首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Tetrodotoxin is a potent low weight marine toxin found in warm waters, especially of the Indian and Pacific Oceans. Intoxications are usually linked to the consumption of the puffer fish, although TTX was already detected in several different edible taxa. Benthic organisms such as mollusks and echinoderms, with different feeding habits, were collected monthly along the Portuguese coast from the summer of 2009 until the end of 2010. The extraction and analysis techniques were optimized and TTX and some analogues were detected for the first time in two intertidal gastropod species-Gibbula umbilicalis and Monodonta lineata by LC-MS/MS and UPLC-MS/MS. Although the levels are low, these findings suggest that monitoring of TTX and analogues in North Atlantic species should be implemented so as to detect potentially new toxin vectors and seasonal and/or geographical patterns.  相似文献   

2.
To investigate the prevalence of lipophilic marine biotoxins in shellfish from the Chinese market, we used hydrophilic interaction liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure levels of okadaic acid (OA), azaspiracid (AZA1), pectenotoxin (PTX2), gymnodimine (GYM), and spirolide (SPX1). We collected and analyzed 291 shellfish samples from main production sites along a wide latitudinal transect along the Chinese coastline from December 2008 to December 2009. Results revealed a patchy distribution of the five toxins and highlighted the specific geographical distribution and seasonal and species variation of the putative toxigenic organisms. All five lipophilic marine biotoxins were found in shellfish samples. The highest concentrations of OA, AZA1, PTX2, GYM, and SPX1 were 37.3, 5.90, 16.4, 14.4, and 8.97 μg/kg, respectively. These values were much lower than the legislation limits for lipophilic shellfish toxins. However, the value might be significantly underestimated for the limited detection toxins. Also, these toxins were found in most coastal areas of China and were present in almost all seasons of the year. Thus, these five toxins represent a potential threat to human health. Consequently, studies should be conducted and measures should be taken to ensure the safety of the harvested product.  相似文献   

3.
Most of the shellfish fisheries of Mexico occur in the Gulf of California. In this region, known for its high primary productivity, blooms of diatoms and dinoflagellates are common, occurring mainly during upwelling events. Dinoflagellates that produce lipophilic toxins are present, where some outbreaks related to okadaic acid and dinophisystoxins have been recorded. From January 2015 to November 2017 samples of three species of wild bivalve mollusks were collected monthly in five sites in the southern region of Bahía de La Paz. Pooled tissue extracts were analyzed using LC-MS/MS to detect lipophilic toxins. Eighteen analogs of seven toxin groups, including cyclic imines were identified, fortunately individual toxins did not exceed regulatory levels and also the total toxin concentration for each bivalve species was lower than the maximum permitted level for human consumption. Interspecific differences in toxin number and concentration were observed in three species of bivalves even when the samples were collected at the same site. Okadaic acid was detected in low concentrations, while yessotoxins and gymnodimines had the highest concentrations in bivalve tissues. Although in low quantities, the presence of cyclic imines and other lipophilic toxins in bivalves from the southern Gulf of California was constant.  相似文献   

4.
Yessotoxin (YTX) is a marine polyether toxin that was first isolated in 1986 from the scallop Patinopecten yessoensis. Subsequently, it was reported that YTX is produced by the dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera. YTXs have been associated with diarrhetic shellfish poisoning (DSP) because they are often simultaneously extracted with DSP toxins, and give positive results when tested in the conventional mouse bioassay for DSP toxins. However, recent evidence suggests that YTXs should be excluded from the DSP toxins group, because unlike okadaic acid (OA) and dinophyisistoxin-1 (DTX-1), YTXs do not cause either diarrhea or inhibition of protein phosphatases. In spite of the increasing number of molecular studies focused on the toxicity of YTX, the precise mechanism of action is currently unknown. Since the discovery of YTX, almost forty new analogues isolated from both mussels and dinoflagellates have been characterized by NMR or LC-MS/MS techniques. These studies indicate a wide variability in the profile and the relative abundance of YTXs in both, bivalves and dinoflagellates. This review covers current knowledge on the origin, producer organisms and vectors, chemical structures, metabolism, biosynthetic origin, toxicological properties, potential risks to human health and advances in detection methods of YTXs.  相似文献   

5.
Prevalence and incidence of the marine toxins (paralytic, amnesic, and lipophilic toxins) including the so-called emerging toxins (these are, gymnodimines, pinnatoxins, or spirolides among others) have increased in recent years all over the world. Climate change, which is affecting the distribution of their producing phytoplankton species, is probably one of the main causes. Early detection of the toxins present in a particular area, and linking the toxins to their causative phytoplankton species are key tools to minimize the risk they pose for human consumers. The development of both types of studies requires fast and highly sensitive analytical methods. In the present work, we have developed a highly sensitive liquid chromatography-mass spectrometry methodology (LC-MS/MS), using a column with fused-core particle technology, for the determination of fourteen lipophilic toxins in a single run of 3.6 min. The performance of the method was evaluated for specificity, linearity, precision (repeatability and reproducibility) and accuracy by analysing spiked and naturally contaminated samples. The in-house validation was successful, and the limit of detection (LOD) and quantification (LOQ) for all the toxins were far below their regulatory action limits. The method is suitable to be considered in monitoring systems of bivalves for food control.  相似文献   

6.
The illness of three people in 2011 after their ingestion of mussels collected from Sequim Bay State Park, Washington State, USA, demonstrated the need to monitor diarrhetic shellfish toxins (DSTs) in Washington State for the protection of human health. Following these cases of diarrhetic shellfish poisoning, monitoring for DSTs in Washington State became formalized in 2012, guided by routine monitoring of Dinophysis species by the SoundToxins program in Puget Sound and the Olympic Region Harmful Algal Bloom (ORHAB) partnership on the outer Washington State coast. Here we show that the DSTs at concentrations above the guidance level of 16 μg okadaic acid (OA) + dinophysistoxins (DTXs)/100 g shellfish tissue were widespread in sentinel mussels throughout Puget Sound in summer 2012 and included harvest closures of California mussel, varnish clam, manila clam and Pacific oyster. Concentrations of toxins in Pacific oyster and manila clam were often at least half those measured in blue mussels at the same site. The primary toxin isomer in shellfish and plankton samples was dinophysistoxin-1 (DTX-1) with D. acuminata as the primary Dinophysis species. Other lipophilic toxins in shellfish were pectenotoxin-2 (PTX-2) and yessotoxin (YTX) with azaspiracid-2 (AZA-2) also measured in phytoplankton samples. Okadaic acid, azaspiracid-1 (AZA-1) and azaspiracid-3 (AZA-3) were all below the levels of detection by liquid chromatography tandem mass spectrometry (LC-MS/MS). A shellfish closure at Ruby Beach, Washington, was the first ever noted on the Washington State Pacific coast due to DSTs. The greater than average Fraser River flow during the summers of 2011 and 2012 may have provided an environment conducive to dinoflagellates and played a role in the prevalence of toxigenic Dinophysis in Puget Sound.  相似文献   

7.
A variety of microalgal species produce lipophilic toxins (LT) that are accumulated by filter-feeding bivalves. Their negative impacts on human health and shellfish exploitation are determined by toxic potential of the local strains and toxin biotransformations by exploited bivalve species. Chile has become, in a decade, the world’s major exporter of mussels (Mytilus chilensis) and scallops (Argopecten purpuratus) and has implemented toxin testing according to importing countries’ demands. Species of the Dinophysis acuminata complex and Protoceratium reticulatum are the most widespread and abundant LT producers in Chile. Dominant D. acuminata strains, notwithstanding, unlike most strains in Europe rich in okadaic acid (OA), produce only pectenotoxins, with no impact on human health. Dinophysis acuta, suspected to be the main cause of diarrhetic shellfish poisoning outbreaks, is found in the two southernmost regions of Chile, and has apparently shifted poleward. Mouse bioassay (MBA) is the official method to control shellfish safety for the national market. Positive results from mouse tests to mixtures of toxins and other compounds only toxic by intraperitoneal injection, including already deregulated toxins (PTXs), force unnecessary harvesting bans, and hinder progress in the identification of emerging toxins. Here, 50 years of LST events in Chile, and current knowledge of their sources, accumulation and effects, are reviewed. Improvements of monitoring practices are suggested, and strategies to face new challenges and answer the main questions are proposed.  相似文献   

8.
Lipophilic marine toxins pose a serious threat for consumers and an enormous economic problem for shellfish producers. Synergistic interaction among toxins may play an important role in the toxicity of shellfish and consequently in human intoxications. In order to study the toxic profile of molluscs, sampled during toxic episodes occurring in different locations in Galicia in 2014, shellfish were analyzed by liquid chromatography tandem mass spectrometry (LC–MS/MS), the official method for the detection of lipophilic toxins. The performance of this procedure was demonstrated to be fit for purpose and was validated in house following European guidelines. The vast majority of toxins present in shellfish belonged to the okadaic acid (OA) group and some samples from a particular area contained yessotoxin (YTX). Since these toxins occur very often with other lipophilic toxins, we evaluated the potential interactions among them. A human neuroblastoma cell line was used to study the possible synergies of OA with other lipophilic toxins. Results show that combination of OA with dinophysistoxin 2 (DTX2) or YTX enhances the toxicity triggered by OA, decreasing cell viability and cell proliferation, depending on the toxin concentration and incubation time. The effects of other lipophilic toxins as 13-desmethyl Spirolide C were also evaluated in vitro.  相似文献   

9.
The analysis of marine lipophilic toxins in shellfish products still represents a challenging task due to the complexity and diversity of the sample matrix. Liquid chromatography coupled with mass spectrometry (LC-MS) is the technique of choice for accurate quantitative measurements in complex samples. By combining unambiguous identification with the high selectivity of tandem MS, it provides the required high sensitivity and specificity. However, LC-MS is prone to matrix effects (ME) that need to be evaluated during the development and validation of methods. Furthermore, the large sample-to-sample variability, even between samples of the same species and geographic origin, needs a procedure to evaluate and control ME continuously. Here, we analyzed the toxins okadaic acid (OA), dinophysistoxins (DTX-1 and DTX-2), pectenotoxin (PTX-2), yessotoxin (YTX) and azaspiracid-1 (AZA-1). Samples were mussels (Mytilus galloprovincialis), both fresh and processed, and a toxin-free mussel reference material. We developed an accurate mass-extracted ion chromatogram (AM-XIC) based quantitation method using an Orbitrap instrument, evaluated the ME for different types and extracts of mussel samples, characterized the main compounds co-eluting with the targeted molecules and quantified toxins in samples by following a standard addition method (SAM). An AM-XIC based quantitation of lipophilic toxins in mussel samples using high resolution and accuracy full scan profiles (LC-HR-MS) is a good alternative to multi reaction monitoring (MRM) for instruments with HR capabilities. ME depend on the starting sample matrix and the sample preparation. ME are particularly strong for OA and related toxins, showing values below 50% for fresh mussel samples. Results for other toxins (AZA-1, YTX and PTX-2) are between 75% and 110%. ME in unknown matrices can be evaluated by comparing their full scan LC-HR-MS profiles with those of known samples with known ME. ME can be corrected by following SAM with AM-XIC quantitation if necessary.  相似文献   

10.
Diarrheic shellfish poisoning (DSP) is a recurrent gastrointestinal illness in Morocco, resulting from consumption of contaminated shellfish. In order to develop a rapid and reliable technique for toxins detection, we have compared the results obtained by a commercial immunoassay-“DSP-Check” kit” with those obtained by LC-MS. Both techniques are capable of detecting the toxins in the whole flesh extract which was subjected to prior alkaline hydrolysis in order to detect simultaneously the esterified and non esterified toxin forms. The LC-MS method was found to be able to detect a high level of okadaic acid (OA), low level of dinophysistoxin-2 (DTX2), and surprisingly, traces of azaspiracids 2 (AZA2) in mussels. This is the first report of a survey carried out for azaspiracid (AZP) contamination of shellfish harvested in the coastal areas of Morocco. The “DSP-Check” kit was found to detect quantitatively DSP toxins in all contaminated samples containing only OA, provided that the parent toxins were within the range of detection and was not in an ester form. A good correlation was observed between the two methods when appropriate dilutions were performed. The immunoassay kit appeared to be more sensitive, specific and faster than LC-MS for determination of DSP in total shellfish extract.  相似文献   

11.
With the move away from use of mouse bioassay (MBA) to test bivalve mollusc shellfish for paralytic shellfish poisoning (PSP) toxins, countries around the world are having to adopt non-animal-based alternatives that fulfil ethical and legal requirements. Various assays have been developed which have been subjected to single-laboratory and multi-laboratory validation studies, gaining acceptance as official methods of analysis and approval for use in some countries as official control testing methods. The majority of validation studies conducted to date do not, however, incorporate shellfish species sourced from Latin America. Consequently, this study sought to investigate the performance of five alternative PSP testing methods together with the MBA, comparing the PSP toxin data generated both qualitatively and quantitatively. The methods included a receptor binding assay (RBA), two liquid chromatography with fluorescence detection (LC-FLD) methods including both pre-column and post-column oxidation, liquid chromatography with tandem mass spectrometry (LC-MS/MS) and a commercial lateral flow assay (LFA) from Scotia. A total of three hundred and forty-nine shellfish samples from Argentina, Mexico, Chile and Uruguay were assessed. For the majority of samples, qualitative results compared well between methods. Good statistical correlations were demonstrated between the majority of quantitative results, with a notably excellent correlation between the current EU reference method using pre-column oxidation LC-FLD and LC-MS/MS. The LFA showed great potential for qualitative determination of PSP toxins, although the findings of high numbers of false-positive results and two false negatives highlighted that some caution is still needed when interpreting results. This study demonstrated that effective replacement methods are available for countries that no longer wish to use the MBA, but highlighted the importance of comparing toxin data from the replacement method using local shellfish species of concern before implementing new methods in official control testing programs.  相似文献   

12.
From June 2006 to January 2007 passive samplers (solid phase adsorbing toxin tracking, SPATT) were tested as a monitoring tool with weekly monitoring of phytoplankton and toxin content (liquid chromatography–mass spectrometry, LC-MS) in picked cells of Dinophysis and plankton concentrates. Successive blooms of Dinophysis acuminata, D. acuta and D. caudata in 2006 caused a long mussel harvesting closure (4.5 months) in the Galician Rías (NW Spain) and a record (up to 9246 ng·g resin-week−1) accumulation of toxins in SPATT discs. Best fit of a toxin accumulation model was between toxin accumulation in SPATT and the product of cell densities by a constant value, for each species of Dinophysis, of toxin content (average) in picked cells. Detection of Dinophysis populations provided earlier warning of oncoming diarrhetic shellfish poisoning (DSP) outbreaks than the SPATT, which at times overestimated the expected toxin levels in shellfish because: (i) SPATT accumulated toxins did not include biotransformation and depuration loss terms and (ii) accumulation of toxins not available to mussels continued for weeks after Dinophysis cells were undetectable and mussels were toxin-free. SPATT may be a valuable environmental monitoring and research tool for toxin dynamics, in particular in areas with no aquaculture, but does not provide a practical gain for early warning of DSP outbreaks.  相似文献   

13.
In the context of the French Phytoplankton and Phycotoxins Monitoring Network (REPHY) programme, shellfish samples were harvested from different locations where harmful algae blooms were known to have occurred. For all shellfish samples found positive by the mouse bioassay for diarrhetic shellfish poisoning (DSP) toxins, liquid chromatography (LC) coupled with mass spectrometry (MS) was used to search for the following lipophilic toxins: okadaic acid (OA), dinophysistoxins (DTXs), pectenotoxins (PTXs), azaspiracids (AZAs), yessotoxins (YTXs), spirolides (SPXs) and gymnodimines (GYMs). In order to investigate the presence of acyl-OAs and/or acyl-DTX-1,-2 (DTX-3), alkaline hydrolysis was performed on all samples, and LC/MS analyses were carried out on the samples before and after hydrolysis. The results revealed different lipophilic toxin profiles as a function of the shellfish sampling location. The primary finding was that all of the samples contained OA and acyl-OA. In addition, other lipophilic toxins were found in shellfish samples: DTX-2, acyl-DTX-2 and SPXs (SPX-A, SPX-desMeC) on the Atlantic coast (Southern Brittany, Arcachon), and pectenotoxins (PTX-2, PTX-2-seco-acid and 7-epi-PTX-2-seco-acid) on the Mediterranean coast (Thau lagoon, the island of Corsica). This paper reports on the first detection of PTX-2, SPX-A and their derivatives in French shellfish.  相似文献   

14.
During the summer of 2010, 31 species including fish, echinoderms, gastropods, crustaceans, cephalopods and sponges were sampled in the Bay of Villefranche on the French Mediterranean coast and screened for the presence of PLTX-group toxins using the haemolytic assay. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used for confirmatory purposes and to determine the toxin profile. The mean toxin concentration in the whole flesh of all sampled marine organisms, determined using the lower- (LB) and upper-bound (UB) approach was 4.3 and 5.1 µg·kg−1, respectively, with less than 1% of the results exceeding the European Food Safety Authority (EFSA) threshold of 30 µg·kg−1 and the highest values being reported for sea urchins (107.6 and 108.0 µg·kg−1). Toxins accumulated almost exclusively in the digestive tube of the tested species, with the exception of octopus, in which there were detectable toxin amounts in the remaining tissues (RT). The mean toxin concentration in the RT of the sampled organisms (fishes, echinoderms and cephalopods) was 0.7 and 1.7 µg·kg−1 (LB and UB, respectively), with a maximum value of 19.9 µg·kg−1 for octopus RT. The herbivorous and omnivorous organisms were the most contaminated species, indicating that diet influences the contamination process, and the LC-MS/MS revealed that ovatoxin-a was the only toxin detected.  相似文献   

15.
Venomics, the study of biological venoms, could potentially provide a new source of therapeutic compounds, yet information on the venoms from marine organisms, including cnidarians (sea anemones, corals, and jellyfish), is limited. This study identified the putative toxins of two species of jellyfish—edible jellyfish Rhopilema esculentum Kishinouye, 1891, also known as flame jellyfish, and Amuska jellyfish Sanderia malayensis Goette, 1886. Utilizing nano-flow liquid chromatography tandem mass spectrometry (nLC–MS/MS), 3000 proteins were identified from the nematocysts in each of the above two jellyfish species. Forty and fifty-one putative toxins were identified in R. esculentum and S. malayensis, respectively, which were further classified into eight toxin families according to their predicted functions. Amongst the identified putative toxins, hemostasis-impairing toxins and proteases were found to be the most dominant members (>60%). The present study demonstrates the first proteomes of nematocysts from two jellyfish species with economic and environmental importance, and expands the foundation and understanding of cnidarian toxins.  相似文献   

16.
Under the name of lipophilic marine toxins, there are included more than 1000 toxic secondary metabolites, produced by phytoplankton, with the common chemical property of lipophilicity. Due to toxicological effects and geographical distribution, in European legislation relevant compounds are regulated, and their determination is accomplished with the reference liquid chromatography-tandem mass spectrometry method. In this study a modified ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed for the identification and quantification of EU-regulated lipophilic toxins. The method optimization included a refinement of SPE-C18 clean-up, in order to reduce matrix interferences. Improved LC conditions and upgraded chromatographic ammonia-based gradient ensured the best separation of all analytes and, in particular, of the two structural isomers (OA and DTX2). Also, different MS parameters were tested, and confirmation criteria finally established. The validation studies confirmed that all parameters were satisfactory. The requirements for precision (RSD% < 11.8% for each compound), trueness (recoveries from 73 to 101%) and sensitivity (limits of quantification in the range 3–8 µg kg−1) were fulfilled. The matrix effect, ranging from −9 to 19%, allowed the use of a calibration curve in solvent (3–320 µg kg−1 in matrix) for quantification of real samples. Method relative uncertainty ranged from 12 to 20.3%. Additionally, a total of 1000 shellfish samples was analysed, providing a first preliminary surveillance study that may contribute to the knowledge of lipophilic marine toxins contamination. Increase in algae proliferation events and intoxication cases, EFSA suggestions for modification of maximum permitted levels and toxicity equivalency factors, and new studies of important toxic effects underline that implementation of reference methods still represents an important task for health and food safety laboratories.  相似文献   

17.
This study investigates the occurrence of diarrhetic shellfish toxins (DSTs) and their producing phytoplankton species in southern Brazil, as well as the potential for toxin accumulation in co-occurring mussels (Perna perna) and octopuses (Octopus vulgaris). During the spring in 2012 and 2013, cells of Dinophysis acuminata complex were always present, sometimes at relatively high abundances (max. 1143 cells L−1), likely the main source of okadaic acid (OA) in the plankton (max. 34 ng L−1). Dinophysis caudata occurred at lower cell densities in 2013 when the lipophilic toxins pectenotoxin-2 (PTX-2) and PTX-2 seco acid were detected in plankton and mussel samples. Here, we report for the first time the accumulation of DSTs in octopuses, probably linked to the consumption of contaminated bivalves. Perna perna mussels were consistently contaminated with different DSTs (max. 42 µg kg−1), and all octopuses analyzed (n = 5) accumulated OA in different organs/tissues: digestive glands (DGs) > arms > gills > kidneys > stomach + intestine. Additionally, similar concentrations of 7-O-palmytoyl OA and 7-O-palmytoly dinophysistoxin-1 (DTX-1) were frequently detected in the hepatopancreas of P. perna and DGs of O. vulgaris. Therefore, octopuses can be considered a potential vector of DSTs to both humans and top predators such as marine mammals.  相似文献   

18.
The illness of three people due to diarrhetic shellfish poisoning (DSP) following their ingestion of recreationally harvested mussels from Sequim Bay State Park in the summer of 2011, resulted in intensified monitoring for diarrhetic shellfish toxins (DSTs) in Washington State. Rapid testing at remote sites was proposed as a means to provide early warning of DST events in order to protect human health and allow growers to test “pre-harvest” shellfish samples, thereby preventing harvest of toxic product that would later be destroyed or recalled. Tissue homogenates from several shellfish species collected from two sites in Sequim Bay, WA in the summer 2012, as well as other sites throughout Puget Sound, were analyzed using three rapid screening methods: a lateral flow antibody-based test strip (Jellett Rapid Test), an enzyme-linked immunosorbent assay (ELISA) and a protein phosphatase 2A inhibition assay (PP2A). The results were compared to the standard regulatory method of liquid chromatography coupled with tandem mass spectroscopy (LC-MS/MS). The Jellett Rapid Test for DSP gave an unacceptable number of false negatives due to incomplete extraction of DSTs using the manufacturer’s recommended method while the ELISA antibody had low cross-reactivity with dinophysistoxin-1, the major toxin isomer in shellfish from the region. The PP2A test showed the greatest promise as a screening tool for Washington State shellfish harvesters.  相似文献   

19.
Okadaic acid (OA) is a marine biotoxin associated with diarrhetic shellfish poisoning (DSP), posing some threat to human beings. The oral toxicity of OA is complex, and the mechanism of toxicity is not clear. The interaction between OA and gut microbiota may provide a reasonable explanation for the complex toxicity of OA. Due to the complex environment in vivo, an in vitro study may be better for the interactions between OA and gut microbiome. Here, we conducted an in vitro fermentation experiment of gut bacteria in the presence of 0–1000 nM OA. The remolding ability of OA on bacterial composition was investigated by 16S rDNA sequencing, and differential metabolites in fermentation system with different concentration of OA was detected by LC-MS/MS. We found that OA inhibited some specific bacterial genera but promoted others. In addition, eight possible metabolites of OA, including dinophysistoxin-2 (DTX-2), were detected in the fermentation system. The abundance of Faecalitalea was strongly correlated with the possible metabolites of OA, suggesting that Faecalitalea may be involved in the metabolism of OA in vitro. Our findings confirmed the direct interaction between OA and gut bacteria, which helps to reveal the metabolic process of OA and provide valuable evidence for elucidating the complex toxicity of OA.  相似文献   

20.
Okadaic acid (1) (OA) and its congeners are mainly responsible for diarrhetic shellfish poisoning (DSP) syndrome. The presence of several OA derivatives have already been confirmed in Prorocentrum and Dinophysis spp. In this paper, we report on the detection and identification of a new DSP toxin, the OA isomer 19-epi-okadaic acid (2) (19-epi-OA), isolated from cultures of Prorocentrum belizeanum, by determining its retention time (RT) and fragmentation pattern using liquid chromatography coupled with mass spectrometry (LC–MS/MS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号