首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
通过对肥料长期定位试验点土壤(0~15 cm)的农田杂草种子库大小、物种组成等特征进调查,采用主成分分析法(PCA)和典范对应分析法(CCA)探讨了农田杂草土壤种子库对施肥模式的响应。结果表明,该试验地杂草土壤种子库主要以大豆种植季杂草种子为主,施氮肥的处理区杂草种子库密度极显著大于未施氮肥的处理区(P0.01);施肥明显降低杂草种类数,尤其是土壤速效磷含量的增大;PCA结果表明施肥模式引起土壤磷素含量的差异是影响杂草土壤种子库的物种组成的最重要因子,而土壤氮、钾也能在一定程度上对土壤种子库的物种组成产生影响;CCA结果表明不同种类的杂草种子对施肥模式的响应不同,不同种类的杂草适宜生长在不同的施肥区。本研究认为杂草的适应与竞争机制导致不同种类的杂草对施肥模式的响应不同,同一种杂草在不同施肥模式下种子的密度差异明显,影响农田杂草土壤种子库的物种组成与密度,最终形成各物种组合的杂草群落能够更好地适应环境并最大程度利用环境中的各种资源。  相似文献   

2.
长期有机–无机肥配施对农田杂草土壤种子库的影响   总被引:1,自引:1,他引:0  
为揭示长期有机-无机肥配施处理下农田杂草土壤种子库的特征变化规律,本研究通过田间长期定位施肥模式试验,运用群落生态学方法研究了小麦-大豆轮作制度下大豆种植季7种施肥处理区杂草土壤种子库的结构及其生物多样性特征。结果表明,土壤样品中共检出杂草种子16种,隶属于10科; 土壤种子库总密度分布在15995~106300 grain/m2范围。长期有机-无机肥配施处理区的杂草土壤种子库优势物种组成较为简单,优势种为12种,配施麦秸处理区主要以栗米草为主,配施粪肥处理区主要以水苋菜为主; 土壤种子库的密度显著降低至15995~41900 grain/m2范围; 物种丰富度降低至7.67~9.33范围,并且将物种多样性和均匀度指数维持在休闲与纯化肥处理区之间(1.5~2.0和0.6~0.8)。长期配施麦秸、 粪肥均显著影响土壤杂草土壤种子库的结构特征,且麦秸与粪肥品种间差异的影响大于麦秸施用量差异的影响。因此,本研究认为有机-无机肥配施既有利于作物的优质高产,也可以通过调整有机肥种类以及与施用量来调控杂草土壤种子库,实现经济效益和生态效益的双赢。  相似文献   

3.
农田杂草种子库研究综述   总被引:17,自引:0,他引:17  
农田杂草的生长明显地依赖于活动种子库。文章综述了国内外农田杂草种子库的研究进展,主要分析了除草方式、耕作方式以及农田杂草种子库的影响。现有的研究表明,化学与机械结合的防治措施能更好地控制杂草;免耕使分布在土壤表层中的种子比例提高;有机栽培体系下杂草种子库最大。最后,提出了国内在该领域中的研究方向。  相似文献   

4.
研究了安徽沿江农区作物成熟期秋熟田杂草种子库的物种组成、物种多样性、空间格局,调查了地上部分杂草及相关环境因子,分析了杂草种子库与地上杂草群落和环境因子的关系.结果表明:秋熟田种子库有杂草40科124种,夏熟田杂草为优势杂草,自土壤表层至下层杂革种类数逐渐减少;不同农田类型中,物种多样性指数棉花田高于其他秋熟田,同一农田类型中,物种多样性指数表层中层下层;种子库总密度为289 865粒·m-2,其中秋熟田杂草种子占61.00%,杂草种子集中分布于土壤表层;杂草种子库与地上杂草群落Sorenson相似性指数为0.53,线性拟合表明二者密切相关;CCA分析表明土壤速效氮为影响种子库的最大环境因子.  相似文献   

5.
农田杂草土壤种子库是农田生态系统的重要组成部分。在收集国内外相关研究资料的基础上,系统综述了施肥模式对农田杂草土壤种子库的密度、物种组成、多样性等动态特征的影响,结合国际研究动态,就目前我国农田杂草土壤种子库研究中亟需解决的问题进行了探讨,指出应加强在施肥条件下杂草种子的萌发、土壤种子库特征的变化机制、土壤种子库与地面杂草群落的相关性、土壤中杂草种子的遗传变异等4个方面的研究工作,深入探讨施肥模式对农田土壤种子库及农田生态环境的影响。  相似文献   

6.
耕作方式对新垦沙地农田杂草群落结构的影响   总被引:1,自引:0,他引:1  
通过田间调查的方式,研究了黑河中游边缘绿洲新垦沙地农田杂草分布状况,并对不同耕作方式下农田杂草群落结构特征进行了分析。调查中共记录杂草16种,隶属10科。新垦沙地农田杂草群落基本组成为藜(Chenopodium album)+牛筋草(Eleusineindica)+狗尾草(Setaria viridis)+反枝苋(Amaranthus retroflexus)。与当地传统的地膜覆盖、秋耕和玉米连作耕作方式相比,秸秆覆盖、减少秋耕和玉米-大豆轮作均可增加农田杂草物种丰富度、多样性指数和群落优势度(P0.05)。与当地传统耕作方式相比,秸秆覆盖可增加杂草群落中牛筋草优势度比,降低藜和反枝苋优势度比;减少秋耕可增加狗尾草、反枝苋、灰绿藜(C.glaucum)和米瓦罐(Silene conoidea)优势度比,降低牛筋草优势度比;玉米-大豆轮作可增加米瓦罐优势度比。不同耕作方式对偶见种杂草在田间的分布和组成影响不明显。可以看出,新垦沙地农田杂草物种较少,群落组成单一;不同耕作方式对新垦沙地农田杂草物种多样性和群落结构组成有明显影响,进一步深入研究对沙地农田杂草合理防除具有重要的指导意义。  相似文献   

7.
农田杂草的发生受多种生产措施的影响,是造成作物减产的重要原因之一。本研究目的在于探索我国华北平原冬小麦-夏玉米轮作体系下农田杂草对不同耕作、秸秆和氮管理的响应。研究结果发现:(1)夏玉米拔节期杂草种类和平均总生物量分别是冬小麦拔节期的1.25倍和6.66倍,因此,玉米季是轮作中农田杂草防治最主要季节,而马唐、打碗花、稗草等是杂草防治的主要对象。(2)不同管理措施对冬小麦季农田杂草生物量无显著影响。(3)夏玉米季,全免耕处理杂草平均生物量比半免耕处理高77.5%~99.4%。玉米拔节期,无小麦秸秆覆盖还田时,会促进翻耕杂草的发生。(4)夏玉米收获时,高氮水平(当季施氮量240 kg.hm-2)杂草平均生物量比低氮水平(当季施氮量120 kg.hm-2)显著低55.9%,耕作和氮效应的交互作用达显著水平,全免耕、低氮投入杂草生物量是半免耕、高氮投入的4.05倍,在翻耕条件下,高氮水平抑制杂草效果不显著。因此,华北平原区冬小麦-夏玉米轮作体系应加强夏玉米季杂草的综合防治,利用秸秆覆盖还田抑制杂草的发生,也可通过优化氮素管理改善作物生长发育从而抑制杂草发生,其中在全免耕条件下,可通过适当增加氮素供应水平而减轻杂草的危害。  相似文献   

8.
尽管基因工程技术可以增加作物产量, 但转基因作物是否对农田生态产生影响受到广泛关注。本研究通过田间定位试验, 应用群落生态学方法研究了转CryIAb基因抗虫水稻"Mfb"连续2年在传统栽培和半野生条件下对稻田杂草群落组成及多样性的影响。调查结果显示: 转CryIAb基因稻"Mfb"与非转基因稻"明恢86"田间杂草种类没有显著差异。稻田杂草的频度和密度与栽培方式有关, 半野生稻田杂草的频度和密度显著高于传统稻田, 但相同栽培条件下, 转基因稻"Mfb"与非转基因稻"明恢86"田间杂草频度和密度在整个生长期内均无显著差异。半野生稻田物种丰富度(Sr)指数明显大于传统稻田; 相同栽培条件下, 相同生长时期抗虫转基因水稻"Mfb"与其非转基因对照"明恢86"对稻田杂草群落丰富度的影响差异不显著。稻田杂草群落优势度(D)、均匀度(J)以及多样性(H)各处理、各生长时期内转基因稻与非转基因稻相比均没有显著差异。稻田杂草Shannon-Wiener多样性指数变化无明显规律, 相同栽培方式相同生长期的抗虫转基因水稻"Mfb"与其非转基因对照"明恢86"的Shannon-wiener指数差异不显著。综合上述分析, 转CryIAb基因抗虫稻对稻田杂草群落的组成及多样性没有显著影响。  相似文献   

9.
化感作用在杂草控制中的应用   总被引:19,自引:0,他引:19       下载免费PDF全文
杂草危害农作物的生长和发育,而大量施用除草剂会造成环境污染和增加杂草抗药性。利用植物相互间化感作用控制杂草非常有效,抑草植物通过释放化感物质并与杂草竞争生存环境,进而对杂草发芽和生长产生抑制作用。轮作、耕作等措施影响植物残茬化感物质的释放,造成抑草效果不同。化感育种是解决杂草危害的最有效途径,可使植物具有对杂草抑制作用的化感性状。  相似文献   

10.
基于多特征的田间杂草识别方法   总被引:2,自引:5,他引:2  
该文阐述了通过利用植物的多种特征实现田间杂草的精准自动识别的方法。该方法先利用颜色特征分割土壤背景,然后利用位置和纹理特征识别行间和行内杂草,最后利用形态特征后处理误识别的作物和杂草。在实验室内利用实地采集的3~5叶期、不同作物行数的麦田图像对该方法进行了测试。作物和杂草的正确识别率最低为89%,最高为98%;处理时间最低为157 ms,最高为252 ms。试验结果表明:基于多特征的田间杂草识别方法具有较高的识别率和较快的识别速度。  相似文献   

11.
Tillage systems can influence weed seed viability and the distribution with depth of weed seeds in soil. To investigate this ‘tillage effect’, weed seed bank composition was determined at two soil depths (0–10 and 10–20 cm) in three tillage systems [mouldboard plough (MP), shallow tillage (ST), and direct drilling (DD)] established for 14 years on a sandy loam (Podzol) in Prince Edward Island, Atlantic Canada. The cropping system was a cool-season soybean (Glycine max L. Merr.) in rotation with barley (Hordeum vulgare L.). The objectives were to evaluate the size and composition of the viable soil seed bank, using the seedling germination method, and to determine if the adoption of non-inversion tillage practices (DD and ST) influence seed bank parameters relative to the conventional full inversion MP. The diversity of weed species was slightly lower for MP (17 species) compared to the ST (21 species) and DD treatments (22 species). The population for most weed species was relatively low with only three common species [low cudweed (Gnaphalium uliginosum L.), creeping buttercup (Ranunculus repens L.), common lambsquarters (Chenopodium album L.)] above 5 m−2. For the total soil depth sampled (0–20 cm), weed seed population was significantly greater under DD (56 weeds m−2) and ST (66 weeds m−2), compared to MP (25 weeds m−2), and mainly related to changes in the number of annual broadleaf weeds, compared to perennial broadleaf and grasses. Comparison of the 0–10 with the 10–20 cm soil depth showed a relatively uniform weed seed distribution for the MP treatment, while a greater proportion of weed seeds was found at the lower soil depth for DD and ST. This distribution tended to be weed species dependent. Soil texture and weed seed characteristics were considered to have a critical impact on the total weed seed bank size, specifically for the 10–20 cm soil depth. Overall, the weed bank size was relatively small indicating that adoption of conservation tillage practices for sandy loams in Atlantic Canada should not cause a major change in weed community and weed populations, or present a need for significant changes in weed control management.  相似文献   

12.
Weed abundance in crops undergoes frequent changes, often due to changes in tillage practices. Annual species, with quick germination, a short vegetative stage, profuse seed production and long-lived seeds become problematic under zero-tillage systems. Portulaca oleracea L. and Amaranthus blitoides L. are widespread weeds in the Mediterranean area, prominent in irrigated crops. We studied the total weed abundance in the field, and specifically these two species (Portulaca oleracea and Amaranthus blitoides) with high frequency of occurrence in monoculture maize, from 2012 to 2014, in the field and soil seedbank. Results showed significant differences between zero-tillage (ZT) and conventional tillage (CT) systems on total weed abundance and relative abundance of Portulaca oleracea. Total weed abundance decreased in ZT plots (from 136 plants m?2 to 25 and 46 plants m?2, in 2013 and 2014 respectively). The same trend was observed in Portulaca oleracea recorded in ZT plots, but the abundance of Amaranthus blitoides did not vary in this system. Weed seedling germination and weed seed numbers both of total weed seedbank and Portulaca oleracea, were greater in ZT plots compared to CT, regarding Amaranthus blitoides seedling germination and seed count, the values did not increase with ZT, in continuous maize crops.  相似文献   

13.
Seedbanks of five weed species were monitored in response to tillage and crop rotations in a semi-arid location in northern Jordan. Tillage practices of mouldboard- or chisel-plowing and cropping patterns of barley (Hordeum vulgare) planting or fallow were evaluated on permanently established subplots. Soil samples were collected from the upper 10 cm for three consecutive years, immediately after performing tillage and prior to planting. Soil seedbanks of the five dominant weed species (Anthemis palestina, Diplotaxis erucoides, Hordeum marinum, Rhagadiolus stellatus, and Trigonella caelesyriaca) were estimated by recovering viable seeds through greenhouse and laboratory procedures. At initiation, more viable seeds were present in soil subjected to mouldboard plowing than chisels plowing. In the following two sampling seasons, significant rotation by tillage interaction affected the seedbank of each species. Generally, mouldboard plowing increased weed seedbanks when combined with frequent fallowing. Conversely, chisel plowing combined with barley cropping generally reduced weed seedbank sizes. Results emphasized the importance of managing weeds during fallow to avoid the build up of H. marinum, a serious grass weed in semi-arid environments.  相似文献   

14.
《Applied soil ecology》2001,16(3):209-217
The position of weed seeds within the soil matrix plays an important role in seedling emergence and seed survival. The relationship of weed seeds with soil aggregates and soil depth was evaluated in a Waukegon silt loam soil that had been under a long-term, conventional tillage, annual crop management system. Soil aggregates were separated and classified into eight size classes from ≤5 to >12 mm and weed seeds were extracted from the aggregates. Amaranthus spp., Chenopodium album L. (common lambsquarters), Polygonum pensylvanicum L. (Pennsylvania smartweed), Setaria faberi Herrm. (giant foxtail), and Solanum ptycanthum Dun. (eastern black nightshade) accounted for the majority of seeds recovered. In general, seed viability declined from April to June, but increased in October following seed deposition. Seeds of individual species were most abundant in the aggregate size class most closely matching its seed size. However, seeds were commonly found associated with aggregates larger than 9 mm. Highest seed viability was found in the aggregate fraction closest to the seed size, however, S. faberi viability was also high in the >12 mm aggregate size class. Regardless of aggregate size, seed numbers were generally greatest in the upper 5 cm of soil. The results of this research were species-dependent and variable and demonstrated the complexity of weed seed/soil aggregate associations. However, they did show that seed placement within the soil matrix may play an important role in weed population dynamics.  相似文献   

15.
Prior to the mining of heavy minerals, the seedbank of the Strandveld Succulent Karoo was investigated to serve as a benchmark for the future rehabilitation of the area. Seedbank composition and species' abundance were determined with the seedling emergence method. By using the Braun‐Blanquet method, five main vegetation units were identified in concordance with results obtained for the standing vegetation. A total of 108 species were recorded in the seedbank, which represents c. 50 per cent of the species recorded in the standing vegetation of the total study area. Seven annual species (3 per cent) were unique to the soil seedbank. On community level, similarity in species composition between the standing vegetation and the soil seedbank ranged between 39·2 per cent and 48·8 per cent, with a similarity of 54·3 per cent for the total study area. Annual and perennial species' similarity in species composition between the standing vegetation and the seed bank totalled 74·8 per cent and 43·1 per cent respectively. Post‐mining topsoil replacement as well as seeding and transplanting of selected local species will be essential to revegetate this area. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Current interest in biological-based management of weed seed banks in agriculture furthers the need to understand how microorganisms affect seed fate in soil. Many annual weeds produce seeds in high abundance; their dispersal presenting ready opportunity for interactions with soil-borne microorganisms. In this study, we investigated seeds of four common broadleaf weeds, velvetleaf (Abutilon theophrasti), woolly cupgrass (Eriochloa villosa), Pennsylvania smartweed (Polygonum pensylvanicum), and giant ragweed (Ambrosia trifida), for potential as sources of carbon nutrition for soil fungi. Seeds, as the major source of carbon in an agar matrix, were exposed to microbial populations derived from four different soils for 2 months. Most seeds were heavily colonized, and the predominant 18S rRNA gene sequences cloned from these assemblages were primarily affiliated with Ascomycota. Further, certain fungi corresponded to weed species, regardless of soil population. Relatives of Chaetomium globosum (98–99% sequence identity) and Cordyceps sinensis (99%) were found to be associated with seeds of woolly cupgrass and Pennsylvania smartweed, respectively. More diverse fungi were associated with velvetleaf seeds, which were highly susceptible to decay. The velvetleaf seed associations were dominated by relatives of Cephaliophora tropica (98–99%). In contrast to the other species, only few giant ragweed seeds were heavily colonized, but those that were colonized resulted in seed decay. The results showed that seeds could provide significant nutritional resources for saprophytic microbes, given the extant populations can overcome intrinsic seed defenses against microbial antagonism. Further, weed species-specific associations may occur with certain fungi, with nutritional benefits conferred to microorganisms that may not always result in seed biodeterioration.  相似文献   

17.
Long-term soil cultivation at the same depth affects soil characteristics and crop productivity. The aim of the study was to investigate the impact of a long-term different intensity soil tillage methods and deep loosening on weed number, weed agrobiological group and soil seed bank changes in till Bathygleyic Dystric Glossic Retisol soil under the climatic conditions of the Western Lithuania (geographical coordinates 55°43′38″N, 21°27′43″E). The study included different soil tillage methods (conventional ploughing, shallow ploughing and shallow ploughless tillage) and deep loosening. During investigational years, the greatest weed number in crops and the greatest weed seed number in the seed bank were determined in the soil reduced tillage (shallow ploughing and shallow ploughless tillage). The weed number in crops of conventional ploughing soil was 35.8% lover compared to reduced tillage soil. The weed seed number in the seed bank of conventional ploughing was 49.6% lover compared to reduced tillage Decreasing soil tillage intensity resulted in weed seeds concentration in the upper topsoil. A one-time deep loosening had a significant effect during the crop rotation: the weed number in crops and weed seed number in the seed bank were determined to have increased by 26.6% and 51.6% in conventional ploughing soil and by 11.9% and 23.2% shallow ploughless soil respectively. However, after deep loosening, the number of Poa annua in crops decreased 2.9 times in plots of conventional ploughing and 1.7 times – in plots of shallow ploughing soil.  相似文献   

18.
Invertebrate weed seed predation is an important component of weed seed loss in agricultural fields. This study investigated the role of seed imbibition on the selection and consumption of the seeds of seven common agricultural weed species by Harpalus pensylvanicus De Geer, a granivorous carabid beetle (Coleoptera: Carabidae) that is found throughout North America. The volatile organic compounds released by ambient dry and imbibed weed seeds were quantified, and Y-tube bioassays were conducted to determine if H. pensylvanicus individuals responded to volatile compounds released from weed seeds. H. pensylvanicus individuals were found to consume higher masses of seeds for each weed species examined in imbibed versus ambient dry trials (P < 0.05). Larger seeded species had the greatest increase in mass consumption between dry seed and imbibed seed trials. The seeds from the seven weed species examined released carbon dioxide and ethylene when ambient dry and imbibed, but H. pensylvanicus adults were only able to detect weed seeds through olfaction when volatile release was highest as a result of imbibition. These results demonstrate that seed imbibition is important in determining seed detection and consumption by invertebrates and may affect seed banks in agricultural fields.  相似文献   

19.
Soil and residue manipulation can assist weed management by killing weeds mechanically, interfering in weed lifecycles, facilitating operations and enhancing crop establishment and growth. Current tillage systems often compromise these functions, resulting in heavy reliance on herbicides, particularly in no-till systems. Herbicides are an exhaustible resource, so new approaches to merge soil conservation and non-chemical weed management are needed. This paper broadly reviews various preventive and curative non-chemical weed management tactics. It also demonstrates how innovations can be derived from functional requirements of weed management operations, and from biological processes and weaknesses in weed's lifecycles. Mechanical weeding and enhancement of weed seed mortality are highlighted as examples. Major limitations with mechanical weeding include limited weed control in crop rows at early vulnerable crop stages, weather-dependent effectiveness, and difficulties in handling crop residues. Precise steering and depth control, improved seedbed friability and lighter tractors or controlled traffic could bring considerable improvements. To expose weed seeds to predators, position them for fatal germination, viability loss or low emergence may require completely different soil displacement patterns than those of current implements and systems. Controlled traffic and precise strip tillage offer good opportunities for implementing these weed management strategies in minimum-tillage systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号