首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although different supplies of sulphur (S) during wheat growth are known to influence the quantitative composition of gluten proteins in flour, an effect on the amount and on the proportions of single protein types has yet not been determined. Therefore, wholemeal flours of the spring wheat ‘Star’ grown on two different soils and at four different levels of S fertilisation (0, 40, 80, 160 mg S per container) were analysed in detail using an extraction/HPLC procedure. The results demonstrated that the amount of total gluten proteins as well as of the crude protein content of flour was little influenced, whereas amounts and proportions of single protein types were strongly affected by the different S fertilisation. The changes were clearly dependent on the Cys and Met content of each protein type. The amount of S-free ω-gliadins increased drastically, and that of S-poor high-molecular-weight (HMW) glutenin subunits increased moderately in the case of S deficiency. In contrast, the amounts of S-rich γ-gliadins and low-molecular-weight (LMW) glutenin subunits decreased significantly, whereas the amount of α-gliadins was reduced only slightly. S deficiency resulted in a remarkable shift of protein proportions. The gliadin/glutenin ratio increased distinctly; ω-gliadins became major components, and γ-gliadins minor components, whereas the ratio of HMW to LMW glutenin subunits was well-balanced.  相似文献   

2.
The relative quantity of specific proteins, protein subunits, as well as amount and size-distribution of polymeric proteins in wheat kernels may vary due to environmental conditions. In this study, the effect of different nitrogen treatments on polymeric and monomeric proteins in wheat was determined. Two soft white biscuit wheat cultivars, a cracker wheat and a hard red bread wheat were planted under irrigation in a randomized complete block design with three replications in two successive years at six different nitrogen treatments. SE-HPLC was used to determine the amount of monomeric and polymeric proteins, and various quality characteristics were measured after harvesting. The large and small SDS-extractable polymeric proteins were not influenced by different N levels. There was a strong cultivar influence, where some cultivars had a larger reaction to N treatments than others. The later application (at flag leaf stage) of nitrogen did not increase the protein fractions. The total amount of N given seemed to have a greater influence on the protein fractions than the timing of the fertilizer application. The lowest N treatment consistently gave the lowest flour protein content value. There was a strong correlation between flour protein content and large monomeric proteins.  相似文献   

3.
4.
The influence of sulphur (S) application on yield formation, hordein composition and malting quality of 2-rowed spring barley (Hordeum vulgare L.) was studied in Nordic conditions for the first time. In a greenhouse experiment, S deficiency was indicated when 10 mg S/kg soil or less was available, by an increase in the malate:sulphate ratio in leaves. The contents of aspartic acid and cystine in grains increased and decreased, respectively. Also a substantial decrease of total hordein and the proportion of B hordein, and an increase in the proportion of C hordein were associated with S deficiency. The effect of S was further assessed in field experiments by applying N and S in four different combinations prior to sowing. No apparent S deficiency occurred in the field conditions based on the malate:sulphate and grain N:S ratio. However, in a site where the grain S content was slightly but significantly increased by S application, a change in hordein composition and malting quality was observed. Thus even in S-sufficient conditions, the end use quality of malting barley may be affected by S application.  相似文献   

5.
The effects of nitrogen (N) fertiliser on grain size and shape, starch and protein concentration, vitreosity, storage protein composition, and alcohol yield of two winter wheat varieties contrasting in endosperm texture were studied in a field trial in Herefordshire, UK in 2004. Averaged across varieties, the alcohol yield was 439 L/tonne for grain with a protein concentration of 11.5 g/100 g. The soft endosperm wheat variety Riband produced on average 7.7 L more alcohol per tonne of grain at a given protein concentration than the hard endosperm variety, Option. At the same time, N fertiliser was shown to have significant effects on alcohol production through its major influence on grain protein concentration. Averaged over both varieties, there was a reduction in alcohol yield of 5.7 L for each 10 kg increase in protein content per tonne of grain. The starch concentration of Riband was 2.9 g/100 g higher than Option at a given grain protein concentration, supporting its higher observed alcohol yields. A low conversion of starch to alcohol in this study (6.30 L/10 kg starch) compared to the theoretical value (6.61 L/10 kg starch) indicated that there is potential for improvement of this character. The traits relating to grain size and shape were principally influenced by genotype, and were not influenced by N fertiliser. Conversely, there were only minor genotypic effects on grain protein concentration and vitreosity. An important finding was that there were no interactions between variety and N treatment for any of the variables considered, indicating that the response of the two varieties to changes in applied N was the same, resulting in consistent differences in starch concentration and alcohol yield between genotypes at different levels of grain protein. An analysis of the composition of the wheat storage proteins by size-exclusion chromatography showed that the gliadins increased on average by 0.56 g per g increase in total grain protein and were quantitatively the major protein fraction, suggesting that selection for low gliadin content may be a desirable means by which to reduce grain protein, and thereby increase alcohol yield in wheat. The relationship between alcohol yield per unit area and applied N rate was described by a quadratic function and the maximum alcohol yield per unit area was ca. 3630 L/ha. Statistical analysis suggested that the economic optimum rate of N applied for grain yield was close to the optimum N rate for maximum alcohol productivity.  相似文献   

6.
Nitrogen (N) fertilization plays a central role for improving yield in wheat and high N use efficiency (NUE) is desired to protect ground and surface waters. Several studies showed that sulfur (S) fertilization may increase NUE, but no attempts have been made to explain whether this increase is due to greater recovery efficiency (RE), an enhanced internal efficiency (IE) or by an improvement of both efficiencies. The aim of this study was to analyze the effects of different N and S fertilizer rates, and their interaction on N uptake, its partition at maturity, NUE and its main components. Field experiments were carried out during two consecutive growing seasons in the Argentinean Pampas using a single bread-wheat genotype grown under different combinations of N and S fertilizer rates. Additional experiments were performed in farmer fields using N and S fertilization evaluating different genotypes in order to analyze the components of NUE in other environmental conditions. Plant N uptake increased linearly in response to N addition until rates of ca. 80 kg N ha−1. Sulfur addition showed no effect at the lowest N fertilizer rate, but N uptake was increased when S was applied at the highest N rate, revealing a synergism between both nutrients. At the lowest S rate RE was 42%, and increased to 70% when S fertilizer was added. No changes in IE in response to S fertilization were observed. These results were also observed in farmer field experiments, in genotypes that showed different IE. This study showed that S addition increased NUE mainly by increasing the N recovery from the soil. Thus, the concurrent management of N and S is important for reducing the potential pollution of residual soil nitrate by increasing N recovery from the soil while sustaining high nitrogen use efficiency.  相似文献   

7.
Oxygreen® ozonation process for wheat grain is efficient to modify its technological properties. Experiments have been realized to evaluate the influence of operational conditions (humidification rate, ozone pressure and ozone concentration in the inlet flow). Dough alveographic data and protein solubility have been pursued.  相似文献   

8.
Reducing the reliance on nitrogen fertilizer for wheat production   总被引:4,自引:0,他引:4  
All crops require nitrogen (N) for the production of a photosynthetically active canopy, whose functionality will strongly influence yield. Cereal crops also require N for storage proteins in the grain, an important quality attribute. Optimal efficiency is achieved by the controlled remobilization of canopy-N to the developing grain during crop maturation. Whilst N will always be required for crop production, targeting efficient capture and use will optimise consumption of this valuable macronutrient. Efficient management of N through agronomic practice and use of appropriate germplasm are essential for sustainability of agricultural production. Both the economic demands of agriculture and the need to avoid negative environmental impacts of N-pollutants, such as nitrate in water courses or release of N-containing greenhouse gases, are important drivers to seek the most efficient use of this critical agronomic input. New cultivars optimised for traits relating to N-use efficiency rather than yield alone will be required. Targets for genetic improvement involve maximising capture, partitioning and remobilization in the canopy and to the grain, and yield per se. Whilst there is existing genetic diversity amongst modern cultivars, substantial improvements may require exploitation of a wider germplasm pool, utilizing land races and ancestral germplasm.  相似文献   

9.
浙东平原水稻土油菜田间试验施用不同氮、硫水平的结果显示:(1)油菜籽产量随氮肥用量的增大而增加,施N(50-200kg/hm^)不施硫肥条件下,增产幅度为2.0%-11.8%,施N和施S(30kg/hm^2)条件下,增产幅度为2.4%-12.7%。(2)不同施氮水平下,施硫增产油菜籽5.4%-6.9%。(3)油菜氮吸收量随施氮量的增加而呈增加趋势,低氮水平下施用硫肥促进油菜氮吸收量加大。(4)不同施氮水平的产投比为1.5-4.3,施用硫肥的产投比达5.2-6.7,氮硫配施可提高施用氮肥的产投比。  相似文献   

10.
Bread-making quality of wheat flour is largely determined by the accumulation, concentration and composition of the proteins in the grain, which are influenced by genetic (G) and environment (E) variation and their interactions. We have therefore evaluated the importance of G and E factors and their interactions in determining the accumulation and composition of the proteins in the wheat grain. The cultivar determined development time (CDDT), together with the amount and timing of N application, played a significant role in determining the accumulation and final composition of the wheat grain proteins, explaining 21–59% of the variation. At low temperature, N application both at spike formation and at anthesis explained the highest proportion of variation (36%) in the percentage of sodium dodecyl sulphate (SDS) unextractable polymers in the total amount of polymers (% UPP), while at high temperature CDDT contributed most to the variation in % UPP (20%). The largest contributor to variation in the amount of total SDS extractable proteins (TOTE) was N application at anthesis, both at low and high temperatures (12% and 36%, respectively). Thus, the climate should be considered in recommendations for improving the protein quality and thereby the bread-making quality of wheat.  相似文献   

11.
Proteomic techniques were applied for the investigation of “avenin-like protein type-B” in tetraploid wheat. Protein was extracted from endosperm, according to a classical chromatographic procedure and its identity confirmed by liquid chromatography-tandem mass spectrometry analysis. The characterization of avenin-like protein type-B was in good agreement with the gene-derived sequence, with the exception of glutamine as N-terminus. The presence in the glutenin extract and the high number of cysteine residues suggested that avenin-like protein type-B is integrated into gluten polymers via inter-chain disulphide bonds. This raises the question of whether the protein could play a role in determining the functional properties of gluten.  相似文献   

12.
This article reports on field experiments with 4 different rotations that are commonly used throughout Haryana in NW India (rice-wheat, cotton-wheat, pearl millet-wheat, cluster bean-wheat), where we assess wheat yield and chapatti quality measures with different crop establishment methods and input of micronutrients. In a series of experiments conducted on farmers’ fields in 2007-2008 and 2008-2009 winter seasons, the addition of micronutrients and sulphur to wheat crops was used alongside the use of a common farmer practice, the use of farmyard manure (FM) and best practice inputs of N-fertilizer (150 kg N ha−1), P-fertilizer (26 kg P ha−1) and K-fertilizer (33 kg K ha−1). The application of FM with the recommended NPK treatment produced 9-13% more grain yield in the rice-wheat rotation when compared with the recommended NPK only treatment. Given that the farm sites used here had low levels of soil P, this may suggest that the recommended rate of 26 kg P ha−1 for the rice-wheat rotation is too low. The addition of FM did not improve any grain quality outcomes at any of the sites. There were no yield responses with S application with any of the rotations but the S input resulted in more wheat protein from all sites (average 8%). The addition of S also gave similar increases in grain hardness and the chapatti score. The inclusion of micronutrients (boron, copper, iron, zinc and manganese) with the recommended NPK treatment did not increase the grain yield at any of the sites when compared with the recommended NPK treatment, and sometimes, but not consistently, gave small responses with protein, grain hardness and chapatti score. In concurrent experiments wheat growth and chapatti quality were compared in zero till and conventionally sown systems, and with and without S fertilizer amendment. Here too there were no grain yield responses to S, and the protein, grain hardness and chapatti score were increased with S addition. Grain yields with zero till and conventional wheat were similar in the rice-wheat system and zero till sowing resulted in small increases in yield at all of the non-rice sites. The grain from the zero till treatments had higher protein (1-3%), grain hardness (3-10%) and chapatti score from all 4 rotations. Zero till has substantial adoption in the rice-wheat districts of Haryana but little farmer awareness and adoption in the areas where the other rotations are used. The data given here show that with zero tillage and an integrated practice of nutrient management farmers in Haryana can maintain grain yields of wheat whilst improving quality outcomes.  相似文献   

13.
Wheat proteins are characterized by their excellent contribution to technological and baking properties. However, wheat proteins, especially gluten and amylase-trypsin inhibitors (ATIs), are also known to be responsible for a broad range of intolerances and allergies. In order to evaluate the impact of genetic variability on the composition of these functional but immunogenic protein types, a set of different Triticum species, including common wheat, durum, spelt, emmer and einkorn, was examined regarding ATI and gluten concentrations by RP-HPLC. Additionally, inhibition towards trypsin was determined by an enzymatic assay. Based on the results, none of the investigated wheat species can be considered to be less ‘immunogenic’. Nevertheless, due to the large variability of ATI and gluten amounts among different genotypes, the selection of less-immunoreactive wheat varieties for individuals that suffer from wheat related diseases (WRDs) might be possible. The impact of breeding was assessed for different varieties of common wheat from different breeding periods. Results revealed significant improvement of technologically valuable parameters such as the amount of high molecular weight (HMW) glutenins and the gliadin to glutenin ratio, but no increase in immunogenic proteins.  相似文献   

14.
The effects of applying nitrogen (30 or 40 kg N/ha) to wheat crops at and after anthesis, after 200 kg N/ha had already been applied to the soil during stem extension, were studied in field experiments comprising complete factorial combinations of different cultivars, fungicide applications and nitrogen treatments. Actual recoveries of late-season fertilizer nitrogen (LSFN), as indicated by 15N studies, interacted with cultivar and fungicide treatment, and depended on nitrogen source (urea applied as a solution to the foliage, or as ammonium nitrate applied to the soil) and year. These interactions, however, were not reflected in apparent fertilizer recoveries ((N in grain with LSFN − N in grain without LSFN)/N applied as LSFN), or in the crude protein concentration. Apparent fertilizer recovery was always lower than actual recoveries, and declined during grain filling. Fertilizer treatments with higher actual fertilizer recoveries were associated with lower net remobilisation of non-LSFN (net remobilised N = N in above ground crop at anthesis − N in non-grain, above ground crop at harvest). LSFN also increased mineral nitrogen in the soil at harvest even when applied as a solution to the foliage. These effects are discussed in relation to potential grain N demand.  相似文献   

15.
Eight field experiments were conducted at four sites in the UK in 2003 and 2004 to investigate the effects of sulphur (S) application on yield and malting quality of barley. Significant yield responses to S additions were obtained in five out of the eight experiments, with yield increases ranging from 0.2 to 1.2 t/ha (4.7–22.5%). At the two most S-deficient sites, S application significantly increased malt diastatic power, alpha-amylase activity, friability and homogeneity, and decreased (1→3,1→4)-β-glucan concentration in the wort, indicating an improved endosperm modification during malting. Sulphur applications also significantly increased the concentration of S-methylmethionine (the precursor of dimethylsulphide) in kilned malt, which could impact on beer flavour. When the supply of N was limiting, S applications decreased grain N concentration due to a dilution effect as a result of increased grain yield. In some cases, S applications resulted in decreased grain size. At sites non-deficient or marginally deficient in S, applications of S had little effect on grain or malting quality parameters. The need to maintain an adequate S supply to barley for both yield and malting quality was demonstrated.  相似文献   

16.
The effect of low levels of nitrogen, phosphorus and a combination of the two on the distribution of polymeric and monomeric proteins in two high quality spring bread wheat cultivars was investigated for two consecutive seasons. Size exclusion-high performance liquid chromatography (SE-HPLC) was used to determine the quantity and relationships of monomeric and polymeric proteins, and their relationship with flour protein content (FPC) and SDS sedimentation volume (SDSS). The low nitrogen and combined low nitrogen and low phosphorus treatments had a much larger effect on the protein fractions than the low phosphorus treatment alone. The SDS-soluble large monomeric protein fraction and the percentage SDS-insoluble monomeric proteins, were significantly increased under low nitrogen and a combination of low nitrogen and low phosphorus treatments. The percentage SDS-insoluble large and total polymeric proteins was significantly reduced under low nitrogen and a combination of low nitrogen and phosphorus treatments. The SDS-soluble and -insoluble small polymeric proteins were significantly increased under both low nitrogen and a combination of low nitrogen and low phosphorus treatments. The low nitrogen treatment consistently caused the lowest FPC and SDSS values. Under low nitrogen conditions, there was a significant positive correlation between the SDS-soluble gliadins and SDSS, and FPC.  相似文献   

17.
This study was conducted to assess the role of increasing N supply in enrichment of whole grain and grain fractions, particularly the endosperm, with Zn and Fe in wheat. The endosperm is the most widely consumed part of wheat grain in many countries. Plants were grown in the greenhouse with different soil applications of N and Zn and with or without foliar Zn spray. Whole grain and grain fractions were analyzed for N, P, Zn and Fe. Increased N supply significantly enhanced the Zn and Fe concentrations in all grain fractions. In the case of high Zn supply, increasing N application enhanced the whole grain Zn concentration by up to 50% and the endosperm Zn by over 80%. Depending on foliar Zn supply, high N elevated the endosperm Fe concentration up to 100%. High N also generally decreased the P/Zn and P/Fe molar ratios in whole grain and endosperm. The results demonstrate that improved N nutrition, especially when combined with foliar Zn treatment, is effective in increasing Zn and Fe of the whole grain and particularly the endosperm fraction, at least in the greenhouse, and might be a promising strategy for tackling micronutrient deficiencies in countries where white flour is extensively consumed.  相似文献   

18.
A long-term (1999–2007) field experiment was conducted to investigate the effects of three nitrogen (N) fertilization rates (0, 130, and 300 kg N/ha) on micronutrient density in wheat grain and its milling fractions. At maturity, grains were harvested and fractionated into flour, shorts, and bran for micronutrient and N analysis. N fertilization increased iron (Fe), zinc (Zn), and copper (Cu) density in wheat grain compared to the control. Increase of N application rate from 130 to 300 kg N/ha, however, did not further increase the three micronutrient densities in grain. Micronutrient concentrations were usually highest in the bran and lowest in the flour. High N application increased Zn and Cu densities in all three milling fractions and increased Fe concentration in shorts and bran but not in flour. N application did not affect the manganese (Mn) concentration in grain. N fertilization changed the proportions of Fe and Cu in flour and bran but did not affect the distribution of Zn. Because N fertilization increased micronutrient accumulation in wheat grain, proper management of N fertilization has the potential to enhance the nutritional quality of this important food.  相似文献   

19.
Stem water-soluble carbohydrates (WSCs) are important plant traits influencing grain yields in wheat. However, the traits regulating WSCs storage, particularly under different nitrogen (N) levels are poorly addressed. This study investigated 35 morpho-physiological traits associated with the variation in WSC concentration (WSCc) in the main stem of eight wheat genotypes including two primitive genotypes under three N levels (0, 100, and 200 kg N ha−1). 28 traits were significantly, positively or negatively, correlated with the WSCc in all N levels, and 22 of them were consistent across N levels. Majority of the traits were positively correlated with WSCc suggesting that multiple traits regulate WSCc in wheat plants. However, few traits such as root:shoot ratio (RSR), stem nitrogen (SN), leaf nitrogen (LN), nitrogen per unit leaf area (NLA), total vegetative mass (VMASS), cellulose (CL), and hemicellulose (HC), were negatively correlated with WSCc. This suggests that plant N concentration was an important selective force driving WSCc in wheat. Indeed, a percent increase in leaf N concentration resulted in 28% lower WSCc. Direct selection estimated that higher VMASS, flag-leaf width (FLW), but lower RSR was adaptive and resulted in higher WSCc in low N level. In contrast, lower VMASS and FLW were adaptive and resulted in higher WSCc in high N level. Higher cellulose and hemicellulose were associated with lower WSCc suggesting that a reduced carbon flux to stem structural compounds may improve WSCc in wheat plants. Together, these results demonstrate that a specific suit of trait changes that evolve under N-specific selection increase main stem WSCc but the adaptive value of these changes varies among traits and N levels.  相似文献   

20.
Nutrient composition and protein quality of minor millets   总被引:1,自引:0,他引:1  
Nutrient composition of five minor millets produced and consumed in dry land regions and tribal areas of Andhra Pradesh, India, was evaluated. The millets analysed were Italian millet (Setaria Italica), French millet (Panicum miliaceum), Barnyard millet (Echinachloa colona), Kodo millet (Paspalum scrobiculatum) and little millet (Panicum miliare). The nutrients analysed were proximate principles, amino acids, fibre components, calcium, Phosphorus and Iron. Protein and energy were evaluated by true digestability (TD), biological value (BV), net protein utilization (NPU) and digestible energy (DE) in rats. The protein content was higher and lysine content lower, when compared to major millets. Dehusked millets had lower total dietary fibre (TDF) and tannin. The TD of protein ranged between 95.0 to 99.3, whereas the BV was between 48.3 and 56.5. All the millets were poor sources of calcium, phosphorus and iron, with the exception of french millet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号