain protein levels were higher in both the controlled and ungrazed treatments compared with the set-stocking treatment.  相似文献   

10.
Large areas of the east coast and inland basins of the South Island, New Zealand, are affected by periodic drought and/or semiarid climatic conditions, particularly during cyclic El Niño climatic events. The severity of these environmental conditions places great stress on introduced and native pasture species and frequently results in poor establishment of new pastures using standard drilling techniques. The objective of this study was to determine effective, practical means of rehabilitating semiarid land (about 470 mm annual rainfall) on a site in Central Otago. A comparison of two direct drilling methods, a novel strip‐seeder drill and a standard hoe‐coulter drill, was conducted in a trial initiated during spring 1998. Five drought‐tolerant forage species were established: wheatgrass (Thinopyron intermedium), tall oat grass (Arrhenatherum elatius), birdsfoot trefoil (Lotus corniculatus), hairy dorycnium (Dorycnium hirsutum) and bluebush (Kochia prostrata). For the 2000/2001 growing season, species established with the strip‐seeder drill had an overall mean herbage biomass of 235 g m −2 , three‐times that for the hoe‐coulter drill (77 g m −2 , P < 0·001). Differences in herbage biomass between species were observed, with hairy dorycnium (mean 328 g m −2 ) producing significantly (P < 0·001) more herbage biomass than the other species. After the third spring, the percentage ground cover recorded from transects across the strip‐seeder drill plots (cf. the hoe‐coulter drill) was: wheatgrass—41 per cent (10 per cent); tall oat grass—44 per cent (25 per cent); birdsfoot trefoil—25 per cent (5 per cent); hairy dorycnium—50 per cent (19 per cent); and bluebush—4 per cent (0 per cent). The native plant content of the resident vegetation was reduced as a result of the drilling treatments and also when fertilizer was added to undistrubed pasture. The strip‐seeder drill is capable of providing superior plant growth on dryland sites even during adverse drought conditions. It produces a furrow approximately 16 cm wider than the hoe‐coulter drill, exerts a greater shattering effect on the soil structure and places fertilizer at depth. It is suggested that this assists plant establishment by providing good seedling protection from wind and sun, and subsequent plant growth by allowing easier root penetration to the subsoil where nutrients and moisture are available. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

The aim of this study was to evaluate the defoliation patterns of individual tillers, efficiency of herbage utilisation, and forage production in continuously stocked Brachiaria humidicola cv. Comum swards during periods of the year of restricted pasture growth. The experiment was conducted at the Embrapa, Campo Grande-MS, Brazil, from April to October 2012. Treatments consisted of two grazing management strategies, defined by two ranges of sward height (10–15 and 20–25 cm) managed under continuous and variable stocking rates. The experiment was conducted as a completely randomised block design with three replications. During periods of resource constraints, grazing management strategies based on ‘steady state’ sward heights did not alter defoliation patterns, herbage utilisation efficiency (HUE), and forage production in Brachiaria humidicola swards under a continuous stocking method. A direct implication of our results is that grazing management strategies during the driest and coldest periods of the year in the tropics should be developed based on the conditions most suitable for better promoting faster pasture recovery and a return to production in the following spring; it is unlikely that any grazing management strategy would be successful in increasing herbage production and/or HUE in periods of restricted pasture growth.  相似文献   

12.
Nitrous oxide emissions from grazed grassland   总被引:8,自引:0,他引:8  
Abstract. Grazing animals on managed pastures and rangelands have been identified recently as significant contributors to the global N2O budget. This paper summarizes relevant literature data on N2O emissions from dung, urine and grazed grassland, and provides an estimate of the contribution of grazing animals to the global N2O budget.
The effects of grazing animals on N2O emission are brought about by the concentration of herbage N in urine and dung patches, and by the compaction of the soil due to treading and trampling. The limited amount of experimental data indicates that 0.1 to 0.7% of the N in dung and 0.1 to 3.8% of the N in urine is emitted to the atmosphere as N2O. There are no pertinent data about the effects of compaction by treading cattle on N2O emission yet. Integral effects of grazing animals have been obtained by comparing grazed pastures with mown-only grassland. Grazing derived emissions, expressed as per cent of the amount of N excreted by grazing animals in dung and urine, range from 0.2 to 9.9%, with an overall mean of 2%. Using this emission factor and data statistics from FAO for numbers of animals, the global contribution of grazing animals was estimated at 1.55 Tg N2O-N per year. This is slightly more than 10% of the global budget.  相似文献   

13.
Urinations of ruminants on grazed pastures increase the risk of nitrate leaching. The study investigated the effect of reducing the length of the grazing season on nitrate leaching from a coarse sandy, irrigated soil during 2006–2007 and 2007–2008. In both years, precipitation was above the long‐term mean. The experiment was initiated in a 4‐yr‐old grass‐clover sward in south Denmark. Three treatments were as follows grazing only (G), spring cut followed by grazing (CG) and both spring and autumn cuts with summer grazing (CGC). Nitrate leaching was calculated by extracting water isolates from 80 cm depth using ceramic suction cups. Because of considerable variation in measured nitrate concentrations, the 32 installed suction cups per treatment were insufficient to reveal differences between treatments. However, weighted nitrate leaching estimations for G, CG and CGC showed estimated mean nitrate N concentrations of 23, 19 and 13 mg/L for an estimated proportion area occupied by urine patches of 0.33, 0.26 and 0.16, respectively. Thus, N concentrations in G and CG exceeded the EU limit of 11.3 mg N/L. Under the prevailing conditions, the time of urination did not appear important. The estimated background leaching calculated from suction cups presumably not situated under urine patches resulted in mean nitrate N concentrations of 2.6 mg/L.  相似文献   

14.
A degraded dwarf shrub, annual grass semidesert vegetation type in Turkana, northwestern Kenya, was protected from livestock grazing from October 1985 to December 1990. The effects of controlled grazing on plant cover, litter cover and bare ground were monitored to appraise the trend in range condition using grazed transects (GT) and ungrazed transects (UGT). Despite an initial increase, plant cover on the UGT deteriorated in a similar manner to that on the GT. At the conclusion of six years of protection, the cumulative mortality of Indigofera cliffordiana on the UGT exceeded 60 per cent whereas on the GT it was 6 per cent. Furthermore the density of I. cliffordiana on the protected area decreased whereas that on the GT remained substantially unchanged. Aristida mutabilis replaced I. cliffordiana on the UGT but showed little change on the grazed area. Sedera hirsuta disappeared from the GT. On the UGT the percentage of bare ground, despite an initial decline (39.3 ± 7.3 per cent), increased substantially (68.9 ± 15.7 per cent) in parallel with the GT (77.3 ± 4.7 per cent). The results contradict a commonly held view that land degradation only occurs when plants are overused. The findings suggest that degradation can occur in the absence of grazing, especially if the plant species involved are dependent on perturbation. As over-resting eliminates I. cliffordiana, it seems judicious to allow a 2-3 year deferral period followed by moderate grazing if it is to be optimally managed.  相似文献   

15.
肃北高寒草原不同放牧强度土壤养分变化特征   总被引:3,自引:0,他引:3  
研究了肃北高寒草原不同放牧强度下不同土层土壤养分及 5 种微量元素有效态含量变化特征。结果表明:①高寒草原土壤物理性质的变化对土壤养分及微量元素具有重要的调控作用;②随着放牧强度的提高,0 ~ 10、10 ~ 20 cm 土层土壤体积质量均呈不同程度的增加,土壤孔隙度和土壤含水量则呈显著的递减趋势;③轻度放牧草地土壤有机质、土壤全 N 含量高于中度放牧和重度放牧草地;20 ~ 30 cm 土层有机质随放牧强度的增大呈明显下降趋势,即随放牧强度的增大深层土壤肥力呈退化趋势;肃北高寒草原的速效养分以多 N 少 P 富 K 为特点,土壤速效 N、P、K 含量在总体上随放牧强度的增加呈下降趋势;④肃北高寒草原 5 种微量元素的高低顺序依次是:Na>Fe>Mn>Cu>Zn,不同放牧强度下各微量元素的变化一致,顺序依次是:轻度放牧>对照>中度放牧>重度放牧;⑤放牧强度对 10 ~ 20 cm 的土层影响最大,随放牧强度的增大,地表植物营养吸收层土壤营养成分、微量元素呈降低,导致地表植被生长能力降低,最终导致地表土壤沙化,最后使草地大面积退化。  相似文献   

16.
Grassland birds are declining at a faster rate than any other group of North American bird species. Livestock grazing is the primary economic use of grasslands in the western United States, but the effects of this use on distribution and productivity of grassland birds are unclear. We examined nest density and success of ground-nesting birds on grazed and ungrazed grasslands in western Montana. In comparison to grazed plots, ungrazed plots had reduced forb cover, increased litter cover, increased litter depth, and increased visual obstruction readings (VOR) of vegetation. Nest density among 10 of 11 common bird species was most strongly correlated with VOR of plots, and greatest nest density for each species occured where mean VOR of the plot was similar to mean VOR at nests. Additionally, all bird species were relatively consistent in their choice of VOR at nests despite substantial differences in VOR among plots. We suggest that birds selected plots based in part on availability of suitable nest sites and that variation in nest density relative to grazing reflected the effect of grazing on availability of nest sites. Nest success was similar between grazed plots and ungrazed plots for two species but was lower for nests on grazed plots than on ungrazed plots for two other species because of increased rates of predation, trampling, or parasitism by brown-headed cowbirds (Molothrus ater). Other species nested almost exclusively on ungrazed plots (six species) or grazed plots (one species), precluding evaluation of the effects of grazing on nest success. We demonstrate that each species in a diverse suite of ground-nesting birds preferentially used certain habitats for nesting and that grazing altered availability of preferred nesting habitats through changes in vegetation structure and plant species composition. We also show that grazing directly or indirectly predisposed some bird species to increased nesting mortality. Management alternatives that avoid intensive grazing during the breeding season would be expected to benefit many grassland bird species.  相似文献   

17.
采用室外取样与室内分析结合的方法对祁连山高寒杜鹃灌丛草地不同放牧干扰条件下土壤、根系养分化学计量比进行研究。结果表明:1)植物群落地下生物量随土层深度增加而迅速减少,60%~70%根系聚集于0~10 cm土层,随放牧压力增加活根向土壤深层转移。2)总根系生物量及其C、N、P储量随牧压增加均下降,重牧与轻牧相比C、N、P养分储量分别下降26%、17%、27%;表层单位质量活根C含量轻牧最高、N含量中度放牧最高、P含量重牧最高;死根N、P变化与活根相反。3)随牧压增加土壤有机碳、全氮密度以及N、P速效养分均上升,全磷含量相对稳定,但表层全磷含量下降。数据分析得出,休牧增加了根系生物量的同时,表层土壤根系的C/N、C/P比值升高,N/P比值降低。说明根系对土壤C积累及养分循环起重要作用,而生长季休牧有利于高寒灌丛草地土壤养分保持,这与高寒地区植物生长缓慢特性相适应。  相似文献   

18.
Previous studies have suggested grazing may alter nitrogen (N) cycling of grasslands by accelerating or decelerating soil net N mineralization. The important mechanisms controlling these fluxes remain controversial, and more importantly, the consequences on carbon storage and site productivity remain uncertain. Here we present results on the seasonal patterns of soil inorganic N pools and net N mineralization and their linkages to ecosystem functioning from a grazing experiment in the Inner Mongolia grassland, which has been maintained for five years with 7 levels of grazing intensity (0, 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 sheep ha−1). Net N mineralization and nitrification rates were determined using an in situ soil core incubation method. Our findings demonstrated that, in the non-growing season, the net N mineralization rate was reduced by 181% in the lightly and moderately grazed plots (1.5-4.5 sheep ha−1) and by 147% in the heavily grazed plots (6.0-9.0 sheep ha−1), and the net N immobilization was observed in all grazed treatments. In the early growing season, however, it was increased by 107% in the lightly and moderately grazed plots and by 128% in the heavily grazed plots. In the peak growing season, grazing diminished the net mineralization rate by 71% in the lightly and moderately grazed plots and 108% in the heavily grazed plots. The seasonally dependent effects of grazing on soil inorganic N pools and net N mineralization were strongly mediated by grazing-induced changes in soil temperature and moisture, with soil moisture being predominant in the peak growing season. Grazing alterations of soil inorganic N and net N mineralization were closely linked to the changes in aboveground primary productivity, biomass N allocation, N use efficiency, and soil total nitrogen. Based upon the five year study, we conclude that grazing at moderate to high intensities is unsustainable in terms of productivity and soil N cycling and storage in these systems.  相似文献   

19.
Trace mineral concentrations of annual cool season pasture forages grazed by growing beef cattle during late fall-winter-spring grazing season were evaluated during two experimental cool season grazing studies, each lasting two years at the North Florida Research and Education Center (NFREC), Marianna, Florida. Eight 1.32 ha fenced pastures or paddocks were divided into two groups of pasture land preparation/planting methods, four pastures for the sod seeding treatments (SS) and four for the prepared seedbed treatments (PS). Two different pasture forages, small grains, (rye/oats mix) with or without ryegrass for the first two years (Study 1); and oats with ryegrass or ryegrass only for the last two years (Study 2) were planted in these pasture lands. Each of the four forage, type, and cultivation combination treatments was assigned to two pastures each year, thereby giving two replicates per pasture treatment per year. Forage samples were collected at the start of pasture grazing and twice monthly thereafter until the end of grazing season, pooled by month, and analyzed for copper (Cu), iron (Fe), zinc (Zn), manganese (Mn), cobalt (Co), molybdenum (Mo), and selenium (Se). Liver biopsies and blood plasma samples were collected from the tester cattle only during the spring of year two of Study 2. Liver was analyzed for Cu, Fe, Mn, Co, Mo, and Se and plasma for Cu, Fe, Zn, and Se. Forage trace mineral concentrations were found to differ by month in Cu (P < 0.01), Fe and Zn (P < 0.0001) in both studies, and with Mn (P < 0.0001) in Study 2 only. Pasture forage type effects on Cu (P < 0.05), Fe and Zn (P < 0.01), and Se (P < 0.05) and forage type by month interactions on Cu and Mn (P < 0.0001), and Zn (P < 0.05) were observed in Study 2. Forage concentrations of Cu, Zn, Mn, and Mo in Study 1 and Mn, Mo, and Se in Study 2 were affected (P < 0.05) by pasture land preparation/planting methods in that these minerals were found to be lower from forages of sod-seeded treatments than from those of prepared seedbed treatments. Forage Cu concentrations were lower than the minimum requirements (10 ppm, DM) for beef cattle among months in both studies. Oats-ryegrass pastures of Study 2 had surprisingly low Fe concentrations (P < 0.01) in all months of the winter-spring grazing season. Cobalt, Mn, Mo, and Se did not vary much month to month during the winter-spring grazing months. All mean forage Se concentrations were lower than the requirements (0.10 ppm, DM) for grazing beef cattle. There were no differences (P > 0.05) in mean Se values between the two studies. Liver Cu, Fe, Co, and Se concentrations were sufficient to indicate adequate status of these minerals in tester animals from both forage types. Liver concentrations of Mn and Mo were slightly low, indicating a low status or these minerals. Plasma concentrations of Cu, Fe, Se, and Zn were all above the recommended concentrations for beef cattle. In conclusion, trace minerals deficient in North Florida during the cool season were Cu, Co, and Se, and a special consideration should be given to include adequate amounts while supplementing the mineral mixtures to growing beef cattle since forage samples reflected deficient concentrations of these minerals.  相似文献   

20.
The effect of grazing cessation management has only rarely been investigated. In this study, the influence of cutting regime in the absence of fertilization was examined during 2005–2011 on a semi-natural grassland in Rapotin (Czech Republic) which had been grazed for more than 30 years before the start of the trial. This was conducted as a randomized plot design with five levels of treatment: 4 C – intensive (four cuts per year); 3 C – medium intensive (three cuts per year); 2 C – low intensive (two cuts per year); 1 C – extensive (one cut per year); 0 C – abandoned (control; without any management). Species richness was significantly lower in treatments 1 C and 0 C than in other treatments. Management and year had similar and significant influence on species composition and explained 23% of its variability. Dry matter (DM) yields were found to be lower in three-cut than in two-cut treatments (5.56 t ha?1 and 6.22 t ha?1, respectively). In the case of grazing cessation, a suitable compromise of three cuts per year can be recommended to guarantee maintenance of species richness, botanical composition, and appropriate grass forage yield under similar site conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号