首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Bovine thyrotropin (bTSH) stimulation testing has long been considered the gold standard for diagnosis of canine hypothyroidism. Unfortunately, bTSH is no longer commercially available. Recently, the use of recombinant human thyrotropin (rhTSH) to perform thyroid-stimulating hormone (TSH) stimulation testing in dogs was described. The cost of an rhTSH vial (1.1 mg) limits the practical use of this product. The study reported here was performed to determine the effects of storing rhTSH on the post-TSH increase of serum total (TT4) and free (FT4) thyroxine concentrations during TSH stimulation testing in 12 euthyroid Beagles in a crossover trial. Three TSH tests with recombinant human thyrotropin (rhTSH; 91.5 microg IV) were performed on each dog during 3 different periods: 1 with freshly reconstituted rhTSH (fresh); 1 with rhTSH, reconstituted and stored at 4 degrees C for 4 weeks (refrigerated); and 1 with rhTSH, reconstituted and frozen at -20 degrees C for 8 weeks (frozen). Blood samples for determination of TT4 and FT4 concentrations were collected before and 4 and 6 hours after rhTSH administration. There was no significant difference in TT4 or FT4 concentration after stimulation with fresh, refrigerated, and frozen rhTSH. Furthermore, there was no significant difference between TT4 or FT4 serum concentration observed 4 and 6 hours after rhTSH administration. In conclusion, reconstituted rhTSH can be stored at 4 degrees C for 4 weeks and at -20 degrees C for 8 weeks without loss of biological activity, allowing clinicians to perform more TSH response tests per vial.  相似文献   

2.
Thyroid function was evaluated in 18 healthy dogs by thyrotropin (TSH) stimulation. Two dose regimens were used in each dog: 0.1 IU/kg body weight of freshly reconstituted lyophilized TSH and 1 IU/dog of previously frozen and stored TSH (up to 200 days), both given intravenously. Blood samples were collected prior to and at four and six hours after TSH administration. Serum was evaluated for total thyroxine concentrations by radioimmunoassay. All dogs were classified as euthyroid on the basis of response to 0.1 IU/kg body weight of freshly reconstituted TSH at four and six hours. The 1 IU dose of TSH, previously frozen for up to 200 days, induced increases in serum total thyroxine concentration over baseline at four and six hours that were not significantly different from those resulting from the use of the higher dose of fresh TSH. In all test groups, there were no statistically significant differences between total thyroxine concentrations at four and six hours post-TSH administration. It was concluded that an adequate TSH response can be achieved with the use of 1 IU of TSH/dog for clinically normal dogs between 29.0 kg and 41.6 kg body weight, even if this TSH has been frozen at -20 degrees C for up to 200 days. Further, blood collection can be performed at any time between four and six hours. Similar studies are needed to evaluate this new protocol in hypothyroid dogs and euthyroid dogs suffering nonthyroidal systemic diseases.  相似文献   

3.
The diagnosis of canine hypothyroidism and its differentiation from euthyroid sick syndrome still is a major diagnostic challenge. In this study, ultrasonography was shown to be an effective tool for the investigation of thyroid gland diseases. Healthy control dogs (n = 87), dogs with euthyroid sick syndrome (n = 26), thyroglobulin autoantibody-positive (TgAA-positive, n = 30) hypothyroid dogs, and TgAA-negative (n = 23) hypothyroid dogs were examined by thyroid ultrasonography. Maximal cross sectional area (MCSA), thyroid volume, and echogenicity were measured. Statistical analysis identified highly significant (P < .001) differences between euthyroid and hypothyroid dogs both in thyroid volume and in MCSA, whereas no significant differences in thyroid size were detected between healthy euthyroid dogs and dogs with euthyroid sick syndrome. In euthyroid and euthyroid sick dogs, parenchymal echotexture was homogeneous and hyperechoic, whereas relative thyroid echogenicity of both TgAA-positive and TgAA-negative hypothyroid dogs was significantly lower (P < .001). When using arbitrarily chosen cutoff values for relative thyroid volume, MCSA, and echogenicity, thyroid volume especially was found to have highly specific predictive value for canine hypothyroidism. In summary, the data reveal that thyroid sonography is an effective ancillary diagnostic tool to differentiate between canine hypothyroidism and euthyroid sick syndrome.  相似文献   

4.
The purpose of this study was to evaluate the effects of the recombinant human thyroid-stimulating hormone (rhTSH) on serum total thyroxine (TT4) concentration in euthyroid dogs. Six healthy beagle dogs were used in each of the 3 phases of this study. Phase I: thyroid-stimulating hormone response tests were performed by using a total dose of 25 micrograms, 50 micrograms, and 100 micrograms of rhTSH, administered intravenously. Phases II and III: thyroid-stimulating hormone response tests were performed by using 50 micrograms of rhTSH administered by intramuscular and subcutaneous routes, respectively. In each phase and following all the administered doses of rhTSH, an increase in the serum TT4 concentration was noted, although it was not always significant. For phase I, there was a significant increase in serum TT4 concentrations. Based on this study, 50 micrograms was judged to be the optimal intravenous dose of rhTSH. For phases II and III, there was no significant increase in serum TT4 after the administration of rhTSH. Results of this study suggest that rhTSH could be a good substitute for bovine TSH, when used by the intravenous route, for the TSH stimulation test in dogs. Further studies are required to confirm its clinical usefulness.  相似文献   

5.
Background: Various protocols using different doses of recombinant human thyrotropin (rhTSH) in TSH stimulation testing have been described. However, the influence of TSH dosage on thyroxine (T4) concentration has not yet been evaluated in suspected hypothyroid dogs.
Objective: To evaluate the effectiveness of 2 doses of rhTSH.
Animals: Fifteen dogs with clinical signs consistent with hypothyroidism and abnormal stimulation results with 75 μg rhTSH and 18 clinically healthy dogs.
Methods: All dogs were stimulated with 75 and 150 μg rhTSH IV in a 1st and 2nd stimulation test, respectively. Blood samples were taken before and 6 hours after rhTSH administration for determination of total T4 concentration.
Results: Using the higher dose led to a normal test interpretation in 9 of the 15 dogs, in which stimulation had been abnormal using the lower dose. Based on follow-up information, hypothyroidism was excluded in 7 of these 9 dogs. In all 6 dogs with a blunted response to the higher dose, hypothyroidism could be confirmed. Healthy dogs showed significantly higher post-TSH T4 concentrations with the higher compared with the lower dose. Post-TSH T4 concentrations after TSH stimulation were not related to dogs' body weight in either healthy or diseased dogs.
Conclusions and Clinical Relevance: TSH dose significantly influenced test interpretation in suspected hypothyroid dogs. Differentiation between primary hypothyroidism and nonthyroidal disease was improved with 150 μg rhTSH. Because this effect was independent of the dogs' body weight, the higher dose is recommended in dogs that have concurrent disease or are receiving medication.  相似文献   

6.
Canine thyroid-stimulating hormone (cTSH) was measured in a variety of clinical cases (n= 72). The cases were classified as euthyroid, sick euthyroid, hypothyroid or hypothyroid on non-thyroidal therapy on the basis of their history, clinical signs, laboratory results (including total thyroxine concentrations and, where indicated, thyroid-releasing hormone [TRH] stimulation tests) and response to appropriate therapy. Additional samples were taken during some of the TRH stimulation tests to measure the response of cTSH concentrations following TRH administration. A reference range (0 to 0–41 ng/ml) was calculated from the basal concentrations of cTSH in a group of 41 euthyroid dogs. Six of nine cases of confirmed hypothyroidism had basal cTSH concentrations above the reference range, whereas the remainder were within the normal range. One of these three remaining cases was a pituitary dwarf and did not show a rise in cTSH concentration following TRH stimulation. In contrast, only one of a group of six hypothyroid dogs that had been on non-thyroidal treatment within the previous four weeks had increased concentrations of basal cTSH. This study also found that five of a group of 16 dogs with sick euthyroid syndrome had increased cTSH concentrations. It was concluded that cTSH measurements are a useful additional diagnostic test in cases of suspected hypothyroidism in dogs but that dynamic testing is still required to confirm the diagnosis of hypothyroidism.  相似文献   

7.
OBJECTIVE: To evaluate whether use of recombinant human (rh) thyroid-stimulating hormone (TSH) induces equivalent stimulation, compared with bovine TSH (bTSH), and to evaluate activity of rhTSH in dogs of various large breeds. ANIMALS: 18 healthy research Beagles and 20 healthy client-owned dogs of various breeds with body weight > 20 kg. PROCEDURES: The 18 Beagles were randomly assigned to 3 groups, and each dog received either 75 microg of rhTSH, IM or IV, or 1 unit of bTSH, IM, respectively, in a crossover design. The 20 client-owned dogs received 75 microg of rhTSH, IV. Blood samples were taken before and 6 hours after TSH administration for determination of total serum thyroxine (T(4)) concentration. Additional blood samples were taken after 2 and 4 hours in Beagles that received rhTSH, IM. RESULTS: There was a significant increase in T(4) concentration in all dogs, but there were no differences between values obtained after administration of bTSH versus rhTSH or IV versus IM administration of rhTSH. Although there was a significant difference in age and body weight between Beagles and non-Beagles, there was no difference in post-TSH simulation T(4) concentration between the 2 groups. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated an equivalent biological activity of rhTSH, compared with bTSH. Use of 75 microg of rhTSH, IV, did not induce a different magnitude of stimulation in large-breed dogs, compared with Beagles. Euthyroidism was confirmed if post-TSH simulation T(4) concentration was > or = 2.5 microg/dL and at least 1.5 times basal T(4) concentration.  相似文献   

8.
OBJECTIVE: To evaluate the use of recombinant human (rh) thyroid-stimulating hormone (TSH) in dogs with suspected hypothyroidism. ANIMALS: 64 dogs with clinical signs of hypothyroidism. PROCEDURES: Dogs received rhTSH (75 microg/dog, IV) at a dose independent of their body weight. Blood samples were taken before and 6 hours after rhTSH administration for determination of total serum thyroxine (T(4)) concentration. Dogs were placed into 1 of 3 groups as follows: those with normal (ie, poststimulation values indicative of euthyroidism), unchanged (ie, poststimulation values indicative of hypothyroidism; no thyroid gland stimulation), or intermediate (ie, poststimulation values between unchanged and normal values) post-TSH T(4) concentrations. Serum canine TSH (cTSH) concentration was determined in prestimulation serum (ie, before TSH administration). RESULTS: 14, 35, and 15 dogs had unchanged, normal, and intermediate post-TSH T(4) concentrations, respectively. Basal T(4) and post-TSH T(4) concentrations were significantly different among groups. On the basis of basal serum T(4) and cTSH concentrations alone, 1 euthyroid (normal post-TSH T(4), low basal T(4), and high cTSH concentrations) and 1 hypothyroid dog (unchanged post-TSH T(4) concentration and low to with-in reference range T(4) and cTSH concentrations) would have been misinterpreted as hypothyroid and euthyroid, respectively. Nine of the 15 dogs with intermediate post-TSHT(4) concentrations had received medication known to affect thyroid function prior to the test, and 2 of them had severe nonthyroidal disease. CONCLUSIONS AND CLINICAL RELEVANCE: The TSH-stimulation test with rhTSH is a valuable diagnostic tool to assess thyroid function in selected dogs in which a diagnosis of hypothyroidism cannot be based on basal T(4) and cTSH concentrations alone.  相似文献   

9.
The stability of reconstituted, refrigerated thyrotropin was evaluated. Thyrotropin (TSH) was reconstituted at the start of the study and stored at 4 degrees C. A TSH stimulation test was performed in eight healthy, euthyroid dogs at weekly intervals for 1 month. In seven of eight dogs, there was no significant difference (P less than 0.05) between the post-TSH T3 concentrations and the post-TSH T4 concentrations for the duration of the study. For one dog, the post-TSH T4 concentration was below the normal post-TSH T4 range following the administration of reconstituted TSH that had been stored 4 weeks. The T3 response to the TSH, however, was normal. This dog responded normally to freshly reconstituted TSH. The results of this study suggest that reconstituted bovine TSH can be stored at 4 degrees C for at least 3 weeks without loss of biologic activity in the dog.  相似文献   

10.
Concentrations of serum thyroxine (T4) and 3,5,3'-triiodothyronine (T3) were determined after the administration of freshly reconstituted thyrotropin-releasing hormone (TRH), reconstituted TRH that had been previously frozen, or thyrotropin (TSH) to 10 mature dogs (6 Greyhounds and 4 mixed-breed dogs). Thyrotropin-releasing hormone (0.1 mg/kg) or TSH (5 U/dog) was administered IV; venous blood samples were collected before and 6 hours after administration of TRH or TSH. Concentrations of the T4 and T3 were similar (P greater than 0.05) in serum after administration of freshly reconstituted or previously frozen TRH, indicating that TRH can be frozen at -20 C for at least 1 week without a loss in potency. Concentrations of T4, but not T3, were higher after the administration of TSH than they were after the administration of TRH (P less than 0.01). Concentrations of T4 increased at least 3-fold in all 10 dogs given TSH, whereas a 3-fold increase occurred in 7 of 10 dogs given freshly reconstituted or previously frozen TRH. Concentrations of T4 did not double in 1 dog given freshly reconstituted TRH and in 1 dog given previously frozen TRH. Concentrations of T3 doubled in 5 of 10, 2 of 10, and 5 of 10 dogs given TSH, freshly reconstituted TRH, or previously frozen TRH, respectively. Results suggested that concentrations of serum T4 are higher 6 hours after the administration of TSH than after administration of TRH, using dosage regimens of 5 U of TSH/dog or 0.1 mg of TRH/kg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Concentrations of serum thyroxine (T4) and 3,3',5-triiodothyronine (T3) were determined in 7 clinically healthy adult dogs before and after administration of freshly reconstituted thyrotropin (TSH) and TSH that had been previously reconstituted and frozen for 1, 2, and 3 months. The 4 TSH response tests were performed at 30-day intervals by collecting blood samples for serum T4 and T3 determinations before and 4 and 6 hours after IV administration of TSH (0.1 U/kg of body weight). Baseline serum concentrations of T4 and T3 were similar at each of the 4 sample collection times over the 3-month period of the study. Mean serum concentrations of T4 and T3 increased significantly (P less than 0.01) over baseline values after administration of freshly reconstituted TSH or TSH that had been previously frozen for 1, 2, or 3 months. Significant difference was not found in the mean post-TSH serum T4 or T3 concentration after injection of freshly reconstituted TSH or TSH that had been previously frozen for 1, 2, or 3 months. In 2 of the 7 dogs, mild reactions--mild ataxia and weakness--were observed during the last of the series of TSH response tests (ie, after IV administration of TSH that had been previously frozen for 3 months). Results of this study suggest that for use in dogs, reconstituted TSH stored at -20 C maintains adequate biological activity for at least 3 months. The ability to store reconstituted TSH for a longer period than the recommended 48 hours represents an economic advantage, because it allows clinicians to perform more TSH response tests per vial of TSH.  相似文献   

12.
BACKGROUND: Although definitive diagnosis of hypoadrenocorticism usually is made by an adrenocorticotrophic hormone (ACTH) stimulation test using 250 microg/dog of synthetic ACTH (cosyntropin/tetracosactrin), increased costs have prompted a search for less-expensive diagnostic methods. HYPOTHESIS: A low-dose ACTH stimulation test (5 microg/kg) will distinguish between dogs with nonadrenal illness and hypoadrenocorticism. Additionally, administration of cosyntropin will not affect the results of another ACTH stimulation test performed 24 hours later. ANIMALS: Eight healthy adult dogs and 29 hospitalized dogs with suspected hypoadrenocorticism. METHODS: In this prospective study, each healthy dog received 4 ACTH stimulation tests. Dogs received either 5 microg/kg or 250 microg/dog of cosyntropin on day 1 and the alternate dose on day 2. The opposite dosing sequence was used after a 2-week washout period (days 15 and 16). Dogs with suspected Addison's disease received 2 ACTH stimulation tests, 24 hours apart, using either a dose of 5 microg/kg cosyntropin or 250 microg/dog on the 1st day and the alternate dose on the 2nd day. RESULTS: In healthy dogs, poststimulation cortisol concentrations on days 2 and 16 and days 1 and 15 were equivalent (90% confidence interval [CI]: 86.7-101.2%). In dogs with suspected Addison's disease, mean (+/-SD) cortisol responses to ACTH in the 5 microg/kg dose (16.2+/-7.7 microg/dL) and 250 microg/dog dose (15.9+/-6.3 microg/dL) were statistically equivalent (90% CI: 91.2-105.4%). CONCLUSIONS AND CLINICAL IMPORTANCE: Low-dose ACTH stimulation testing distinguishes between dogs with nonadrenal illness and hypoadrenocorticism. Additionally, the administration of 2 ACTH stimulation tests on consecutive days does not affect results of the second test.  相似文献   

13.
Primary hypothyroidism in dogs is associated with increased release of growth hormone (GH). In search for an explanation we investigated the effect of intravenous administration of thyrotropin-releasing hormone (TRH, 10 microg/kg body weight) on GH release in 10 dogs with primary hypothyroidism and 6 healthy control dogs. The hypothyroid dogs had a medical history and physical changes compatible with hypothyroidism and were included in the study on the basis of the following criteria: plasma thyroxine concentration < 2 nmol/l and plasma thyrotropin (TSH) concentration > 1 microg/l. In addition, (99m)TcO(4)(-) uptake during thyroid scintigraphy was low or absent. TRH administration caused plasma TSH concentrations to rise significantly in the control dogs, but not in the hypothyroid dogs. In the dogs with primary hypothyroidism, the mean basal plasma GH concentration was relatively high (2.3+/-0.5 microg/l) and increased significantly (P=0.001) 10 and 20 min after injection of TRH (to 11.9+/-3.5 and 9.8+/-2.7 microg/l, respectively). In the control dogs, the mean basal plasma GH concentration was 1.3+/-0.1 microg/l and did not increase significantly after TRH administration. We conclude that, in contrast to healthy control dogs, primary hypothyroid dogs respond to TRH administration with a significant increase in the plasma GH concentration, possibly as a result of transdifferentiation of somatotropic pituitary cells to thyrosomatotropes.  相似文献   

14.
OBJECTIVE: To investigate the anatomy of the brachial plexus, sciatic, and femoral nerves for the use of a peripheral nerve-stimulator to perform nerve blocks in dogs. STUDY DESIGN: Prospective experimental trial. ANIMALS: Four canine cadavers and four healthy adult dogs weighing 23 +/- 2.5 kg. METHODS: Phase I: in four canine cadavers, an anatomical study was conducted to evaluate accurate needle-insertion techniques. Phase II: the utility of these techniques, and the value of electrostimulation, were evaluated in four anesthetized dogs in lateral recumbency (medetomidine, 5 microg kg(-1)/ketamine 5 mg kg(-1)) using an electrical stimulator and shielded needles. RESULTS: For the brachial plexus, the needle was inserted cranial to the acromion, medial to the subscapularis muscle, at an angle of approximately 20-30 degrees in relation to a plane vertical to the surface on which the animal was lying, oriented parallel to the long axis of the animal, in a ventro-caudal direction. For the sciatic nerve, the needle was inserted just cranial to the sacrotuberous ligament, through the gluteus superficialis muscle, at an angle of approximately 60 degrees in relation to the horizontal plane, in a ventro-cranial direction, and up to the level of the ischium. For the femoral nerve, the needle was inserted perpendicular to the skin, just cranial to the femoral artery, and directed a little caudally. Using a peripheral nerve-stimulator, all nerves were located, and muscle contractions were elicited at a current of 0.2-0.4 mA. No complications were observed during the procedures. CONCLUSION: Electrostimulation of peripheral nerves is useful in locating the branches of the brachial plexus as well as the sciatic and femoral nerves in dogs. CLINICAL RELEVANCE: Peripheral nerve stimulation increases the reliability of a nerve block when compared with blind needle-insertion.  相似文献   

15.
Thyroid function was assessed in euthyroid dogs (n = 20), dogs suffering from canine recurrent flank alopecia (CRFA, n = 18), and hypothyroid dogs (n = 21). Blood samples obtained from all dogs in each group were assayed for total thyroxine (TT4), thyrotropin (TSH), and thyroglobulin autoantibody (TgAA) serum concentrations. Total T4 and TSH serum concentrations were significantly decreased and increased, respectively, in the hypothyroid group compared with the other 2 groups. No significant differences in TT4 and TSH serum values were found between the euthyroid and CRFA groups. Thyroglobulin autoantibodies were detected in 10, 11.1, and 61.9% of euthyroid dogs, dogs with CRFA, and hypothyroid dogs, respectively. In conclusion, dogs suffering from CRFA have a normal thyroid function, and the determination of TT4 and TSH serum concentrations allows differentiation of these dogs from dogs with hypothyroidism, in most cases. Occasionally, the 2 diseases can be concomitant.  相似文献   

16.
Background: Glomerular filtration rate (GFR) is decreased in humans with hypothyroidism, but information about kidney function in dogs with hypothyroidism is lacking.
Hypothesis: Hypothyroidism influences GFR in dogs. The objective of this study was to assess GFR in hypothyroid dogs before implementation of thyroxine supplementation and after re-establishing euthyroidism.
Animals: Fourteen hypothyroid dogs without abnormalities on renal ultrasound examination or urinalysis.
Methods: Blood pressure and GFR (measured by exogenous creatinine clearance) were measured before treatment (T0, n = 14) and at 1 month (T1, n = 14) and at 6 months (T6, n = 11) after beginning levothyroxine supplementation therapy (20 μg/kg/d, PO). The response to therapy was monitored at T1 by measuring serum total thyroxine and thyroid stimulating hormone concentrations. If needed, levothyroxine dosage was adjusted and reassessed after 1 month. Statistical analysis was performed using a general linear model. Results are expressed as mean ± standard deviation.
Results: At T0, the average age of dogs in the study group was 6.3 ± 1.4 years. Their average body weight decreased from 35 ± 18 kg at T0 to 27 ± 14 kg at T6 ( P < .05). All dogs remained normotensive throughout the study. GFR increased significantly with levothyroxine supplementation; the corresponding results were 1.6 ± 0.4 mL/min/kg at T0, 2.1 ± 0.4 at T1, and 2.0 ± 0.4 at T6 ( P < .01).
Conclusion: GFR was <2 mL/min/kg in untreated hypothyroid dogs. Re-establishment of a euthyroid state increased GFR significantly.  相似文献   

17.
Serum thyroxine (T4) and 3,5,3'-triiodothyronine (T3) concentrations were determined every 3 h for 12 h beginning at 8 a.m. in 20 healthy euthyroid dogs, 19 dogs with hypothyroidism, and 18 euthyroid dogs with atopic dermatitis. Status of thyroid function was based on history, physical findings, results of thyrotropin response testing, and requirement for thyroid hormone replacement therapy. Mean serum T4 and T3 concentrations did not vary significantly between blood samplings within each of the three groups of dogs. Between groups of dogs, mean serum T4 concentration was significantly (P less than 0.05) higher at each blood sampling time in healthy euthyroid dogs and euthyroid dogs with atopic dermatitis when compared to dogs with hypothyroidism. There was no significant difference in mean serum T4 concentration at any blood sampling time between healthy euthyroid dogs and euthyroid dogs with atopic dermatitis or in mean serum T3 concentrations at any blood sampling time between any of the three groups of dogs. Random fluctuation in serum T4 and T3 concentrations was found in dogs in all three groups. Random fluctuations were more common with serum T3 versus T4 concentrations. Consequently, sensitivity (0.88 versus 0.52), specificity (0.73 versus 0.45), predictive value for a positive test (0.75 versus 0.32), predictive value for a negative test (0.87 versus 0.65), and accuracy (0.80 versus 0.47) were better for serum T4 concentration than serum T3 concentration, respectively, when all blood samples were analysed. Measurement of serum T4 concentration was more accurate than serum T3 concentration in assessing the status of thyroid gland function.  相似文献   

18.
Measurement of serum-free thyroxine (fT4) concentration provides a more accurate assessment of thyroid gland function than serum thyroxine (T4) or 3,5,3'-triiodothyronine (T3). Techniques for measuring serum fT4 concentration include standard equilibrium dialysis (SED), radioimmunoassay (RIA), and a combination of both (modified equilibrium dialysis [MED]). This study compared results of serum fT4 measurements by means of SED, MED, and 5 RIAs in 30 healthy dogs, 10 dogs with hypothyroidism, and 31 euthyroid dogs with concurrent illness for which hypothyroidism was a diagnostic consideration. Serum fT4 concentrations were comparable when determined by the SED and MED techniques, and mean serum fT4 concentrations were significantly (P < .01) lower in dogs with hypothyroidism than in healthy dogs and euthyroid dogs with concurrent illness. Significant (P < .05) differences in fT4 concentrations were identified among the 5 RIAs and among the RIAs and MED and SED. Serum fT4 concentrations were consistently lower when fT4 was determined by the RIAs, compared with either equilibrium dialysis technique. Serum fT4 concentrations were significantly lower (P < .01) in dogs with hypothyroidism than in healthy dogs for all RIAs; were significantly lower (P < .05) in dogs with hypothyroidism than in euthyroid dogs with concurrent illness for 4 RIAs; and were significantly lower (P < .01) in euthyroid dogs with concurrent illness than in healthy dogs for 4 RIAs. RIAs had the highest number of low serum fT4 concentrations in euthyroid dogs with concurrent illness. This study documented differences in test results among fT4 assays, emphasizing the importance of maintaining consistency in the assay used to measure serum fT4 concentrations in the clinical or research setting.  相似文献   

19.
In human medicine, recombinant human thyroid-stimulating hormone (rhTSH) increases thyroid radioactive iodine uptake (RAIU), allowing radioiodine-131 (131I) dose reduction and greater efficacy in the treatment of differentiated thyroid cancer and multinodular goiter. The goal of this study was to evaluate the effect of rhTSH, administered 24 h and 48 h before radioiodine-123 (123I), on the thyroid RAIU in healthy dogs. Seven healthy euthyroid beagles were randomly allocated to 3 groups (2 groups of 2 dogs and 1 group of 3 dogs) in a prospective, blinded, crossover study. At Week 1, 1 group received 123I for a baseline RAIU; 1 group received 100 μg of rhTSH IV 24 h before 123I, and 1 group received 100 μg of rhTSH IV 48 h before 123I. All dogs received 37 MBq of radioactive 123I IV, and thyroid RAIU was determined 8 h, 24 h, and 48 h thereafter. The study was designed in such a manner that each dog received the 3 treatments and a wash-out period of 3 wk was respected in between. Blood samples were taken for measurement of serum total thyroxine (TT4) and thyrotropin (TSH) concentrations at baseline and 6 h, 12 h, 24 h, and 48 h after rhTSH administration. Recombinant human TSH caused no significant change on thyroid RAIU. The overall mean thyroid RAIU significantly decreased during the study independent of the treatment. Recombinant human TSH significantly increased serum TT4 concentration, which peaked 6 h after rhTSH administration. Compared to baseline, serum TSH concentration remained higher at 6 h, 12 h, 24 h, and 48 h. However, a statistically significant difference was reached only at 6 h and 12 h after rhTSH administration. No adverse effects of rhTSH were observed during the study. Further studies are needed to determine the best timing and dosage of administration of rhTSH in healthy and thyroid carcinoma dogs.  相似文献   

20.
This study investigated the thyroidal response to administration of recombinant human thyroid stimulating hormone (rhTSH) by means of serum total thyroxine (TT(4)) concentration and pertechnetate uptake by the thyroid gland in six healthy euthyroid spayed female cats. A pertechnetate scan was performed on day 1 to calculate thyroid/salivary gland (T/S) uptake ratio. On day 3, 25 microg rhTSH was injected intravenously. Six hours later the thyroid scan was repeated as on day 1. Blood was drawn for serum TT(4) measurement prior to injection of rhTSH and performance of the pertechnetate scan. Statistically significant differences in mean serum TT(4) concentration, T/S uptake ratio before and 6h after rhTSH administration and T/S uptake ratio between left and right lobes were noted. We can conclude that 25 microg rhTSH increases pertechnetate uptake in the thyroid glands of cats, this should be taken into account when thyroid scintigraphy after rhTSH administration is interpreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号