首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究棉秆热解制备活性炭的工艺参数,采用直接热解法与HNO_3、NaOH 2种活化剂活化的方法,制备棉秆基活性炭,并对所制备的活性炭按GB/T 12496.8—1999《木质活性炭试验方法碘吸附值的测定》的方法测定所制得棉秆基活性炭的吸附性。结果表明,当用低温250℃热解棉秆时有较高的得炭率,得炭率达40.57%,但此时制得的棉秆基活性炭的吸附性较差;用HNO_3作为活化剂时,在450℃的条件下热解2 h,制得的活性炭有较高的碘吸附性。研究结果为农林废弃物的转化利用提供了新的途径和方法。  相似文献   

2.
[目的]提高糯稻秸秆的综合利用价值,并为活性炭的制备提供新的原材料。[方法]以氢氧化钾为活化剂,糯稻秸秆为原料制备活性炭。[结果]以糯稻秸秆制备活性炭的最佳工艺条件:活化剂浓度为2 mol/L,活化时间为60 min,活化温度为600℃,碳化温度为450℃,在此工艺条件下制备的糯稻秸秆活性炭的亚甲基蓝吸附值和碘吸附值分别为10.21ml/0.1 g和920.74 mg/g,制备出的活性炭吸附剂质量指标达到水质净化用活性炭二级品质标准。[结论]该研究为糯稻秸秆的综合利用和制备高性能活性炭的工艺提供了参考。  相似文献   

3.
以磷酸浸渍杉木屑,并在低温下进行预处理,制备活性炭.探讨了预处理温度、活化温度、浸渍比、保温时间和磷酸浓度等因素对活性炭性能的影响.结果表明,低温预处理有利于磷酸在木质原料内部的渗透,促进磷酸的活化作用,提高活性炭的吸附性能;活化温度、保温时间和磷酸浓度对活性炭的吸附性能、比表面积和孔容积具有正向作用;随着浸渍比的增大,活性炭的吸附性能呈先升后降的趋势;N2吸附等温线分析表明,活化温度的升高有利于其比表面积和孔容积的提高.在较佳的实验条件下,活性炭的比表面积、总孔容积和微孔容积分别为1628.7 m2.g-1和0.894、0.699 cm3.g-1.  相似文献   

4.
工业副产物芒果皮在企业生产中常作为废弃物丢弃,不仅污染环境,也浪费了资源,针对此现状,以芒果皮为原料、氯化锌为活化剂制备活性炭。试验结果表明,制备芒果皮活性炭的最佳工艺条件为:活化时间30 min、活化温度600℃、炭化温度400℃、活化剂浓度2 mol/L。在此工艺条件下,芒果皮活性炭的碘吸附值、亚甲基蓝吸附值分别为1 394.17、184.52 mg/g,采用扫描电镜分析产品的表面形态,发现其具有丰富的不规则孔隙结构。试验结果为芒果皮的综合利用提供了新途径,具有一定的应用前景。  相似文献   

5.
以龙眼(Dimocarpus longan Lour.)核为原料制备活性炭,通过正交试验优化制备工艺。结果表明,氢氧化钾为最适活性剂,龙眼核活性炭的最佳工艺条件为活化时间40 min、活化温度500℃、碳化温度400℃和碱碳比2∶1(质量比),在此工艺条件下制备的龙眼核活性炭的碘吸附值和亚甲基蓝吸附值分别为942.36 mg/g和12.83 m L/0.1 g,采用扫描电镜对产品的表面形态进行分析,发现其具有丰富的不规则孔隙结构。  相似文献   

6.
为实现湿地植物资源化,解决重金属废水难处理问题,本文采用青贮活化法制备高酸度湿地植物质活性炭作为吸附材料去除废水中重金属离子镍Ni(Ⅱ)和镉Cd(Ⅱ),通过XRD、N2吸附/脱附、Boehm滴定和元素分析等表征方法,探究湿地植物在青贮过程中结构变化,以及高酸度活性炭比表面积、孔径结构、官能团数量及表面元素。通过批次实验,研究活性炭对重金属离子镍和镉吸附特性,用Langmuir和Freundlich模型对实验数据进行拟合。结果表明:青贮活化法能够有效地提高活性炭的表面酸度,从而提升对重金属离子的吸附能力。通过吸附实验,高酸度活性炭对Ni(Ⅱ)和Cd(Ⅱ)的吸附过程可以用Langmuir模型进行很好的描述,并且活性炭对重金属离子的吸附过程主要由化学吸附控制。  相似文献   

7.
[目的]制备油茶壳活性炭,并对其吸附性能进行研究。[方法]以油茶壳为原料,通过磷酸活化法制备油茶壳活性炭,考察磷酸浓度、浸渍比、活化温度、活化时间对活性炭的得率和吸附性能的影响;并对制得的活性炭结构进行表征。[结果]当磷酸浓度为70%,浸渍比为1∶3,活化温度为600℃,活化时间为90 min时,活性炭得率可达34%以上;碘吸附值、亚甲基蓝吸附值分别大于1 000、150mg/g;所得活性炭结构以微孔为主,且富含一定比例的中孔,孔径分布相对集中在1.4~5.0 nm。[结论]该研究为油茶壳的综合利用提供了新的途径。  相似文献   

8.
磷酸法制备活性炭活化机理研究   总被引:2,自引:1,他引:2  
朱光真  邓先伦 《安徽农业科学》2011,39(30):18653-18655
[目的]研究磷酸法制备活性炭的活化机理。[方法]将磷酸浸渍后的木质纤维素类原料经稀酸水解后提取还原糖,研究还原糖含量与相应工艺条件下制备的活性炭产品孔性能之间的关系。[结果]在该试验条件下,还原糖含量与活性炭产品孔性能基本呈正相关,而在浓硫酸添加量较高时,呈反相关,可能是由于浓硫酸的过度催化导致形成更小分子量的低聚糖,对较大拓扑结构的形成不利,反而会降低比表面积和孔的发展。[结论]为活性炭生产提供一定的理论指导。  相似文献   

9.
本文以开心果壳为原料,采用化学活化法制备开心果壳基活性炭。将开心果壳450 ℃在管式炉炭化4 h,按照活化剂KOH和活性炭质量比1:1混合研磨,在800 ℃活化2 h制备活性炭。采用傅里叶变换红外光谱仪表征活性炭表面官能团,并探究了pH、起始浓度、温度及吸附时间对开心果壳基活性炭吸附亚甲基蓝的影响。结果表明,开心果壳基活性炭对亚甲基蓝的吸附效果良好, Langmuir等温吸附模型和准二级吸附动力学方程能较好拟合吸附过程,开心果壳基活性炭对亚甲基蓝的吸附反应为吸热反应,自发进行。  相似文献   

10.
以磷酸为活化剂,拟制备大比表面积和中孔结构发达的紫苏基活性炭。探讨磷酸溶液浓度、浸渍比、活化温度及活化时间4个因素对紫苏活性炭碘和亚甲基蓝吸附性能的影响,利用氮气吸附脱附仪、扫描电子显微镜、傅里叶红外光谱仪等对活性炭表面物化性质进行表征。通过单因素和正交试验确定活性炭的最佳制备工艺条件:磷酸浓度60%、浸渍比200%、活化温度400℃和活化时间80 min,该条件下紫苏活性炭的碘吸附值为910 mg/g,亚甲基蓝吸附值为202. 5 mg/g,达到了净水用活性炭的国家一级品标准。最优条件下活性炭的BET(BET为Brunauer、Emmett和Teller三位科学家名字首字母组合)比表面积、总孔容积、平均孔径分别为1 101. 26 m~2/g、0. 89 cm3/g、3. 23 nm,孔隙结构发达,孔为蜂窝状结构,表面存在醇羟基、羰基、酯等含氧官能团,说明超富集植物紫苏有望成为一种新型、吸附效果良好的活性炭制备原料。  相似文献   

11.
以稻壳为原料,采用磷酸活化法制备活性炭,考察了原材料与活化剂的配比、活化温度和活化时间等因素对活性炭吸附性能的影响,确立了调控活性炭性能的工艺方法和工艺条件.利用扫描电镜观察了活性炭的形貌特征,利用X射线衍射分析了稻壳活性炭中微晶的晶体结构.研究结果表明,以稻壳为原料、磷酸为活化剂在实验室的马弗炉中制备活性炭的适宜工艺条件为:活化剂/炭为3,活化温度为400℃,活化时间为2h,所制得的活性炭的碘吸附值为809 mg/g.  相似文献   

12.
以菌糠为原料,在机械力化学技术前处理条件下,采用磷酸化学一步炭活化法制备高吸附性能的粉末活性炭.通过单因素试验探讨了不同制备条件对活性炭得率及其吸附性能的影响,并选取浸渍比、球磨时间、活化温度和活化时间4种因素,采用L_9(3~4)正交设计试验,初步筛选较优性能的活性炭制备工艺.采用比表面及孔径分析仪、扫描电镜表征活性炭的孔结构和形貌特征.结果表明:当预处理球磨时间为30 min,浸渍比为2.0,活化温度为450℃,活化时间为60 min时,得到的活性炭的碘吸附值为962.94 mg·g~(-1),亚甲基蓝吸附值为150.0 mg·g~(-1),焦糖脱色率为144.63%,得率为36.20%.  相似文献   

13.
[目的]研究玉米秸秆制备活性炭的吸附性能。[方法]以玉米秸秆制备的粒状活性炭为研究对象,搭建了吸附性能模拟试验装置,采用静态重量法测试制备的活性炭对甲醇的吸附能力,并研究吸附床结构、吸附床内盛装粒径不同炭粒、活性炭中添加不同量的石墨粉以及改性活性炭等对系统吸附性能的影响。[结果]床内盛装同种试样炭料在同一吸附温度下,新型吸附床A(内置膜片式刺孔吸附质管)的吸附性能明显优于未进行结构改进的吸附床B,达到相同吸附量0.22 g/g时,A床吸附提前5 min;床内盛装不同粒径与同一粒径活性炭的对比试验,在同一吸附温度下,其吸附性能明显优于盛装同一粒径的,达到同一吸附量0.22 g/g时,吸附提前16 min;床内活性炭添加适量石墨粉可增强导热、强化吸附性能,最佳添加量为活性炭总量的20%;改性活性炭试验中,相比对照组经弱酸性溶液浸泡后活性炭可增强吸附性能,达到平衡吸附量87.1%时,吸附提前了3 min。[结论]该研究可为优化吸附床的结构设计和吸附式制冷系统提供参考。  相似文献   

14.
以核桃壳为原料,采用微波辐照磷酸法制备活性炭.探讨了磷酸浓度、微波功率、辐照时间及对产品活性炭的亚甲基蓝脱色力、碘吸附值及得率的影响.确定了微波辐照磷酸法制备活性炭的工艺条件:微波功率460 W,活化时间10 m in,磷酸质量分数50%.在此条件下制得的活性炭碘吸附值为809.06 mg/g,亚甲基蓝脱色率108 mL/g,得率52.96%.活化时间是传统工艺水蒸汽活化核桃壳制活性炭的1/9,得率是传统工艺的2.6倍.  相似文献   

15.
16.
【目的】为充分利用刺竹Bambusa sinospinosa材,提高其利用率,进一步探究刺竹活性炭的生产工艺及使用领域,以达到提升其附加值的目的。【方法】以刺竹炭为原料,使用水蒸气活化法,采用单因素实验法探究温度、时间、水蒸气量对刺竹活性炭的得率及吸附性能的影响。使用傅里叶红外吸收光谱仪(FTIR)、X-射线衍射仪(XRD)、比表面积及孔隙度分析仪(BET)、扫描电子显微镜(SEM)等对刺竹活性炭进行测试和表征。【结果】(1)刺竹活性炭的最优活化工艺为:活化温度875℃、活化时间2.0 h、水蒸气量0.50 L·h-1。在该工艺下制备的刺竹活性炭得率为29.07%,强度达97.68%,碘吸附值为1 235.03 mg·g-1,亚甲基蓝吸附值为276 mg·g-1,吸附性能较好。(2)红外吸收光谱表明:经活化之后峰值在3 130、3 010、1 670 cm-1等处变弱,876、809、747 cm-1处吸收峰消失,但主要峰依然存在;XRD分析表明:活性炭中含有石墨α轴结构;经比...  相似文献   

17.
[目的]研究玉米秸秆制备活性炭的吸附性能.[方法]以玉米秸秆制备的粒状活性炭为研究对象,搭建了吸附性能模拟试验装置,采用静态重量法测试制备活性炭对甲醇的吸附能力.[结果]床内盛装同种试样炭料在同一吸附温度下,新型吸附床A(内置膜片式刺孔吸附质管)的吸附性能明显优于未进行结构改进的吸附床B,达到相同吸附量0.22 g/g时,A床吸附提前5 min;床内盛装不同粒径与同一粒径活性炭的对比试验,在同一吸附温度下,其吸附性能明显优于盛装同一粒径的,达到同一吸附量0.22g/g时,吸附提前16 min;床内活性炭添加适量石墨粉可增强导热、强化吸附性能,最佳添加量为活性炭总量的20%;改性活性炭试验中,相比试验对照组经弱酸性溶液浸泡后活性炭可增强吸附性能,达到平衡吸附量87.1%时吸附提前了3 min.[结论]试验研究了吸附床结构、吸附床内盛装粒径不同炭粒、活性炭中添加不同量的石墨粉以及改性活性炭等对系统吸附性能的影响.  相似文献   

18.
以烟草秸秆为原料,经氢氧化钠活化,制备烟草秸秆基活性炭吸附剂。结果表明,氢氧化钠活化法制备烟草秸秆活性炭的最佳工艺条件如下:炭化温度450℃、碱炭比1∶2、活化温度700℃、活化时间60 min。该工艺制备的烟草秸秆基活性炭吸附剂,其亚甲基蓝和碘吸附值分别为16.2 m L/0.1 g和1 140.13 mg/g。烟草秸秆基活性炭吸附剂对重金属镍离子(Ni~(2+))、锰离子(Mn~(2+))、铅离子(Pb~(2+))具有较好的吸附能力,其饱和吸附量分别为37.83、26.45、44.67 mg/g。利用扫描电镜对样品表面形态进行分析,发现其具有发达的孔隙结构。该试验为烟草秸秆的综合利用开辟了一条新的途径,具有一定的应用价值。  相似文献   

19.
[目的]研究改性牛粪去除水溶液中铅的最佳条件及其吸附特性,为其在农业生产中的实际应用提供理论支持。[方法]以牛粪为原料,利用KOH、HNO_3、柠檬酸对牛粪进行改性,制备重金属吸附剂,考察了改性剂浓度、温度、时间和固液比对水溶液中铅去除效果的影响,并采用正交试验研究3种改性剂的最佳制备条件。利用牛粪制备的改性剂对水溶液中铅进行吸附试验。[结果]KOH的最佳改性条件是浓度0.4 mol/L,温度50℃,时间150 min,固液比1∶10;HNO_3的最佳改性条件是浓度0.8 mol/L,温度50℃,时间120 min,固液比1∶15;柠檬酸的最佳改性条件是浓度0.8 mol/L,温度30℃,时间30 min,固液比1∶10。改性牛粪和未改性牛粪对水溶液中铅的吸附等温线均符合Freundlich方程,说明二者对水溶液中铅离子的吸附属于多分子层吸附过程,改性牛粪对水溶液中铅动力学吸附符合二级动力学模型。[结论]KOH、HNO_3和柠檬酸改性牛粪对水溶液中铅的吸附性能均好于未改性牛粪,吸附强度从大到小依次为柠檬酸、HNO_3、KOH、未改性牛粪。  相似文献   

20.
本文首先将棉花秸秆热解制得生物炭,而后以磷酸为活化剂对所制备的生物炭进行活化得到棉秆基活性炭,采用正交实验方法研究了活化剂与生物炭比例、浸渍时间、活化温度和活化时间对棉秆基活性炭的持水能力的影响,采用极差分析方法对实验条件进行优化,并对所制备的样品进行了比表面积、SEM等性能测定。结果表明:最优化实验方案为磷酸与生物炭质量比为2∶1,浸渍时间12 h,活化温度450℃,活化时间30 min,该条件下所制备的棉秆基活性炭持水能力为5.11 g/g,平均孔径为3.58 nm,最可几孔径为1.81 nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号