首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In industrial areas, heavy metals may accumulate in forest soil organic horizons, affecting soil microorganisms and causing changes in the chemical composition of the accumulated organic matter. The objectives of this study were to test the ability of near-infrared spectroscopy (NIRS) to detect heavy metal effects on the chemical composition of forest soil O horizons and to test whether NIRS may be used to quantitatively determine total and exchangeable concentrations of Zn and Pb (Znt, Pbt, Znex, Pbex) and other chemical and microbial properties in forest soil O horizons polluted with heavy metals. The samples of O horizons (n = 79) were analyzed for organic C (Corg), total N and S (Nt, St), Znt, Pbt, Znex, Pbex, basal respiration (BR), microbial biomass (Cmic) and Cmic-to-Corg ratio. Spectra of the samples were recorded in the Vis-NIR range (400–2,500 nm). To detect heavy-metal-induced changes in the chemical composition of O horizons principal components (PC1–PC7) based on the spectral data were regressed against Znt + Pbt values. A modified partial least squares method was used to develop calibration models for prediction of various chemical and microbial properties of the samples from their spectra. Regression analysis revealed a significant relationship between PC3 and PC5 (r = −0.27 and −0.34, respectively) and Znt + Pbt values, indicating an effect of heavy metal pollution on the spectral properties of the O horizons and thus on their chemical composition. For quantitative estimations, the best calibration model was obtained for Corg-to-Nt ratio (r = 0.98). The models for Corg, Nt, and microbial properties were satisfactory but less accurate. NIRS failed to accurately predict St, Corg-to-St, Znt, Pbt, Znex, and Pbex.  相似文献   

2.
3.
4.
The objective of this work was to investigate the usefulness of near infrared reflectance spectroscopy (NIRS) in determining some C and N fractions of soils: labile compounds, microbial biomass, compounds derived from added 13C- and 15N-labelled straw. Soil samples were obtained from a previous experiment where soils were labelled by addition of 13C- and 15N-labelled wheat straw and incubated in coniferous forests in northern Sweden (64-60°N) and south France (43°N). The incubation lasted three years with 7-9 samplings at regular time steps and four replicates at each sampling (204 samples). Samples were scanned using a near infrared reflectance spectrophotometer (NIRSystem 6500). Calibrations were obtained by using a modified partial least squares regression technique with reference data on total C and N, 13C, 15N, control extract-C, -N, -13C and -15N, fumigated extract-C, -N, -13C and -15N, biomass-C, -N, -13C and -15N contents. Mathematical treatments of the absorbance data were first or second derivative with a gap from 4 to 10 nm. The standard error of calibration (SEC)-to-standard deviation of the reference measurements ratio was ≤0.2 for 10 models, namely total C and N, 13C, 15N, control extract-C, fumigated extract-C and -N, biomass-C and -N and biomass-15N models and therefore considered as very good. With an R2=0.955, the fumigated extract-15N model is also good. The standard error of performance calculated on the independent set of data and SEC were within 20% of each other for all the best equations except for the biomass-15N model. The ability of NIRS to detect 13C and 15N in total C and N and in the extracts is noteworthy, not because of its predictive function that is not really of interest in this case, but because it indicates that the spectra kept the signature of the properties of the organic matter derived from the straw even after two- or three-year decomposition. The incorporation of the 13C in the biomass was less well predicted than that of the 15N. This could indicate that the biomass derived from the straw was characterised by a particular protein or amino acid composition compared to the total biomass that includes a large proportion of dormant micro-organisms. The predictive ability of NIRS for microbial biomass-C and -N is particularly interesting because the conventional analyses are time consuming. In addition, NIRS allows detecting analytical errors.  相似文献   

5.
6.
酸雨对土壤有机碳氮潜在矿化的影响   总被引:16,自引:0,他引:16  
Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control ofpH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg^-1 dry soil, net production of available N from 17.37 to 48.95 mg kg^-1 dry soil, and net production of NO3-N from 9.09 to 46.23 mg kg^-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P 〈 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.  相似文献   

7.
Farmyard manure (FYM) and fertilizer applications are important management practices used to improve nutrient status and organic matter in soils and thus to increase crop productivity and carbon (C) sequestration. However, the long-term effects of fertilization on C, nitrogen (N) and sulfur (S) associated with aggregates, especially on S are not fully understood. We investigated the effects of more than 80 years of FYM (medium level of 40 Mg ka−1 and high level of 60 Mg ka−1) and mineral fertilizer (NPKS and NK) on the concentrations and pools of C, N, and S and on their ratios in bulk soil, dry aggregates and water stable aggregates on an Aquic Eutrocryepts soil in South-eastern Norway. A high level of FYM and NPKS application increased the proportion of small dry aggregates (<0.6 mm) by 8%, compared with the control (without fertilizer). However, both medium and high level of FYM application increased the proportion of large water stable aggregates (>2 mm) compared with mineral fertilizer (NPKS and NK). The total C and N pools in bulk soils were also increased in FYM treatments but no such increase was seen with mineral fertilizer treatments. The increased total S pool was only found under high level of FYM application. Water stable macroaggregates (>2 and 1–2 mm) and microaggregates (<0.106 mm) contained higher concentrations of C, N and S than the other aggregate sizes, but due to their abundance, medium size water stable aggregates (0.5–1 mm) contained higher total pools of all three elements. High level of FYM application increased the C concentration in water stable aggregates >2, 0.5–1 and <0.106 mm, and increased the S concentration in most aggregates as compared with unfertilized soils. Higher C/N, C/S and N/S ratios were found both in large dry aggregates (>20 and 6–20 mm) and in the smallest aggregates (<0.6 mm) than in other aggregate sizes. In water stable aggregates, the C/N ratio generally increased with decreasing aggregate size. However, macroaggregates (>2 mm) showed higher N/S ratios than microaggregates (<0.106 mm). We can thus conclude, that long-term application of high amounts of FYM resulted in C, N and S accumulation in bulk soil, and C and S accumulation in most aggregates, but that the accumulation pattern was dependent on aggregate size and the element (C, N and S) considered.  相似文献   

8.
The objective of this research was to determine the effect of corn-soybean intercropping and nitrogen rates on crop biomass, nitrogen (N) and carbon (C) accumulation, and crop C:N ratio in upland red soil. Crop dry matter yields, nitrogen and carbon contents (including grain, straw and root) were measured. Compared with sole corn, corn dry matter yield and carbon accumulation decreased in intercropped soybean. Intercropping decreased the corn C:N ratio, whereas it increased soybean C:N ratio. Nitrogen application significantly increased corn yield, nitrogen and carbon accumulation, but reduced those of soybean. Nitrogen application decreased corn straw C:N ratio and increased soybean straw C:N ratio in most intercropping systems. In conclusion, intercropping and nitrogen rates affected the growth of corn and soybean, changed the allocations of nitrogen and carbon, and altered C:N ratios in different parts of the crops.  相似文献   

9.
According to the economy theory, plants should preferentially allocate photosynthate to acquire below-ground resources under elevated atmospheric carbon dioxide (eCO2) but decrease below-ground C allocation when nitrogen (N) is sufficient for plant growth. Arbuscular mycorrhizae (AM) represent a critical mechanism of below-ground nutrient acquisition for plants. The dynamics of arbuscular mycorrhizal fungi (AMF) could therefore reflect the response of plant C allocation under eCO2 and N addition. We examined the responses of glomalin-related soil protein (GRSP) to eCO2 (approximately 700 μmol mol−1 CO2) and/or N addition (100 kg N ha−1 yr−1 as NH4NO3) in a modeled subtropical forest to better understand its potential influence on soil C storage. We hypothesized that GRSP would increase under eCO2 and decrease under N addition. Furthermore, the positive effects of eCO2 on GRSP would be offset by extra N addition, and GRSP would remain unchanged under combined eCO2 and N addition. Our results showed that the mean concentrations of easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP) were 0.35 ± 0.05 and 0.72 ± 0.13 mg C cm−3, respectively, which accounted for 2.76 ± 0.53% and 5.67 ± 0.92% of soil organic carbon (SOC) in the 0–10 cm soil layer. Elevated CO2 significantly increased T-GRSP by 35.02% but decreased EE-GRSP by 5.09% in the top 10 cm soil layer. The opposite responses of T-GRSP and EE-GRSP to eCO2 might result from an unchanged photosynthate investment to AMF with possible changes in their decomposition rates. The effect of N on GRSP was contrary to our hypothesis, i.e., there was a 1.72%–48.49% increase in T-GRSP and a slightly increase in EE-GRSP. Both EE-GRSP and T-GRSP concentrations increased under the combination of eCO2 and N addition, which was inconsistent with our hypothesis. The significant increase of EE-GRSP under the combination of eCO2 and N addition was partly caused by more rapid plant growth and reduced microbial diversity, and the marginal increase of T-GRSP indicated that the interaction between eCO2 and N addition offset their independent effects. In addition, the relatively higher accumulation ratios of GRSP (22.6 ± 13.6%) compared with SOC (15.9 ± 9.4%) indicated that more rapid GRSP deposition in the soil might accelerate SOC accumulation under eCO2 and N addition. Our results will improve the understanding of the functioning of GRSP in soil C sequestration under global environmental change scenarios.  相似文献   

10.
Due to high nitrogen deposition in central Europe, the C : N ratio of litter and the forest floor has narrowed in the past. This may cause changes in the chemical composition of the soil organic matter. Here we investigate the composition of organic matter in Oh and A horizons of 15 Norway spruce soils with a wide range of C : N ratios. Samples are analyzed with solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy, along with chemolytic analyses of lignin, polysaccharides, and amino acid‐N. The data are investigated for functional relationships between C, N contents and C : N ratios by structural analysis. With increasing N content, the concentration of lignin decreases in the Oh horizons, but increases in the A horizons. A negative effect of N on lignin degradation is observed in the mineral soil, but not in the humus layer. In the A horizons non‐phenolic aromatic C compounds accumulate, especially at low N values. At high N levels, N is preferentially incorporated into the amino acid fraction and only to a smaller extent into the non‐hydrolyzable N fraction. High total N concentrations are associated with a higher relative contribution of organic matter of microbial origin.  相似文献   

11.
Soil carbon (C) mineralization rate is a key indicator of soil functional capacity but it is time consuming to measure using conventional laboratory incubation methods. Recent studies have demonstrated the ability of visible-near infrared spectroscopy (NIRS) for rapid non-destructive determination of soil organic carbon (SOC) and nitrogen (N) concentration. We investigated whether NIRS (350-2500 nm) can predict C mineralization rates in physically fractionated soil aggregates (bulk soil and 6 size fractions, n=108) and free organic matter (2 size fractions, n=27) in aerobically incubated samples from a clayey soil (Ferralsol) and a sandy soil (Arenosol). Incubation reference values were calibrated to first derivative reflectance spectra using partial least-squares regression. Prediction accuracy was assessed by comparing laboratory reference values with NIRS values predicted using full hold-out-one cross-validation. Cross-validated prediction for C respired (500 days) in soil aggregate fractions had an R2 of 0.82 while that of C mineralized (300 days) in organic matter fractions was 0.71. Major soil aggregate fractions could be perfectly spectrally discriminated using a 50% random holdout validation sample. NIRS is a promising technique for rapid characterization of potential C mineralization in soils and aggregate fractions. Further work should test the robustness of NIRS prediction of mineralization rates of aggregate fractions across a wide range of soils and spectral mixture models for predicting mass fractions of aggregate size classes.  相似文献   

12.
Soil organic carbon and nitrogen are key elements of sustainable agriculture. Converting forest land and grassland to arable land is known to decrease the content of soil organic carbon (SOC), whereas converting land under annual crops into perennial grasslands has the potential to increase organic C and N sequestration, an assumption tested in this study. Compared to the levels in reed meadows, SOC and total nitrogen (TN) stocks in the top layer of 2489 Mg soil ha−1 (about 0–15 cm depth) significantly increased 3 years after the conversion, despite a slight decrease numerically in the first year following the conversion. And the mass of light fraction organic carbon (LFOC), total extractable carbon (TEC), humic acid carbon (HAC), and fulvic acid carbon (FAC) stocks all decreased significantly in the first year in the top layer but recovered after 3 years. In the deeper layer of 2549 Mg soil ha−1 (about 15–30 cm depth), however, the levels of SOC and heavy fraction organic carbon (HFOC) stocks began increasing from the first year itself. During the period of 1–10 years after the conversion, the degree of humification rate (HR) for the deeper layer were consistent, averaging 30%, whereas the same parameters in the top layer stabilized after 3 years at 33%. After 10 years of conversion, the soil recorded higher levels of SOC and TN stocks, used as indicators in this study, than those that had prevailed in the reed meadows, demonstrating the positive combined effects of the conversion on the retention of atmospheric C-CO2 in the soil. This study suggests that proper management of alfalfa fields can maintain or even improve chemical and physical quality of converted reed meadows soils.  相似文献   

13.
The soil tillage system affects incorporation of crop residues and may influence organic matter dynamics. A study was carried out in five 15–20 year old tillage experiments on soils with a clay content ranging from 72 to 521 g kg−1. The main objective was to quantify the influence of tillage depth on total content of soil organic carbon and its distribution by depth. Some soil physical properties were also determined. The experiments were part of a series of field experiments all over Sweden with the objective of producing a basis to advise farmers on optimal depths and methods of primary tillage under various conditions. Before the experimental period, all sites had been mouldboard ploughed annually for many years to a depth of 23–25 cm. Treatments included primary tillage to 24–29 cm depth by mouldboard plough (deep tillage) and to 12–15 cm by field cultivator or mouldboard plough (shallow tillage). Dry bulk density, degree of compactness and penetration resistance profiles clearly reflected the depth of primary tillage and substantially increased below that depth. Compared to deep tillage, shallow tillage increased the concentration of organic carbon in the surface layer but decreased it in deeper layers. Total quantity of soil organic carbon and carbon–nitrogen ratio were unaffected by the tillage depth. Thus, a reduction of the tillage depth from about 25 cm to half of that depth would appear to have no significant effect on the global carbon cycle.  相似文献   

14.
Soils from 38 German forest sites, dominated by beech trees (Fagus sylvatica L.) were sampled to a depth of about 10 cm after careful removal of overlying organic layers. Microbial biomass N and C were measured by fumigation-extraction. The pH of the soils varied between 3.5 and 8.3, covering a wide range of cation exchange capacity, organic C, total N, and soil C:N values. Maximum biomass C and biomass N contents were 2116 g C m-2 and 347 g N m-2, while minimum contents were 317 and 30 g m-2, respectively. Microbial biomass N and C were closely correlated. Large variations in microbial biomass C:N ratios were observed (between 5.4 and 17.3, mean 7.7), indicating that no simple relationship exists between these two parameters. The frequency distribution of the parameters for C and N availability to the microflora divided the soils into two subgroups (with the exception of one soil): (1) microbial: organic C>12 mg g-1, microbial:total N>28 mg g-1 (n=23), a group with high C and N availability, and (2) microbial:organic C12 mg g-1, microbial:total N28 mg g-1 (n=14), a group with low C and N availability. With the exception of a periodically waterlogged soil, the pH of all soils belonging to subgroup 2 was below 5.0 and the soil C:N ratios were comparatively high. Within these two subgroups no significant correlation between the microbial C:N ratio and soil pH or any other parameter measured was found. The data suggest that above a certain threshold (pH 5.0) microbial C:N values vary within a very small range over a wide range of pH values. Below this threshold, in contrast, the range of microbial C:N values becomes very large.  相似文献   

15.
Summary Extraction of synthetic amino acids dissolved in water by means of electro-ultrafiltration (EUF) showed average recovery rates of about 75%. Higher losses were obtained, particularly with cysteine, methionine and NH4 4; the latter, probably being deprotonated at the cathode, may be lost in form of NH3. The EUF extracts of three arable and two forest soils were investigated for their N compounds. In the arable soils only about 3% of the total organic N extracted by EUF was free amino acids; about 23%–55% consisted of amino N (hydrolysable N) and the rest was non-hydrolysable N. The two forest soils contained higher amounts of EUF-extractable organic N compared with the arable soils. In the two forest soils the content of free amino-acid N amounted to 8% and 11% of the EUF organic N, and the proportion of hydrolysable N from total EUF-organic N was 41% and 46%. It is suggested that the amino-acid N and the hydrolysable N can be easily mineralized.  相似文献   

16.
Soluble organic N and microbial N pools in terrestrial ecosystems have been less studied than those of inorganic N. Therefore, cross-system variation in their pool sizes and seasonal dynamics, both absolute and relative to inorganic N pools, needs to be quantified so that their ecological importance in different ecosystems can be evaluated. We measured extractable soil organic N (ESON), microbial biomass N (MBN), and the net production rates of ESON in red oak-dominated remnant forests, along an urban-rural gradient in the New York City metropolitan area. We were interested in (1) determining the seasonal dynamics of ESON and MBN, and (2) examining whether the contrasts in land use (urban, suburban, rural) surrounding these forest remnants were associated with different amounts of ESON and MBN. This field-based study was conducted continuously for 16 months. Yearly average ESON concentrations ranged from 60 to 140 mg kg−1 soil organic matter (SOM), 3-4 times those of inorganic N, and average MBN ranged from 600 to 1100 mg kg−1 SOM. There was a considerable MBN increase in spring in all plots across the gradient. The average increase expressed on an areal basis (to a depth of 7.5 cm) ranged from 1.75 to 4.19 g N m−2. The N incorporated into the microbial biomass in spring was gradually released later in the growing season (the mean MBN decrease ranged from 1.11 to 3.82 g N m−2). The spring MBN increase could be an important retention mechanism for conserving soil inorganic N when plant N uptake may be low. The amplitude in the seasonal dynamics of ESON was far less than that of inorganic N, as was that of net ESON production rates when compared to net N mineralization. These suggest a closer coupling of plant N uptake with inorganic N, much more than with ESON. Both ESON and MBN were significantly higher in rural soils than in urban soils, and both concentrations were positively correlated with SOM content. The variation in ESON, MBN, or SOM associated with this urbanization gradient suggests that the form of N exported, the plant N budget and soil N retention mechanisms may be differentially affected by urban, suburban and rural land uses.  相似文献   

17.
浙江南部亚热带森林土壤植硅体碳的研究   总被引:1,自引:0,他引:1  
植硅体封存有机碳(Phytolith-occluded organic carbon,Phyt OC)是一种稳定的有机碳形态。它由植物自身硅化作用产生,在植物死亡或凋落后归还于土壤,从而影响森林生态系统稳定性碳库的储量。本文以浙江庆元县5种不同亚热带典型森林立地土壤为研究对象,利用不同土层深度(0~10 cm、10~30 cm、30~60 cm和60~100 cm)土壤样品,分析土壤植硅体含量和植硅体碳含量,并估算土壤中植硅体碳储量。结果表明,毛竹林、杉木林、针阔混交林、阔叶林和马尾松林土壤植硅体含量(土壤剖面平均值)变化范围在8.14~19.74 g kg-1,其中毛竹林土壤植硅体含量最高。而植硅体中Phyt OC平均含量最高的为马尾松林(24.31 g kg-1),最低的为针阔混交林(13.06 g kg-1)。土壤Phyt OC/TOC比值随土层深度增加而急剧增加。统计分析表明,不同林分下土壤硅含量与土壤植硅体含量呈极显著相关关系(p0.01),与土壤Phyt OC含量之间呈显著的正相关关系(p0.05)。我国亚热带毛竹林、杉木林、马尾松林、阔叶林和针阔混交林1 m土体Phyt OC总储量分别为1.988×107、4.025×107、2.575×107、2.542×107和0.340×107 t。  相似文献   

18.
Soil samples were taken from an Ermans birch (Betula ermanii)-dark coniferous forest (Picea jezoensis and Abies nephrolepis) ecotone growing on volcanic ejecta in the northern slope of Changbai Mountains of Northeast China, to compare soil carbon (C) and nitrogen (N) transformations in the two forests. The soil type is Umbri-Gelic Cambosols in Chinese Soil Taxonomy. Soil samples were incubated aerobically at 20℃ and field capacity of 700 g kg-1 over a period of 27 weeks. The amount of soil microbial biomass and net N mineralization were higher in the Ermans birch than the dark coniferous forest (P < 0.05), whereas the cumulative C mineralization (as CO2 emission)in the dark coniferous forest exceeded that in the Ermans birch (P < 0.05). Release of the cumulative dissolved organic C and dissolved organic N were greater in the Ermans birch than the dark coniferous forest (P < 0.05). The results suggested that differences of forest types could result in considerable change in soil C and N transformations.  相似文献   

19.
ABSTRACT

In some regions of Italy, low-intensity farming systems, together with variable climate conditions, have lowered soil organic carbon (SOC) content and soil quality attributes. This work aims to investigate on some aspects of (1) total organic carbon (TOC) prediction using Vis-NIR reflectance spectroscopy in combination with partial least squares regression (PLSR); (2) the most appropriate pre-processing techniques of Vis-NIR absorbance spectra; (3) the composition of organic carbon using variable importance of prediction (VIP). The study area was an olive grove, located at Montecorvino Rovella (Salerno, southwestern Italy), characterized by a calcaric soil (Leptic Calcisols) and (Luvic Phaeozem), with a low content of TOC (mean 2.03 g kg?1), caused by a low-intensity farming. Results of univariate PLSR analyses showed a good agreement between measured and predicted values both for TOC (R2: 0.66) and total carbonate content (R2: 0.93), when pH, electrical conductivity (EC) and absorbance spectra were used as predictors. The best results were obtained using as pre-treatments of the spectral data: 1) standard normal variate (SNV); 2) Savitzky-Golay algorithm; 3) first derivative. Variable Importance for Prediction (VIP) statistics showed to be a good tool to gain insights in TOC composition also when its content is low and influenced by carbonate.  相似文献   

20.
Total, extractable, and microbial C, N, and P, soil respiration, and the water stability of soil aggregates in the F-H layer and top 20 cm of soil of a New Zealand yellow-brown earth (Typic Dystrochrept) were compared under long-term indigenous native forest (Nothofagus truncata), exotic forest (Pinus radiata), unfertilized and fertilized grass/clover pastures, and gorse scrub (Ulex europaeus). Microbial biomass C ranged from 1100 kg ha-1 (exotic forest) to 1310kg ha-1 (gorse scrub), and comprised 1–2% of the organic C. Microbial N and P comprised 138–282 and 69–119 kg ha-1 respectively, with the highest values found under pasture. Microbial N and P comprised 1.8–7.0 and 4.9–18% of total N and P in the topsoils, and 1.8–4.4 and 23–32%, respectively, in the F-H material. Organic C and N were higher under gorse scrub than other vegetation. Total and extractable P were highest under fertilized pasture. Annual fluxes through the soil microbial biomass were estimated to be 36–85 kg N ha-1 and 18–36 kg P ha-1, sufficiently large to make a substantial contribution to plant requirements. Differences in macro-aggregate stability were generally small. The current status of this soil several years after the establishment of exotic forestry, pastoral farming, or subsequent reversion to scrubland is that, compared to levels under native forest, there has been no decline in soil and microbial C, N, and P contents or macro-aggregate stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号