首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
华北山前平原农田土壤硝态氮淋失与调控研究   总被引:11,自引:5,他引:6  
本文依托中国科学院栾城农业生态系统试验站小麦-玉米一年两熟长期定位试验, 应用土钻取土和土壤溶液取样器取水的方法, 研究了不同农田管理措施下土壤硝态氮的累积变化, 计算了不同氮肥处理通过根系吸收层的硝态氮淋失通量。结果表明, 小麦-玉米生长季土壤硝态氮累积量和淋失量随着施氮量的增加显著增加, 相同氮肥水平下增施磷、钾肥增加了作物的收获氮量, 施磷肥增加的作物收获氮量最高可达123kg·hm-2·a-1, 施钾肥增加的作物收获氮量最高为31 kg·hm-2·a-1。不同灌溉水平下0~400 cm 土体累积硝态氮随着灌溉量的增加而降低, 控制灌溉(小麦季不灌水, 玉米季灌溉1 水)、非充分灌溉(小麦季灌溉2~3 水, 玉米季按需灌溉)、充分灌溉(小麦季灌溉4~5 水, 玉米季按需灌溉)各处理剖面累积硝态氮量分别为1 698 kg·hm-2、1148 kg·hm-2 和961 kg·hm-2。与非充分灌溉和充分灌溉处理相比, 控制灌溉在100~200 cm 土层硝态氮累积量显著高于其他层次, 2003~2005 年间控制灌溉剖面增加的硝态氮量占施肥总量的23%; 非充分灌溉处理剖面增加的硝态氮量占施肥总量的22%; 充分灌溉处理剖面增加的硝态氮量占施肥总量的47%。免耕措施降低了作物产量, 影响土壤水的运移, 增加了硝态氮的淋失风险。根据作物所需降低氮素投入(N 200 kg·hm-2·a-1), 增施磷、钾肥, 控制灌溉量是减少华北山前平原地区硝态氮淋失, 保护地下水的有效措施。  相似文献   

2.
施氮量对潮土区冬小麦-夏玉米轮作农田氮磷淋溶的影响   总被引:1,自引:0,他引:1  
潮土是我国华北地区主要土壤类型之一,潮土区是我国冬小麦-夏玉米作物的主要产区,研究不同施氮量潮土氮磷淋溶特征对于指导区域农田面源污染防控具有重要意义。本研究设置3个施肥处理,即传统施氮(CON)、优化施氮(OPT)和优化再减氮(OPTJ),利用田间渗漏池法,研究潮土冬小麦-夏玉米轮作农田硝态氮及总磷淋溶特征。结果表明:2016—2018年,冬小麦-夏玉米轮作周年不同施肥处理90cm土层年淋溶水量79.0~102.5 mm,不同淋溶事件间土壤淋溶液硝态氮浓度波动较大, CON、OPT和OPTJ处理单次淋溶事件硝态氮浓度分别为18.9~208.7(平均为72.7) mg·L~(-1)、9.0~99.2 (平均为33.8) mg·L~(-1)、4.7~55.5 (平均为15.4) mg·L~(-1)。本研究区域冬小麦-夏玉米轮作模式的氮素淋溶风险较高,磷素淋溶风险较低。传统施氮处理(CON)下农田硝态氮的平均淋溶量和表观淋失系数分别为66.4 kg·hm~(-2)和10.3%,而总磷(TP)为0.06 kg·hm~(-2)和0.04%。氮肥减施会显著降低氮素淋失,OPT和OPTJ处理的氮素淋溶减排率可达56.3%和78.9%。两个年度CON、OPT和OPTJ处理硝态氮平均表观淋失系数分别为10.3%、6.2%和4.9%,随着施氮量的增加,硝态氮淋失系数动态增加。氮淋溶具有较大的年际变化,降雨量高的2018年比降雨少的2017年硝态氮淋溶量多57.0%。两个年度CON、OPT和OPTJ处理总磷平均淋溶量分别为0.06 kg·hm~(-2)、0.06 kg·hm~(-2)和0.08 kg·hm~(-2)。适量减施氮肥会增加作物产量, OPT处理的作物产量是CON处理的1.08倍。然而,过量减施则会带来减产风险, OPTJ处理氮肥减施56%,作物产量比CON处理降低2.0%~8.1%。总之,潮土区农田硝态氮淋溶风险较大,适量减施氮肥能够在保证作物产量的基础上显著降低氮素淋失损失。  相似文献   

3.
针对设施蔬菜土壤硝态氮累积与淋失严重的问题,以宁夏引黄灌区设施黄瓜-茄子为供试作物,研究减施氮肥与添加秸秆对设施菜田硝态氮累积与淋失的影响。采用田间试验、取样、室内分析与生物统计的方法,设置农民常规施肥(CON)、氮肥减量28%(RF)和氮肥减量39%+秸秆添加(BMP)3个处理,开展不同氮肥管理措施对设施黄瓜-茄子种植体系土壤硝态氮累积与淋失的影响。结果表明,与CON相比,RF和BMP处理能有效降低0~120 cm土层土壤硝态氮储量,2016年黄瓜、2017年茄子和2018年茄子季土体硝态氮储量分别降低2.2%~9.4%、3.9%~6.1%和5.2%~12.8%,相应的硝态氮淋失量分别降低了55.6%~69.7%、59.4%~74.8%和35.4%~48.9%。BMP与RF处理相比,分别降低了2.3%~8.1%的硝态氮储量和20.9%~38.1%的硝态氮淋失量。土体硝态氮储量与淋失量呈显著正相关(R2=0.6973)。因此,在宁夏引黄灌区设施菜田农民习惯施肥的基础上,采用氮肥减施结合秸秆添加(BMP),即黄瓜氮肥减施39%,氮肥纯养分量为275 kg/hm2,配合添加玉米秸秆30.0 t/hm2,茄子氮肥减施39%,氮肥纯养分量为319 kg/hm2,配合添加玉米秸秆30.0 t/hm2,在获得高产的同时能降低土壤硝态氮累积和淋失,降低农田土壤面源污染风险,并提高经济效益,值得在宁夏引黄灌区设施菜田大面积推广应用。  相似文献   

4.
有机肥及DMPP对蔬菜生产及硝态氮淋失的影响   总被引:6,自引:2,他引:4       下载免费PDF全文
研究在等氮条件下有机无机肥配施及添加硝化抑制剂DMPP(3,4-二甲基吡唑磷酸盐)对蔬菜产量、品质及土壤硝态氮淋失的影响,旨在为蔬菜安全生产和地下水环境质量保护提供理论依据。采用大型原状土柱系统,连续种植3季蔬菜(蕹菜、苋菜和萝卜),以施有机肥的氮素量占总氮施用量的质量分数为依据,设置8个施肥处理:不施肥(CK)、纯化肥(CF)、30%有机肥+70%无机肥(30%OM)、50%有机肥+50%无机肥(50%OM)、70%有机肥+30%无机肥(70%OM)、纯化肥+DMPP(CF+DMPP)、30%有机肥+70%无机肥+DMPP(30%OM+DMPP)和50%有机肥+50%无机肥+DMPP(50%OM+DMPP)。结果表明:1)随有机肥施用比例增大,蔬菜产量呈下降趋势,但施用比例不高于50%时产量下降不显著;随有机肥施用比例增大土壤硝态氮淋失量及蔬菜硝酸盐均降低,50%OM处理土壤淋失液硝态氮平均浓度及淋失量较CF处理显著降低了29.29%和25.39%,氮肥表观利用率及表观淋失率分别为22.60%和8.82%。2)硝化抑制剂DMPP对蔬菜产量和硝酸盐含量的影响与蔬菜种类和种植季候密切相关,降低土壤硝态氮淋失的效果为CF+DMPP30%OM+DMPP50%OM+DMPP,但DMPP的抑制效果会随有机肥的比例增加而降低。50%OM+DMPP处理氮肥表观淋失率和表观利用率分别为4.70%和26.26%。3)试验期间,3季蔬菜水分输入(降雨和灌溉)分别为总水分输入量的49.82%(蕹菜季)、23.03%(苋菜季)和27.15%(萝卜季);水分淋失量为总淋失量的46.75%(蕹菜季)、19.66%(苋菜季)和33.59%(萝卜季);硝态氮淋失量为总淋失量的73.77%(蕹菜季)、2.31%(苋菜季)和23.92%(萝卜季)。研究表明,50%OM+DMPP处理,是保证蔬菜产量品质,同时有效降低土壤硝态氮淋失量的最优处理;降雨和施肥措施是影响土壤硝态氮淋失的重要因素,合理配施有机肥及添加DMPP并根据蔬菜生长需肥特性进行施肥能有效应对连续降雨造成的硝态氮大量淋失。  相似文献   

5.
应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征   总被引:23,自引:1,他引:23  
将Hydrus 1D水氮联合模型用于模拟冬小麦农田水分氮素运移转化过程,试验和模拟结果表明,北京地区冬小麦农田不同水肥处理小区,蒸散量约400mm,占根层总耗水量的95%以上,水分渗漏到根层以下量很少,各小区最大渗漏量为38.4mm。作物吸氮占总耗氮量的94%以上,而根层以下氮淋失很少,最大氮淋失量为8.7kg/hm2。氮淋失量主要对应于水分渗漏量,可考虑改变灌溉措施减少水氮淋失量。传统水、肥管理方案与优化水、肥管理方案比较,各处理产量和水氮利用效率无显著差异,而前者根层水分渗漏量大并肥料总投入量大。综合评价认为,优化水肥管理措施更合理可取。  相似文献   

6.
不同水氮用量对日光温室黄瓜季硝态氮淋失的影响   总被引:3,自引:2,他引:1  
于2010年3~7月,在河北省辛集市马庄农场研究了不同水氮用量对黄瓜季硝态氮淋失的影响,结果表明,通过调节不同生育阶段灌水量使黄瓜全生育期土壤含水量保持在18.7%~22.1%,不仅可以满足黄瓜生长发育对土壤水分的要求,而且可以减少用水量30%。不同处理中以节水灌溉、习惯施氮处理(W2N1)土壤硝态氮含量最高,习惯灌水、减量施氮处理(W1N2)最低。全生育期内,土体95cm深度硝态氮淋失量与土壤含水量、土壤硝态氮含量均呈正相关,其中以初瓜期和盛瓜期相关性系数最高。与农民习惯水氮处理(W1N1)相比,节水减氮处理(W2N2)在节水30%减施氮25%的情况下,可以显著降低黄瓜季土壤硝态氮淋失量,整个生育期降低淋失量35.0%。3年连续试验结果表明,节水减氮处理(W2N2)与习惯水氮处理(W1N1)间黄瓜产量结果差异不显著,说明河北省温室大棚蔬菜生产,目前农民习惯施氮和灌水量有很大的节水节肥空间,根据蔬菜不同生育期需肥量和土壤含水量来合理分配水、氮可取得明显的节水节氮效果。  相似文献   

7.
农田氮和磷的流失威胁水环境质量及人体健康,化肥减施和节水是减少氮和磷流失的有效手段。在河南省北部农区,采用2014年建设的田间渗漏池和径流池,综合研究了2018年不同施肥及节水对小麦玉米轮作农田氮、磷流失及作物产量的影响。设置常规施肥(CON)、优化减肥(JF)和优化减肥加节水(JFJS)3个处理,不同处理总氮淋失量为42.0~81.9 kg·hm-2,硝态氮淋失量为21.5~72.4 kg·hm-2,总磷淋失量为0.05~0.06 kg·hm-2。硝态氮淋溶量占总氮淋溶的比率为51.1%~88.4%。总氮淋失系数为7.9%~10.4%;总磷淋失系数为0.02%~0.04%。JF比CON处理降低硝态氮淋失63.8%,JFJS比JF处理可进一步降低17.9%硝态氮淋失,不同处理磷的淋溶损失没有显著性差异。玉米季是氮素淋失的关键时期,占整个小麦玉米轮作周期的91.8%~94.6%。一个小麦玉米轮作周期总氮径流损失量为0.14~0.20 kg·hm-2,总磷径流损失量为0.02~0.03 kg·hm  相似文献   

8.
采用田间小区试验法研究不同水氮条件下硝化抑制剂双氰胺(DCD)对设施番茄生长发育和土壤氮素淋失的影响。结果表明:在优化水氮处理条件下,配施DCD能显著抑制土壤NH4+-N含量的降低,提高氮素利用率;同时降低土壤硝态氮含量,从而减少氮淋失。与传统水氮处理相比,优化水氮配施DCD(W2N2+DCD、W2N3+DCD和W2N4+DCD)可使设施番茄施用氮素的平均利用率由13.84%提高到22.45%;可使表层(0-10cm)土壤的NO3--N淋失量降低49.34%~55.54%,0-30cm土层NO3--N含量降低35.21%~64.88%;平均减少30-120cm土层NO3--N淋失量61.08%~72.00%。同时,优化水氮配施DCD的调控措施还能够显著降低番茄体内硝酸盐含量,改善番茄果实品质,可使番茄果实硝酸盐含量降低51.94%~62.82%,且对番茄产量影响不大。综合评价,与传统水氮处理相比,优化水氮配施DCD处理W2N2+DCD在番茄生长期内减少施氮量59.02%,节约灌溉用水29.80%,能够使土壤0-10cm土壤NO3--N累积量减少54.01%,且在初果期、盛果期、末果期和拉秧期0-120cm剖面中NO3--N累积量分别降低58.32%,72.80%,63.23%和52.60%,并将氮素利用率提高到25.49%,番茄果实硝酸盐含量也降低59.81%,较好地实现了经济和环境效益双赢。  相似文献   

9.
本试验以日光温室秋冬茬番茄-冬春茬黄瓜轮作体系为研究对象,采用田间小区试验,研究了5季节水控肥(冬春茬黄瓜和秋冬茬番茄季N-P2O5-K2O总投入量分别为600-300-525 kg/hm2和450-225-600 kg/hm2)有机无机肥配施对 040 cm(根区)土壤硝态氮供应、 40100 cm(根区以外)硝态氮残留和 0100 cm土体不同形态氮素淋失的影响,探索了设施蔬菜生产中节水节肥潜力,为构建设施蔬菜合理水肥管理下土壤肥力培育和土壤质量提升模式提供技术支持。试验结果表明, 1)农民习惯水肥管理节水节肥潜力较大; 节水控肥后0100 cm土体硝态氮积累量、 矿质氮和有机氮渗漏量均明显下降,种植蔬菜经济效益显著增加。2)商品有机肥猪粪与化肥在土壤无机氮供应方面的效果接近; 节水控肥1/41/2 猪粪氮替代1/41/2 化肥氮后,040 cm土体硝态氮供应和40100 cm土体硝态氮残留均无显著变化,但是随着猪粪氮配施比例的增加,土壤溶液渗漏量及养分淋失量呈增加趋势。3)施用秸秆促进了土壤无机氮固持,降低根区土壤硝态氮供应水平,提高土壤养分保蓄能力; 节水控肥1/2秸秆氮替代1/2化肥氮后,040 cm土壤硝态氮供应量平均下降34.3%~56.2%,40100 cm土体硝态氮残留量下降42.5%~87.8%, 0100 cm土体土壤溶液渗漏量下降65.0%,硝态氮淋失量下降 82.0%,而产量和经济收入无显著差异。根据本试验结果,对于新建温室可采用单施化肥、 化肥与猪粪配施方案,能在短时间内提高土壤无机氮供应强度,满足蔬菜氮素需求; 对于种植了一段时间的温室,可采用冬春茬黄瓜季化肥配施猪粪秋冬茬番茄季化肥配施秸秆方案,能固定积累于土壤中的无机氮,提高土壤养分容量,保证根层土壤氮素的稳定供应,降低环境风险,维护设施农业的可持续发展。  相似文献   

10.
更多证据表明,储存在深层包气带中的硝态氮在全球氮循环中具有重要作用。本研究在华北平原农田不同包气带深度(2~50 m)分别采集土柱,分析不同深度土层的硝态氮含量和分布;从资料与文献收集到华北平原不同省区及其县域的42年(1978—2019年)氮肥投入与农田面积变化数据,计算不同区域(地下水埋深区域和县域)的农田包气带硝态氮存储量。首次利用区县氮肥投入与对应区域包气带硝态氮存储量的比值,即存储率(NR),研究氮肥投入对包气带硝态氮存储的影响程度。结果表明:1)在2~50 m的地下水埋深范围内,随着包气带深度的增加,华北平原农田(粮田与菜地)的单位面积硝态氮存储量也随之增加; 2)在2 m、3 m、6 m、10 m、16 m、25 m、40 m和50 m深包气带,粮田硝态氮存储量分别占42年(1978—2019年)氮肥总投入量的14%、18%、26%、30%、33%、35%、38%和39%,菜地硝态氮存储量分别占42年(1978—2019年)氮肥总投入量的15%、20%、28%、32%、34%、36%、40%和41%; 3)进入2 m以下地下水的粮田与菜地硝态氮淋失总量分别为675.65万t和199.56万t,分别占粮田与菜地42年(1978—2019年)氮肥总投入的13%和14%。本研究表明,华北平原农业区高氮肥投入导致大量的硝态氮淋失进入包气带-地下含水层系统,厚包气带对硝态氮截留和存储具有重要作用,在地下水埋深较浅区,高氮肥投入提高了地下水硝酸盐污染的风险。  相似文献   

11.
在设施菜地条件下研究不同有机肥施用及耕作方式对花椰菜产量品质及肥料利用率的影响。试验安排2种耕作方式(浅翻、深翻)与3种施肥模式(不施肥、施有机肥、施有机肥与秸秆),设置6个处理。结果表明:与对照相比,施肥增加了作物株高和叶绿素含量,提高了蔬菜中还原型Vc和硝酸盐含量;土壤深翻显著降低了蔬菜硝酸盐含量,施有机肥和增施秸秆降幅分别为49.42,50.40mg/kg。秸秆还田可使有机肥料氮素利用率增加10.00%(浅翻)和0.11%(深翻),磷素利用率增加8.96%(浅翻)和1.40%(深翻),钾素利用率增加24.88%(浅翻)。单施有机肥时配合土壤深翻也可以提高有机肥料养分利用率。  相似文献   

12.
采用盆栽试验,将两种小分子有机物(氨基酸、糖醇)为主剂的螯合钙肥与单质硝酸钙和市场钙肥产品糖醇钙(糖醇螯合钙)比较,研究叶面喷施和根施两种施肥方式对小白菜生长、品质和养分吸收的影响。结果表明:与硝酸钙和糖醇钙相比,无论是喷施还是根施,两种小分子有机物质螯合钙肥都能在不同程度上提高小白菜的钙吸收量,提高其生物量,改善品质;喷施和根施小分子有机物螯合钙肥Ⅰ与分别施用硝酸钙相比,小白菜生物量分别提高了33.63%和31.55%;喷施和根施小分子有机物质螯合钙肥Ⅱ与施用硝酸钙相比,小白菜的生物量分别提高了18.95%和49.95%。与硝酸钙相比,两种小分子有机物质螯合钙肥喷施可使植株钙累积量分别平均提高5.31%和6.84%;根施则使植株钙累积量分别提高13.51%和45.31%。另外,喷施、根施两种小分子有机物质螯合钙肥与施用硝酸钙与糖醇钙相比,均不同程度地提高了小白菜的Vc和可溶性蛋白含量,降低了硝态氮含量。因此,以氨基酸和糖醇为主剂的螯合钙肥无论采用喷施还是根施,都能对小白菜起到良好的增产提质效果。  相似文献   

13.
有机肥与氮肥配施对日光温室黄瓜和土壤硝酸盐含量的影响   总被引:21,自引:4,他引:21  
在保护地栽培条件下,采用裂区设计,研究不同有机肥用量和氮肥用量配施对黄瓜NO3--N含量、不同层次土壤NO3--N含量动态变化的影响。结果表明:增施氮肥显著提升黄瓜果实NO3--N含量,氮肥与有机肥配合能够降低黄瓜NO3--N含量,交互作用极显著。高有机肥用量与高氮肥用量施用及施用氮肥不配合有机肥,保护地黄瓜NO3--N含量达到二级污染程度。黄瓜NO3--N含量、土体NO3--N的供应水平和积累量与有机肥、氮肥的施用密切相关,高量施用有机肥上层土壤NO3--N易积累,高氮肥用量(N3)处理易使土体积累NO3--N,施用有机肥能够减弱土壤中NO3--N的淋失。生产中降低黄瓜NO3--N含量和土体NO3--N淋失、积累量的施肥措施是:施用有机肥量为45~90 thm-2,施用纯氮水平为450~750 kghm-2。  相似文献   

14.
利用盆栽试验,测定了肥料周围不同距离处土壤中NH4+与NO3-增量的变化,验证不同施肥方式对小油菜产量与NO3-含量的影响。结果发现,通过肥料在土壤中的扩散作用,肥料氮对土壤NH4+与NO3-增量的影响范围主要是在距肥料4cm内,但集中施肥与酸性根际肥(Ph1.0~2.0)的显著差异则是在2cm内;后者的NH4+扩散与硝化作用都较前者弱。其中,在距肥料1cm处,集中施肥的土壤NH4+增量于施肥一周后达最大值,而酸性根际肥则在两周后,且两者NH4+增量差异显著;在2cm处,二者土壤NH4+增量达最大值的时间都较1cm处晚一周,且前者显著低于后者,而后者土壤的NO3-增量都低于前者。在盆栽试验中,酸性根际肥使小油菜的土壤NH4+含量显著提高,而NO3-含量却很低。与集中施肥比较,土壤NH4+含量提高13%,NO3-含量降低72%~89%,小油菜的硝酸盐累积量降低了28%,小油菜产量增加39%。  相似文献   

15.
设施条件下氮肥对大青菜硝酸盐及土壤矿质氮累积的影响   总被引:2,自引:0,他引:2  
徐福利  郭劲松  王震  马涛  徐铭 《土壤通报》2006,37(5):924-927
采用田间实验研究了施用氮肥对设施条件下大青菜生长发育和产量,以及对土壤硝酸盐含量累积分布的影响。结果表明,在施氮肥0~500 kg hm-2范围内,氮肥施用量越大,产量越高,但到达一定量时,便不能再促进产量的提高,反而会引起减产。土壤铵态氮含量随着土壤剖面向下不断下降,表层的铵态氮含量较高,土壤硝态氮含量在整个土壤剖面的分布变化较小,但也是从表层向下处于一种缓慢减少的趋势,铵态氮的累积主要集中在上部土壤剖面,硝态氮的累积分布在整个土壤剖面,土壤硝态氮含量随施肥量增加而增加;氮肥施用量对硝酸盐含量有很大影响。在施氮肥0~700kg hm-2范围内,氮肥施用量越多,大青菜硝酸盐含量越高。  相似文献   

16.
采用田间试验研究了氮素形态、用量及施用时期对小青菜产量和硝酸盐含量的影响。结果表明,等氮量施肥下,产量最高的是硝酸钙,尿素+微量元素处理;尿素,有机无机复混肥和碳酸氢铵处理间无显著差异,DMPP处理产量最低;追施微量元素能提高小青菜的产量。硝酸盐含量随着收获时期的延后而降低,有机无机复混肥处理则略有升高,但未达到显著水平;收获期取样时,不同氮肥对硝酸盐的积累是:硝酸钙>DMPP>尿素>有机无机复混肥>尿素+微量元素>碳酸氢铵。配施微量元素及氮磷钾的协同吸收均能降低硝酸盐含量。综合考虑产量和品质指标,以有机无机复混肥处理效果较好。小青菜产量和Vc含量随着施氮量的提高而提高,但硝酸盐含量也随之提高;小青菜产量和Vc含量随着施氮时期的延后而降低,硝酸盐含量高峰出现在追肥后20d左右。  相似文献   

17.
有机肥对油菜硝酸盐含量和土壤盐分累积的影响   总被引:6,自引:1,他引:6  
探讨了不同C/N的有机肥对油菜生物量、硝酸盐含量以及土壤EC的影响。结果表明:施用低量氮肥,增施M1能够增加油菜的生物量,硝酸盐含量无显著变化;增施M2、M3,能够降低油菜生物量和硝酸盐含量。当N用量为N0.067g kg-1土时(300kg hm-2),增施M1,油菜生物量和硝酸盐含量无显著变化;增施M2、M3时,显著降低生物量和硝酸盐含量。施用高氮肥,增施三种有机肥显著增加油菜生物量,硝酸盐含量无显著变化。三种不同C/N的有机肥在低量氮肥时对土壤EC的影响不显著,在高氮量时,增施M1能够增加土壤EC,增施M2、M3能够降低土壤EC。  相似文献   

18.
不同氮源及秸秆添加对菜地土壤N_2O排放影响   总被引:3,自引:0,他引:3  
在饱和田间持水量WFPS(water-filled pore space)为75%、温度为25℃的条件下,用室内培养研究设施菜地土壤在不同氮肥种类(硝酸钙CN,碳酸氢铵AB,硫酸铵AS,尿素U,对照CK)和有无秸秆添加情况下N2O的排放特征。培养17天的结果表明,各种肥料类型中,对照和硝态氮肥处理最先出现N2O排放高峰,铵态氮肥处理出现较晚。无论有无秸秆,碳酸氢铵(AB)处理的累积排放量都最高,分别为4.206±0.899和2.159±0.256μg g-1干土,铵态氮肥处理N2O排放量明显高于硝态氮肥。添加秸秆后各处理N2O排放明显增加,比未施秸秆增加1倍多(CN处理除外)。不同处理(CK除外)的N2O累积排放量与时间的关系都可用y=aLn(x)+b表示(P<0.001)。实验还发现,施用氮肥会导致土壤酸化,添加秸秆可改善土壤酸化现象。  相似文献   

19.
玉米对土壤深层标记硝态氮的利用   总被引:2,自引:1,他引:2  
采用将15N标记的硝态氮注射于土壤剖面110cm处的田间微区试验法,在施氮和不施氮两种条件下研究玉米对深层累积硝态氮的利用程度。结果表明,对于试验土壤在施氮和不施氮的条件下,玉米对注射于土壤剖面110cm处15N标记的硝态氮的回收率分别为11.9%和6.7%;土壤耕层施用氮肥促进了玉米中下层根系的发育,提高了对深层标记NO3--N的回收率;在偏旱气候年份,土壤深层110cm处标记的硝态氮没有发生明显向下迁移,仅以标记区域为中心向上和向下扩散了20cm左右。研究结果还表明,通过植物利用土壤深层累积NO3--N,避免硝态氮进一步向浅层地下水迁移具有一定的可行性。  相似文献   

20.
采用室内土柱模拟的方法,研究河北省太行山片麻岩新成土中不同肥料、不同施氮量对硝态氮垂直运移的影响。结果表明,尿素、有机无机混合肥、氮磷复合肥中硝态氮淋失总量比值为1∶0.87∶0.94。中等施氮量下,有机无机复混肥可以降低氮素淋失。尿素硝态氮淋失率平均为29%,氮磷复合肥平均为27.8%,有机无机混合肥平均为23.7%。60 cm和90 cm处硝态氮淋失量比值为1∶1.03,差异不显著。淋溶结束后,有机无机混合肥在不同土层各处理中硝态氮含量最高,尿素硝态氮含量最低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号