首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
为了探索施用氰氨化钙(石灰氮)设施菜地土壤N2O和NH3的协同减排技术,本研究通过室内模拟试验,采用静态箱法和动态箱法测定了氰氨化钙(LN)、氰氨化钙+酸性生物炭(LN+MB)、氰氨化钙+中性生物炭(LN+WB)、氰氨化钙+碱性生物炭(LN+AB)4个处理N2O和NH3的排放量与排放特征。结果表明:与单施氰氨化钙相比,配施酸性和碱性生物炭使土壤N2O累积排放量分别降低了66.70%和55.45%。配施3种生物炭均使土壤NH3累积挥发量降低,降幅为7.26%~59.61%,另外提高土壤NO3--N含量8.05%~23.57%,降低土壤NH4+-N含量19.00%~43.12%。配施酸性生物炭对土壤N2O、NH3联合减排效果最佳,土壤N2O、NH3和GHG比单施氰氨化钙分别降低了66.7...  相似文献   

2.
以热带地区种植辣椒为研究对象,采用静态箱–气相色谱法,监测施用不同形态氮以及硝化抑制剂双氰胺(DCD)对菜地N2O排放和辣椒产量的影响。结果表明,菜地N2O排放通量变化范围为1.51~80.53μg·m-2·h-1,铵态氮肥(NH4)处理土壤N2O排放通量显著高于硝态氮肥(NO3)处理,NH4处理N2O排放最大峰值达80.53μg·m-2·h-1,NO3处理N2O最大峰值同比NH4处理降低了21.2%。与氮肥处理相比,配施DCD均显著降低了N2O累计排放量(P<0.05),分别降低为59%和49%,而铵态氮肥+双氰胺(NH4+D)处理和硝态氮肥+双氰胺(NO3+D)处理对N2O累计排放量差异...  相似文献   

3.
为研明不同水生植物对蟹塘NH3和N2O排放的影响,本研究设置蕹菜处理(IP)、常规伊乐藻处理(EL)和蕹菜+伊乐藻处理(E-I),定期观测NH3和N2O排放,以及水体NH+4-N和NO-3-N含量。结果表明,IP处理和E-I处理显著降低了NH3和N2O排放速率和累积排放量,与常规EL处理相比,IP和E-I处理NH3累积排放分别降低32.49%和18.99%,而IP和E-I处理N2O累积排放分别降低20.23%和29.51%。相关性分析表明,养殖水体NH+4-N和NO-3-N含量均是导致NH3和N2O排放的主要因素。研究建议在河蟹养殖过程中,通过蕹菜替代部分伊乐藻能有效降低蟹塘NH3  相似文献   

4.
  目的  研究长期氮沉降对森林土壤可利用氮的浓度和土壤N2O排放的影响,对于控制土壤温室气体排放、提高区域碳源汇评估的准确度等具有重要的意义。  方法  本文以温带森林土壤为研究对象,通过长期(11年)野外氮添加控制试验,采用静态箱/气相色谱法分析3种氮素添加水平(对照、低水平:50 kg/(hm2·a)、高水平:150 kg/(hm2·a))和3种氮素化学形态(硝态氮:NaNO3;铵态氮:(NH4)2SO4和混合态氮:NH4NO3)对温带人工林土壤N2O排放通量的影响。  结果  (1)氮素形态和氮添加水平引起土壤NH4+-N和NO3?-N的显著累积,且NO3?-N的累积效应远远高于NH4+-N;(2)不同水平和形态的氮添加均促进了N2O排放。低水平和高水平NaNO3、(NH4)2SO4、NH4NO3添加分别使土壤N2O年累积排放量增加了87.39%和146.79%、86.13%和74.91%、98.67%和50.50%。长期氮添加对土壤N2O排放的促进态势有所改变,高水平NH4+-N和NH4NO3对土壤N2O排放的促进效应低于低水平添加;(3)结合前期研究结果推测,硝化反应是温带人工林土壤N2O排放的主导过程,NH4+-N比NO3?-N转化为N2O的效率更高。  结论  本研究强调了长期野外监测的重要性,氮添加对土壤N2O排放的影响具有阶段性,如果试验时间短,氮添加对温带森林土壤N2O排放的促进效应可能会被高估。   相似文献   

5.
  目的  化肥施用导致土壤氧化亚氮(N2O)排放增加,加剧了全球气候变化。在干旱和降水分配不均地区,土壤含水量是影响土壤N2O排放的关键因子,施用保水剂(如聚丙烯酰胺)可能影响土壤N2O排放。本研究目的是探究氮(N)与磷(P)肥添加下施用聚丙烯酰胺对土壤N2O排放的影响。  方法  以油茶Camellia oleifera林土壤为研究对象,设置不同处理,包括不同肥料添加[N、P、N+P、不施肥(ck)],不同聚丙烯酰胺用量(C0:0 g·kg?1,C1:1.0 g·kg?1,C2:2.0 g·kg?1)以及两者交互处理,利用静态箱-气相色谱法测定油茶苗生长期内土壤N2O排放。  结果  ①施用聚丙烯酰胺显著提高了油茶林土壤含水量(P<0.05),且土壤含水量随保水剂施用量的增加而增加。与C0相比,C1和C2土壤的含水量分别增加47.1%和57.4%,但施用聚丙烯酰胺不会促进土壤N2O排放(F=2.75,P>0.05)。②施磷肥显著提高土壤N2O累积排放量(P<0.05),相较于ck增加13.3%。③与只添加聚丙烯酰胺的土壤相比,1.0 g·kg?1聚丙烯酰胺分别与N、P、N+P肥混施处理的土壤N2O排放通量分别显著增加56.0%、61.7%、40.7% (P<0.05);2.0 g·kg?1聚丙烯酰胺与P、N+P肥混施处理的土壤N2O排放通量分别显著增加38.7%、58.1% (P<0.05)。  结论  施用聚丙烯酰胺不仅能有效提高油茶土壤保水能力,而且还不会促进油茶土壤N2O排放,有利于发展高效节水林业和缓解全球气候变化。图5表1参35  相似文献   

6.
【目的】合理灌溉是设施生产控制N2O和NO排放,提高氮肥利用率的有效措施。研究不同灌水下限设施土壤N2O和NO排放动态与土壤水分、无机氮和可溶性有机氮关系,分析N2O和NO排放特征及影响因素,以期为N2O、NO减排和设施土壤灌溉管理提供科学依据。【方法】基于连续7年的设施土壤不同灌溉下限的田间定位试验,以番茄为供试作物,设4个土壤水吸力处理,分别为25 kPa(W1)、35 kPa(W2)、45 kPa(W3)和55 kPa(W4)。采用密闭静态箱-气相色谱和氮氧化物分析仪法,分别对番茄生长季的N2O和NO进行田间原位同步观测。【结果】番茄生长季不同灌水下限处理土壤N2O和NO排放通量分别为 -34.46—1 671.78 μg N·m-2·h-1和6.83—269.89 μg N·m-2·h-1,二者排放峰值期同步且主要发生在施肥和灌溉后,各处理NO/N2O均小于1。土壤N2O和NO累积排放量分别为W2和W1处理最低(P <0.01),各处理N2O+NO总累积排放量表现为W4处理>W3处理>W1处理>W2处理。W2处理番茄产量较W1、W3和W4处理分别增加84%、32.4%和12%。单位产量N2O+NO排放量表现为W4处理最高(P <0.01),W2处理最低。各处理施肥和收获后土壤无机氮和可溶性有机氮含量的重复测量方差分析表明,除灌水下限和观测时间交互对亚硝态氮含量影响不显著外,灌水下限和观测时间及二者交互效应对土壤无机氮和可溶性有机氮均有极显著影响(P <0.01)。冗余分析和相关分析表明,NO2--N、NH4+-N和土壤孔隙含水量(WFPS)可分别解释设施土壤N2O和NO变异的55%、32.5%和20.7%,均是极显著影响不同灌溉下限N2O和NO排放的主要影响因素。【结论】综合考虑产量和N2O、NO减排效应,灌水下限35 kPa的W2处理为本试验最适宜的灌溉管理措施。  相似文献   

7.
为明确适宜氮肥用量配施硝化抑制剂对柴达木枸杞园土壤NH3挥发和N2O排放的影响,在柴达木地区枸杞园开展研究,共设置9个处理:N667、N534、N400、N267、N133、N0处理分别表示施用纯氮667、534、400、267、133、0 kg·hm-2,N400I2.00、N267I1.33、N133I0.67处理分别表示在N400、N267、N133处理基础上配施2-氯-6(三氯甲基)-吡啶(nitrapyrin)2.00、1.33、0.67 kg·hm-2,采用通气法和静态暗箱法采集NH3和NO2,连续流动分析仪和气相色谱仪测定气体含量。结果表明:NH3挥发速率与累积量均随施氮量的增加而增加,相同施氮量下配施硝化抑制剂对NH3挥发无显著影响。N667处理2019年及2020年的NH3挥发速率峰值分别为0.48 kg·hm-2·d-1和0.57 kg·hm-2·d-1,NH3挥发累积量分别为34.49 kg·hm-2和35.11 kg·hm-2,显著高于其他处理。两年相同施氮量处理下配施与未配施硝化抑制剂处理的NH3挥发累积量均无显著差异;N400I2.00、N267I1.33、N133I0.67处理较农民习惯施氮(N667)处理显著降低了N2O排放。2019年和2020年N667处理的N2O累积排放量较N400处理分别增加了43.10%、16.11%,N400I2.00、N267I1.33、N133I0.67处理的N2O累积排放量较N400、N267、N133处理降低了28.52%~41.37%。2019年和2020年N400I2.00处理的产量较N667处理显著提高了9.26%及6.67%,且净收益提高了9.80%、7.10%。研究表明,与农民习惯施氮量相比,减施氮肥且配施硝化抑制剂可显著降低NH3挥发和N2O排放,同时可提高枸杞产量与经济效益。施氮量为400 kg·hm-2且配施nitrapyrin 2.00 kg·hm-2为柴达木高肥力枸杞园较优的施氮组合。  相似文献   

8.
为探究在不同优化减氮条件下施用生物炭对双季稻土壤温室气体排放和水稻产量的影响,采用静态箱-气相色谱法监测水稻生长期间土壤CH4和N2O排放通量,测定土壤理化指标及水稻产量。试验设置5个处理:常规施氮(CF)、优化减氮15%(OF15%)、优化减氮15%+生物炭(OF15%+B)、优化减氮30%(OF30%)、优化减氮30%+生物炭(OF30%+B)。结果表明:与CF相比,各处理均降低了双季稻土壤CH4和N2O的累积排放量,降幅分别为9.59%~39.60%和20.12%~41.61%;其中OF30%+B与OF15%+B处理CH4的减排效果最佳,分别达39.60%与31.53%;OF30%+B处理N2O的减排效果最佳,达到41.61%,其次为OF30%和OF15%+B处理,分别达34.56%与28.14%。各处理均降低双季稻系统土壤温室气体产生的全球增温潜势,降幅为9.54%~39.27%;OF15%+B产量最高,与CF相比增加了2.83%,而OF30%与O...  相似文献   

9.
为准确估算果园N2O排放与NH3挥发量,合理选用监测方法,试验以河北苹果园、葡萄园为研究对象,开展了土壤N2O排放和NH3挥发监测方法的探索,并分析采样方式、吸收液种类对监测结果的影响。结果表明:施肥区与非施肥区N2O排放累积量具有显著性差异;滴灌管下不同位置N2O排放差异很小。土壤N2O排放速率在上午9:00前后测定的结果与日均排放速率差异最小。尺寸较大的方形静态箱对N2O排放速率测定结果更准确,且变异系数更低;土壤N2O排放速率与采样间隔时间呈负相关。间歇式通气法与磷酸甘油—双海绵通气法进行NH3挥发监测结果均较为准确;间歇式通气法使用H3BO3作为吸收液对NH3挥发量较大的监测结果良好,但对挥发量较低的情况误差较大;采用H2SO4吸收液时与磷酸甘油—双海绵...  相似文献   

10.
【目的】生物炭作为比表面积大、富含有多种营养元素的一种物质已被广泛应用于农业生产。弄清生物炭与化肥氮配合施用对稻田温室气体排放和氮肥利用率的综合影响,为合理使用生物炭提供科学依据。【方法】在武穴市花桥镇进行两年大田试验,设置4个处理,即不施氮肥(CK)、常规施氮(180 kg·hm -2)(IF)、常规施氮+10 t·hm -2生物炭(IF+C)、减氮30%+10 t·hm -2生物炭(RIF+C)。采用静态箱-气相色谱法对2018和2019年水稻生长季节稻田CH4和N2O排放通量进行监测,并测定水稻产量,探讨生物炭配施不同量无机氮对稻田CH4和N2O排放、水稻产量以及氮肥利用率的影响。【结果】(1)稻季CH4和N2O排放呈现明显的季节性变化规律。CH4排放峰值主要出现在分蘖期和齐穗期,N2O排放峰值主要出现在氮肥施用和排水后。2018和2019年稻季各处理CH4排放通量分别为0.01—48.97 mg·m -2·h -1和0.36—18.08 mg·m -2·h -1,N2O排放通量分别为-0.002—0.17 mg·m -2·h -1和0.01—0.28 mg·m -2·h -1。2018年各处理CH4和N2O的平均排放通量分别为6.17—7.16 mg·m -2·h -1和0.02—0.04 mg·m -2·h -1,2019年的分别为5.16—5.83 mg·m -2·h -1和0.05—0.08 mg·m -2·h -1。(2)与CK相比,无机氮肥的施用对CH4排放没有影响,但显著提高了N2O排放,增幅为32.6%—113.0%。与IF处理相比,生物炭与无机氮配施(IF+C、RIF+C)显著降低N2O排放,在2018年降幅为33.4%—43.1%,2019年为37.0%—39.5%,但对CH4排放的影响不显著,因此对全球增温潜势的影响不显著。生物炭与无机氮配施处理IF+C与RIF+C间CH4和N2O排放差异不显著。CH4排放是综合增温潜势(GWP)的主要贡献者,对GWP的贡献达84.4%—95.2%。(3)氮肥施用显著提高水稻产量,增幅达4.0%—6.0%。与IF处理相比,生物炭处理(IF+C、RIF+C)显著增加水稻产量,增幅达9.9%—11.9%。生物炭与无机氮配施处理IF+C与RIF+C间水稻产量差异不显著。与IF处理相比,IF+C、RIF+C处理氮肥利用率显著增加了7.7%—8.1%,且RIF+C的氮肥偏生产力两年分别增加了57.1%、52.3%。【结论】减氮30%配施生物炭能有效地降低稻田N2O排放、增加水稻产量、提高氮肥利用率,是一项可持续的农艺措施。但生物炭对稻田温室气体减排的效应还要进一步研究探讨。  相似文献   

11.
添加玉米秸秆及其生物质炭对砖红壤N2O排放的影响   总被引:5,自引:2,他引:3  
为比较秸秆和生物质炭对土壤氧化亚氮排放的影响,利用室内培养试验研究生物质炭、秸秆添加对土壤性质、硝化作用及N_2O排放的影响。试验设生物质炭、秸秆和空白3个处理,试验培养条件为30℃和75%田间持水量。结果表明,添加秸秆和生物质炭显著提高土壤pH、有机碳和速效K含量,其中秸秆对土壤pH的增加作用更为突出。与对照(1 604.82±168.93μgN_2O-N·kg~(-1))相比,添加秸秆和生物质炭减少N_2O排放量分别为58.0%和65.6%,但二者减排机理不同;秸秆对N_2O的减排因生物的氮固定,降低了硝化反应底物的有效性,生物质炭对N_2O减排可能源于硝化过程中较低的N_2O产生比例。由于生物质炭显著促进土壤硝化速率,而产生较多的NO_3~-,使得热带地区砖红壤硝态氮的淋失风险增大。  相似文献   

12.
以我国华北平原冬小麦-夏玉米轮作农田为研究对象,在常规施肥的情况下,研究了4种不同剂量棉花秸秆生物质炭[CK、C1(2.25 t/hm2生物质炭)、C2(4.5 t/hm2生物质炭)、C3(9.0 t/hm2生物质炭)]对土壤理化性质及温室气体(CH4、N2O)通量的影响,结合作物产量评估了不同处理对全球温室效应和温室气体强度的影响。结果表明:添加生物质炭不能显著影响土壤CH4的累积排放量。在夏玉米季,仅C2和C3处理可以显著降低土壤N2O累积排放量,分别为37.19%和48.58%;在冬小麦季,添加生物质炭处理均可以显著降低土壤N2O的排放,达24.26%~48.02%。路径分析结果表明,土壤NH4+-N含量是土壤N2O排放通量的主要影响因子。在夏玉米季,C2和C3处理可以显著增加玉米产量,分别达9.46%和10.99%;在冬小麦季,仅C3处理可以显著增加小麦产量,达7.13%。添加4.5 t/hm2和9 t/hm2的生物质炭处理可以显著降低全球增温潜势和温室气体强度,而添加2.25 t/hm2的生物质炭处理仅在冬小麦季可以显著降低全球增温潜势和温室气体强度。综上所述,将棉花秸秆转化为生物质炭用于华北平原农田,既能增加作物产量,又能降低温室气体排放。  相似文献   

13.
施用生物炭对农田土壤N2O的减排效应   总被引:1,自引:1,他引:0  
生物炭作为一种土壤改良剂,在农田土壤氮素转化和温室气体减排等方面发挥着重要作用。本实验对不同施氮量的农田土壤添加生物炭,研究了其对N2O的减排潜力,为生物炭的固氮减排提供理论依据。于2015年6月18日至9月25日,利用盆栽实验研究了施用生物炭对农田土壤在不同氮肥用量下N2O排放的影响,实验共设4个处理:对照(CK)为不施氮处理、N1(200 kg·hm-2)、N2(400 kg·hm-2)和N3(600 kg·hm-2),各处理均施用土壤质量15%(W/W)的等量生物炭。结果表明,随着施氮量的增加,土壤N2O的累积排放量逐渐增加,N2和N3处理差异不显著,N2O排放系数逐渐降低,N1、N2、N3的排放系数分别为1.33%、1.27%、0.90%。Pearson相关分析表明,土壤孔隙含水量(WFPS)、土壤pH、土壤NO3--N和土壤微生物量氮(MBN)含量是影响N2O排放最主要的因素,其中土壤WFPS、土壤NO3--N和MBN含量与N2O排放通量之间呈极显著的正相关关系,土壤pH与N2O排放通量之间呈极显著负相关关系。生物炭的施用对农田土壤N2O具有巨大的减排潜力,并且生物炭与氮肥配施对土壤氮素有很好的固持作用。  相似文献   

14.
为探讨猪粪炭对茶园土壤的改良作用,通过35 d的好气密闭培养实验,研究猪粪炭施加对茶园土壤的硝化过程、温室气体N2O排放及土壤微生物酶活性的影响。结果表明:施加猪粪炭可以改善茶园土壤的酸性环境,显著提高土壤pH,使其更适宜茶树的生长;茶树是典型的喜铵厌硝植物,较高的硝铵比不利于茶树的生长,低、中量猪粪炭施加显著增加土壤pH,并未促进茶园土壤的硝化作用,且显著降低土壤N2O累积排放量高达41.2%~58.7%;高量猪粪炭施加显著增加茶园土壤净硝化速率,降低N2O累积排放量62.4%;猪粪炭施加显著提高土壤FDA水解酶、脲酶及脱氢酶活性。研究表明,适量猪粪炭的添加可以改善茶园土壤的酸碱环境和微生物活性,促进土壤的生物化学反应和土壤养分元素的循环,从而提高土壤养分的可利用性和土壤质量。  相似文献   

15.
我国设施菜地化肥施用量大,造成了大量的氧化亚氮(N_(2)O)和氨(NH_(3))损失。有机肥替代部分化肥是实现种养体系养分资源循环利用、减少化肥施用及其环境损失的有效措施。本研究以长沙近郊设施菜地为研究对象,利用小区试验种植奶白菜,试验共设不施肥处理(CK)、常规施肥处理(CON)、30%牛粪有机肥氮+70%化肥氮(CM)、30%鸡粪有机肥氮+70%化肥氮(NM)4个处理。采用静态箱法和密闭室间歇抽气法测定奶白菜生长季内的氧化亚氮排放和氨挥发,分析土壤N_(2)O排放和NH_(3)挥发动态,探讨等氮条件下有机无机肥配施对设施奶白菜的N_(2)O排放、NH_(3)挥发的减排效应及其影响因素。结果表明,与常规施肥相比,CM和NM处理的N_(2)O排放量分别减少了38.5%和33.1%,NH_(3)挥发的排放量分别减少了8.5%和19.4%,N_(2)O排放和NH_(3)挥发的总增温潜势分别降低了38.4%和33.0%。两种有机肥处理中,NM处理氨挥发显著低于CM处理,降幅达到11.9%。N_(2)O排放和NH_(3)挥发日通量与土壤温度分别呈极显著和显著正相关。常规施肥和NM处理的N_(2)O排放和NH_(3)挥发日通量与土壤铵态氮呈显著正相关,仅常规施肥处理的N_(2)O排放与土壤硝态氮呈极显著正相关。与常规施肥处理相比,CM和NM处理氮肥利用率分别提高26.8%和41.5%,且产量没有显著差异。因此,30%等氮有机肥+70%化肥在降低设施菜地N_(2)O排放和NH_(3)挥发的同时,还能保障设施蔬菜稳产,对减少蔬菜生产中的氮素损失具有重要意义。  相似文献   

16.
【目的】研究不同肥效期的控释肥对裸地和栽培作物土壤N_2O减排效果的影响,为进一步研究大田条件下的减排效果提供参考。【方法】通过盆栽试验,采用静态箱法和气相色谱分析技术,对比研究了1、3、5个月3个肥效期的植物油包膜控释肥(CRF 1Mon、CRF 3Mon和CRF 5Mon)及其核心复合肥分别在裸地和栽培香蕉土壤中的N_2O日排放通量和累积排放量。【结果】控释肥肥效期显著影响N_2O排放峰数量、最大排放峰通量、累积排放量及增温潜势。裸地时,CRF 1Mon、CRF 3Mon和CRF 5Mon排放峰数量分别为5、3和3个,出峰时间均为监测的中后期,最大排放峰通量为CRF 1MonCRF 3MonCRF 5Mon,CRF 3Mon和CRF 5Mon的累积排放量显著低于CRF1Mon;栽培香蕉时,仅CRF 1Mon和CRF 3Mon在监测前期有明显的N_2O排放峰,分别为1和3个,累积排放量为CRF 1MonCRF 3MonCRF 5Mon。施用肥效期长的控释肥对栽培香蕉土壤的N_2O减排效果优于裸地,裸地时累积排放量降幅为24.06%~52.81%,栽培香蕉土壤的累积排放量降幅为54.22%~75.34%。【结论】施用肥效期长的控释肥以及栽培作物是减少土壤N_2O排放、降低温室效应的有效措施。  相似文献   

17.
【目的】研究4种常规施肥模式下,添加生物炭后菜地土壤(褐潮土)CO2释放量、可溶性有机碳(DOC)和微生物生物量碳(SMBC)含量的变化,阐明添加生物炭对土壤CO2释放及不同形态碳的影响。【方法】采用室内恒温好氧培养-气象色谱测定方法,在不施肥(CK)、施有机肥(M)、施化肥(F)、有机无机混施(M+F)4种模式下投入2%和4%(质量比:生物炭/土壤干重)生物炭,定期采集气样和土样,分析土壤CO2的释放量及DOC、SMBC含量的动态变化,并分析DOC、SMBC含量变化与CO2释放量变化之间的相关关系。【结果】在F和M+F基础上,添加生物炭处理的土壤CO2释放速率在培养前期(2—8 d)显著高于未添加生物炭处理,而在10—60 d,二者CO2释放速率无显著差异;在CK和M基础上,添加与未添加生物炭处理在整个培养期间CO2释放速率没有显著差异。在CK基础上,添加2%和4%生物炭后CO2累积释放量分别为2 839和3 272 mg·kg-1,与CK(3 134 mg·kg-1)相比均无显著差异;而在F和M+F基础上,添加2%和4%生物炭后CO2累积释放量均显著提高,分别提高20.6%和19.8%、29.9%和40.7%。相关分析表明,未添加生物炭处理DOC、SMBC含量与CO2释放量之间无相关关系,而添加生物炭处理DOC、SMBC含量与CO2释放量极显著相关。【结论】将生物炭单独投入未施肥土壤中,土壤CO2排放量未出现明显增加或降低;在有机肥基础上添加生物炭,土壤CO2排放量随着生物炭投入量的增加而增加;在化肥、有机无机配施基础上添加生物炭后,土壤CO2排放增加比例最高。  相似文献   

18.
为探讨花生壳生物炭用于农田土壤改良的效果,采用盆栽试验,结合静态箱-气相色谱法研究了施用不同剂量(0、0.5%、1%、2%、4%)花生壳生物炭对红壤和潮土的理化性质及温室气体排放变化特征的影响。结果表明,施用生物炭对潮土温室气体排放的影响较大,且两种土壤表现出不同的排放特征。总体上,潮土N_2O累积排放量显著高于红壤,与单施氮肥处理相比,随生物炭添加量的增加,潮土N_2O累积排放量显著降低,降幅达6.5%~26.6%;红壤N_2O累积排放量则随生物炭添加量的增加呈上升趋势,与单施氮肥处理相比,红壤N_2O累积排放量增幅为14.7%~54.3%。与对照相比,施用生物炭显著增加潮土CO_2排放,其累积排放量增幅最大为25.9%;而对红壤CO_2累积排放量则没有显著影响。此外,在施用不同剂量生物炭处理下,两种土壤CH_4排放无规律性变化,CH_4排放累积量总体在0左右。与空白对照和单施氮肥处理相比,随生物炭添加量的增加,两种土壤的固碳量显著增加,潮土增加了57.1%~78.7%,红壤增加了11.2%~59.9%;同时随生物炭的施用,潮土温室气体排放强度显著提高68.0%~76.8%,而生物炭添加量对红壤的温室气体排放强度无显著影响。分析认为,对潮土施用生物炭通过改变土壤容重、有机碳、无机氮等养分含量,显著提高温室气体排放强度,抑制供试作物生长,增强其净综合温室效应;而对红壤添加生物炭则可促进作物生长,其温室气体排放强度无显著增加,提升土壤固碳量,具有较好的生态效应。  相似文献   

19.
生物质炭的固碳减排与合理施用   总被引:4,自引:1,他引:3  
近年来开展了大量短期一次性施用生物质炭对作物产量、土壤碳库和温室气体排放的研究。研究表明生物质炭能增加土壤碳库,但对作物产量、CH4和N2O排放的影响受生物质炭性质和土壤类型影响。生物质炭用在酸性土壤上比中性或碱性土壤上更能提高作物产量。草本或木本炭能减少N2O排放,但畜禽粪便炭不能减少N2O排放。在热带、亚热带地区生物质炭施用对N2O的减排作用小于温带地区。生物质炭的固碳减排效应除了受生物质炭类型、稳定性和施用区域影响外,还受制炭能耗和裂解气回收技术影响。在未来发展方向上,提出了亟需加强制炭技术、长期连续施用生物质炭效应和生物质炭性质与土壤类型互作研究。  相似文献   

20.
A lab-incubation experiment was conducted to investigate the effects of different forms of nitrogen application (ammonium, NH4+-N; nitrate, NO3--N; and amide-N, NH2-N) and different concentrations (40, 200 and 800 mg L-1) on N2O emission from the fluvo-aquic soil subjected to a freezing-thawing cycling. N2O emission sharply decreased at the start of soil freezing, and then showed a smooth line with soil freezing. In subject to soil thawing, N2O emission increased and reached a peak at the initial thawing stage. The average N2O emissions with addition of NH4+-N, NO3 -N and NH2-N are 119.01, 611.61 and 148. 22 ug m-2 h-1, respectively, at the concentration of 40 mg L-1; 205.28, 1 084.40 and 106.13 ug m2 h-1 at the concentration of 200 mg L-1; and 693.95, 1 820.02 and 49.74 ug m-2 h4 at the concentration of 800 mg L-1. The control is only 100.35 ug m-2 h-1. N2O emissions with addition of NH4+-N and NO3--N increased with increasing concentration, by ranging from 17.49 to 425.67% for NH4+-N, and from 563.38 to 1458.6% for NO3--N compared with control. There was a timelag for N2O emission to reach a steady state with an increase of concentration. In contrast, by adding NH2-N to soil, N2O emission decreased with increasing concentration. In sum, NH4+-N or NO3--N fertilizer incorporated in soil enhanced the cumulative N2O emission from the fluvo-aquic soil relative to amide-N. This study suggested that ammonium and nitrate concentration in overwintering water should be less than 200 and 40 mg L-1 in order to reduce N2O emissions from soil, regardless of amide-N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号