首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four experiments were conducted to investigate the effects of distillers dried grains with solubles (DDGS) and dietary S on feed preference and performance of pigs. In a 10-d feed preference experiment (Exp. 1), 48 barrows (20.1 ± 2.2 kg of BW) were randomly allotted to 3 treatment groups, with 8 replicate pens per treatment and 2 pigs per pen. A control diet based on corn and soybean meal, a DDGS diet containing 20% DDGS, and a DDGS-sulfur (DDGS-S) diet were prepared. The DDGS-S diet was similar to the DDGS diet with the exception that 0.74% CaSO(4) was added to the diet. Two diets were provided in separate feeders in each pen: 1) the control diet and the DDGS diet, 2) the control diet and the DDGS-S diet, or 3) the DDGS diet and the DDGS-S diet. Preference for the DDGS diet and the DDGS-S diet vs. the control diet was 35.2 and 32.6%, respectively (P < 0.05), but there was no difference between the DDGS diet and the DDGS-S diet. In Exp. 2, a total of 90 barrows (10.3 ± 1.4 kg of BW) were allotted to 3 treatments, with 10 replicate pens and 3 pigs per pen, and were fed the diets used in Exp. 1 for 28 d, but only 1 diet was provided per pen. Pigs fed the control diet gained more BW (497 vs. 423 and 416 g/d; P < 0.05) and had greater G:F (0.540 vs. 0.471 and 0.455; P < 0.05) than pigs fed the DDGS or the DDGS-S diet, but no differences between the DDGS and the DDGS-S diets were observed. In a 10-d feed preference experiment (Exp. 3), 30 barrows (49.6 ± 2.3 kg of BW) were allotted to 3 treatment groups, with 10 replicates per group. The experimental procedures were the same as in Exp. 1, except that 30% DDGS was included in the DDGS and DDGS-S diets and 1.10% CaSO(4) was added to the DDGS-S diet. Feed preference for the DDGS and the DDGS-S diets, compared with the control diet, was 29.8 and 32.9%, respectively (P < 0.01), but there was no difference between the DDGS and the DDGS-S diets. In Exp. 4, a total of 120 barrows (34.2 ± 2.3 kg of BW) were fed grower diets for 42 d and finisher diets for 42 d. Diets were formulated as in Exp. 3. Pigs on the control diets gained more BW (1,021 vs. 912 and 907 g/d; P < 0.05) and had greater G:F (0.335 vs. 0.316 and 0.307; P < 0.05) than pigs fed the DDGS or DDGS-S diet, respectively, but no differences between pigs fed the DDGS and the DDGS-S diets were observed. In conclusion, dietary S concentration does not negatively affect feed preference, feed intake, or growth performance of weanling or growing-finishing pigs fed diets based on corn, soybean meal, and DDGS.  相似文献   

2.
Three experiments were conducted to evaluate spray-dried blood cells (SDBC) and crystalline isoleucine in nursery pigs. In Exp. 1, 120 pigs were used to evaluate 0, 2, 4, and 6% SDBC (as-fed basis) in a sorghum-based diet. There were six replicates of each treatment and five pigs per pen, with treatments imposed at an initial BW of 9.3 kg and continued for 16 d. Increasing SDBC from 0 to 4% had no effect on ADG, ADFI, and G:F. Pigs fed the 6% SDBC diet had decreased ADG (P < 0.01) and G:F (P = 0.06) compared with pigs fed diets containing 0, 2, or 4% SDBC. In Exp. 2, 936 pigs were used to test diets containing 2.5 or 5% SDBC (as-fed basis) vs. two control diets. There were six replicates of each treatment at industry (20 pigs per pen) and university (six pigs per pen) locations. Treatments were imposed at an initial BW of 5.9 and 8.1 kg at the industry and the university locations, respectively, and continued for 16 d. Little effect on pig performance was noted by supplementing 2.5% SDBC, with or without crystalline Ile, in nursery diets. Pigs fed the 5% SDBC diet without crystalline Ile had decreased ADG (P < 0.01), ADFI (P < or = 0.10), and G:F (P < 0.05) compared with pigs fed the control diets. Supplementation of Ile restored ADG, ADFI, and G:F to levels that were not different from that of pigs fed the control diets. In Exp. 3, 1,050 pigs were used to test diets containing 5, 7.5, or 9% SDBC (as-fed basis) vs. a control diet. There were six replicates of each treatment at the industry (20 pigs per pen) location and five replicates at the university (six pigs per pen) locations. Treatments were imposed at an initial BW of 6.3 and 7.0 kg at the industry and university locations, respectively, and continued for 16 d. Supplementation of 5% SDBC without crystalline Ile decreased ADG and G:F (P < 0.01) compared with pigs fed the control diet, but addition of Ile increased ADG (P < 0.01) to a level not different from that of pigs fed the control diet. The decreased ADG, ADFI, and G:F noted in pigs fed the 7.5% SDBC diet was improved by addition of Ile (P < 0.01), such that ADG and ADFI did not differ from those of pigs fed the control diet. Pigs fed diets containing 9.5% SDBC exhibited decreased ADG, ADFI, and G:F (P < 0.01), all of which were improved by Ile addition (P < 0.01); however, ADG (P < 0.05) and G:F (P = 0.09) remained lower than for pigs fed the control diet. These data indicate that SDBC can be supplemented at relatively high levels to nursery diets, provided that Ile requirements are met.  相似文献   

3.
Lysozyme is a 1,4-β-N-acetylmuramidase that has antimicrobial properties. The objective of this experiment was to determine the effect of a purified granulated lysozyme, compared with antibiotics, on growth performance, small intestinal morphology, and Campylobacter shedding in 10-d-old pigs. Forty-eight pigs (n = 16 per treatment), with an initial BW of 4.0 ± 0.1 kg (P > 0.40), were weaned at 10 d of age, blocked by litter and sex, and assigned to pens (8 pigs/pen). Each block was randomly assigned to consume 1 of 3 liquid dietary treatments for 14 d: a control diet, the control diet + lysozyme (100 mg/kg of diet), or the control diet + antibiotics (neomycin and oxytetracycline, 16 mg/kg of diet). Pigs were weighed and blood was sampled on d 0, 7, and 14. Blood was analyzed for plasma urea N and IgA. After 14 d of treatment, pigs were killed and samples of the jejunum and ileum were collected and fixed to measure villus height and crypt depth. Rectal swabs were taken on d 0, 7, and 14 of treatment, and samples of ileal and cecal contents were taken at d 14 of treatment to determine the presence of Campylobacter. Pigs consuming lysozyme and antibiotics gained BW at a faster rate than did control pigs over the course of the study (402 ± 12 and 422 ± 14 g/d, respectively, vs. 364 ± 14 g/d; P < 0.02), resulting in heavier ending BW (9.9 ± 0.3, 9.9 ± 0.3, and 9.0 ± 0.2 kg for pigs in the lysozyme, antibiotic, and control groups, respectively; P < 0.03). Immunoglobulin A decreased and plasma urea N increased over the course of the study (P < 0.1), regardless of dietary treatment (P > 0.6). Crypt depth was increased in pigs fed lysozyme- and antibiotic-treated diets, compared with pigs fed the control diet, in both the jejunum (60.0 ± 2.8 and 62.2 ± 3.0 μm, respectively, vs. 50.7 ± 3.1 μm; P < 0.03) and ileum (76.0 ± 7.5 and 72.2 ± 5.0 μm, respectively, vs. 52.4 ± 3.5 μm; P < 0.02). Villus height did not differ in the jejunum (P > 0.2) but was increased in the ileum of pigs consuming the lysozyme- and antibiotic-treated diets, compared with pigs fed the control diet (312 ± 20 and 314 ± 10 μm, respectively, vs. 263 ± 15 μm; P < 0.4). Small intestinal total mucosa and mucosal protein concentrations, as well as disaccharidase-specific activities, were not altered by lysozyme or antibiotics (P > 0.05). Campylobacter was detected in 27% of control samples but in only 5% of samples from pigs fed antibiotics and 8% of samples from pigs fed lysozyme (P < 0.01). Thus, granulated lysozyme is a suitable alternative to antibiotics for 10-d-old pigs consuming manufactured liquid diets.  相似文献   

4.
Previous research indicates that the neonatal pig does not alter feed intake in response to changes in the energy density of manufactured liquid diets. Also, the limited response of IGF-I to exogenous porcine ST (pST) previously observed in young pigs may be influenced by the source of dietary energy. Our objectives were to 1) determine the effect of a high-fat (HF; 25% fat and 4,639 kcal/kg ME; DM basis) or low-fat (LF; 2% fat and 3,481 kcal/kg ME; DM basis) manufactured liquid diet on pig performance; and 2) determine whether the limited response to exogenous pST in young pigs depends on the source of dietary energy. Two replicates of 60 pigs (n = 120; barrows and gilts distributed evenly), with an initial BW of 4,207 +/- 51 g, were weaned from the sow at 10 d of age and used in a randomized complete block design. Pigs were assigned by BW to one of six pens. Diets were formulated to provide a constant lysine:ME ratio and were fed on a pen basis for a duration of 9 d. On d 5, barrows and gilts within a pen were assigned randomly to receive either 0 or 120 microg of pST.kg BW(-1).d(-1) for 4 d. Pigs gained 336 +/- 9 g/d, which resulted in an ending BW of 7,228 +/- 120 g, regardless of dietary treatment (P > 0.15). Pigs fed the LF diet consumed 17% more DM per pen daily than pigs fed the HF diet (2,777 +/- 67 vs. 2,376 +/- 67 g/d, P < 0.01), but calculated ME intake did not differ between dietary treatments (P > 0.20). The G:F was 24% greater in HF- than in LF-fed pigs (P < 0.01). Plasma urea N concentrations were higher in the HF-fed pigs (11.0 +/- 0.6 mg/dL) than in pigs fed the LF diet (6.2 +/- 0.6 mg/dL; P < 0.05). Treatment with pST increased circulating IGF-I (P < 0.01) and decreased PUN (P < 0.01) concentration 32 and 25%, respectively, regardless of dietary treatment (P > 0.30). Circulating leptin averaged 1.8 +/- 0.1 ng/mL and was not affected by dietary treatment (P > 0.35) or pST (P > 0.40). These results suggest that the ST/IGF axis is responsive in the young pig and the increase in circulating IGF-I and growth is independent of the source of dietary energy. Also, young pigs respond to a lower energy density liquid diet with increased feed intake, without altering growth performance, apparently utilizing a mechanism other than circulating leptin.  相似文献   

5.
Four experiments were conducted to evaluate the nutrient contributions and physiological health benefits of spray-dried egg (SDE) containing only unfertilized eggs as a protein source in nursery pig diets. In all experiments, all diets were formulated to the same ME and Lys content, and each pen within a block (by BW) housed the same number of barrows and gilts. In Exp. 1 and 2 (168 and 140 pigs, respectively; 5 kg BW; 16 d old; 14 replicates/experiment), conducted at a university farm, treatments were with or without 5% SDE in a nursery control diet, which included antibiotics and zinc oxide. Pigs were fed for 10 d after weaning to measure ADG, ADFI, and G:F. The SDE increased (P < 0.05) ADG (Exp. 1: 243 vs. 204 g/d; Exp. 2: 204 vs. 181 g/d) and ADFI (Exp. 1: 236 vs. 204 g/d; Exp. 2: 263 vs. 253 g/d) compared with the control diet but did not affect G:F. In Exp. 3 (1,008 pigs; 5.2 kg BW; 20 d old; 12 replicates/treatment), conducted at a commercial farm, treatments were in a factorial arrangement of with or without SDE and high or low spray-dried plasma (SDP) in nursery diets, which included antibiotics and zinc oxide. Pigs were fed for 6 wk using a 4-phase feeding program (phases of 1, 1, 2, and 2 wk, respectively) with declining diet complexity to measure ADG, ADFI, G:F, removal rate (mortality plus morbidity), and frequency of medical treatments per pen and day (MED). The diets with the SDE increased (P < 0.05) ADFI during phase 1 only (180 vs. 164 g/d) compared with the diets without the SDE but did not affect growth performance during any other phases. The diets with SDE reduced MED during phase 1 (0.75% vs. 1.35%; P < 0.05) and the overall period (0.84% vs. 1.01%; P = 0.062) compared with the diets without the SDE but did not affect removal rate. In Exp. 4 (160 pigs; 6.7 kg BW; 21 d old; 10 replicates/treatment), conducted at a university farm to determine whether SDE can replace SDP, treatments were in a factorial arrangement of with or without SDP or SDE in nursery diets, which excluded antibiotics and zinc oxide. Pigs were fed for 6 wk using the same schedule used in Exp. 3 to measure ADG, ADFI, and G:F. The diets with SDE increased (P < 0.05) ADFI during phase 1 only (195 vs. 161 g/d) compared with the diets without SDE but did not affect growth performance during any other periods. In conclusion, SDE can be an efficacious protein and energy source in nursery pig diets and improves health and, in some instances, increases growth rate.  相似文献   

6.
Forty barrows (TR4 x C22) were weaned at 17 d of age (BW = 6.27 +/- 0.30 kg), housed (two pigs/pen) in a thermal-neutral environment (TN; constant 26.7 degrees C), and fed diets with or without 7% (as-fed basis) spray-dried plasma (SDP). On d 7, one pig/ pen was moved into a cold environment (CE; constant 15.6 degrees C). Pigs were fitted with jugular catheters on d 11. On d 12, 16 pigs per environment (eight pigs per dietary treatment) were challenged i.v. with 75 microg of lipopolysaccharide (LPS)/kg of BW. Blood samples were collected over a 4.5-h period. Pigs were then killed and tissue samples were harvested for messenger RNA (mRNA) analysis. From d 0 to 7, pigs fed SDP diets had a lower gain:feed ratio (G/F) than pigs fed no SDP (533 +/- 14 vs. 585 +/- 17 g/kg; P < 0.03). Pigs housed in the CE consumed more feed and had a lower G/F than pigs housed in TN from d 7 to 11 (P < 0.001). There were no environment x diet interactions from d 7 to 11 (P > 0.78). Baseline concentrations of serum ACTH and cortisol were lower in the TN pigs than in the CE pigs (P < 0.001). Pigs fed diets without SDP had lower serum cortisol concentrations over the 4.5-h period than pigs fed SDP (time x diet, P < 0.001). Serum concentrations of tumor necrosis factor-alpha (TNF-alpha) were highest for pigs consuming SDP in the CE, whereas there were no differences among the other treatments (time x diet x environment, P < 0.02). Pigs housed in the CE had higher serum interleukin-1beta (IL-1beta) (P < 0.001) and interleukin-6 (IL-6; P < 0.001) than TN pigs. Pigs fed SDP also had slightly higher serum IL-1beta concentrations (P < 0.10) and higher (P < 0.001) IL-6 concentrations than pigs fed no SDP. Pigs fed SDP had 9% lower liver and 13% lower thymus mRNA expression of tumor necrosis factor-alpha (TNF-alpha) than pigs that consumed no SDP (P < 0.06). Liver IL-1beta, IL-6, and LPS-binding protein mRNA were higher in the CE than in the TN (P < 0.03, P < 0.001, and P < 0.05; respectively). In addition, spleen TNF-alpha (P < 0.03) and IL-6 (P < 0.01) mRNA levels were higher in the CE than in the TN. Pigs consuming SDP and challenged with LPS responded with elevated serum concentrations of cortisol and cytokines compared with pigs fed diets with no SDP. Housing pigs in a CE increased the baseline concentrations of ACTH and cortisol, and when coupled with an LPS challenge, resulted in elevated serum and tissue mRNA levels of cytokines. Cold stress and feeding SDP during a LPS challenge may result in increased stress and immune responses in young pigs.  相似文献   

7.
Impact of betaine on pig finishing performance and carcass composition   总被引:2,自引:0,他引:2  
Two experiments were conducted to evaluate the effect of betaine supplementation of finishing diets on growth performance and carcass characteristics of swine. Experiment 1 included 288 pigs in a 2 x 2 x 3 factorial arrangement of treatments consisting of barrows and gilts of two genetic populations fed diets with 1.25 g/kg supplemental betaine from either 83 or 104 kg to 116 kg and control pigs fed betaine-devoid diets. Pigs were housed three pigs per pen with eight replicate pens per treatment. Diets were corn-soybean meal-based with 300 ppm added choline. Genetic populations differed (P < 0.05) in fat depth (2.24 vs 2.93 cm) and longissimus muscle depth (53.8 vs 49.1 mm) at 116 kg. Betaine reduced feed intake (P < 0.05); however, real-time ultrasound measurements were not affected. In Exp. 2, 400 pigs were used in a 2 x 2 x 2 factorial arrangement of treatments to evaluate the effect of sex (barrow or gilts), betaine (0 or 1 g/kg of diet), and crude protein (CP) (0.70% lysine = 12.7% CP or 0.85% lysine = 15.0% CP) when fed from 60 to 110 kg live weight. Pigs had been assigned to either a high- or low-protein feeding regimen at an average initial weight of 11.3 kg and were maintained on their respective protein levels throughout the experiment. For a 56-d period from 61.7 kg to 113.6 kg, pigs were fed diets with 300 ppm added choline. Within each protein level, pigs were randomly assigned to diets containing 0 or 1 g/kg betaine. Pigs were group-housed (four to five pigs per pen). Pig weight and feed intake were recorded every 28 d. Real-time ultrasound measurements were recorded initially and at d 28 on 64 pigs, and on all pigs prior to slaughter. Growth rate was fastest and feed intake greatest for barrows (P < 0.05) and for pigs receiving 12.7% crude protein. A crude protein x betaine interaction (P < 0.05) was observed from d 28 to 56 with pigs fed the 15% CP diet growing fastest when supplemented with 1 g/kg betaine, and pigs receiving the 12.7% CP diet growing fastest when the diets contained 0 g/kg betaine. Gilts more efficiently (P < 0.05) converted feed into body weight gain, as did pigs receiving the 12.7% CP diet (P < 0.05). Longissimus muscle area and fat measurements were unaffected by betaine or dietary protein on d 28. However, by d 56 betaine reduced average fat depth in barrows (P < 0.05; 3.21 vs 3.40 cm), but not in gilts. Betaine may be more effective at altering body composition in barrows than in gilts.  相似文献   

8.
Thirty-six barrows were used in a series of 3 P-balance experiments in which growing and finishing pigs were fed highly digestible, semi-purified diets at or below the dietary available P requirement to estimate the effect of BW on endogenous P loss. Experiments 1, 2, and 3 were conducted with pigs averaging 27, 59, and 98 kg of BW, respectively. In each experiment, pigs were placed in metabolism crates and allotted by weight and litter to 3 dietary treatments. The basal diet consisted of sucrose, dextrose, cornstarch, and casein fortified with minerals (except P) and vitamins. Diets 1, 2, and 3 in Exp. 1 were the basal diet with 0, 0.078, or 0.157% added P, respectively, from monosodium phosphate. In Exp. 2 and 3, diets 1, 2, and 3 were the basal diet with 0, 0.067, and 0.134% added P, respectively, from monosodium phosphate. Within replicate, pigs were fed equal amounts of feed twice daily. Pigs were adjusted to treatments for 7 d before a 6-d, marker-to-marker collection of feces and urine. Phosphorus intakes for pigs fed the 3 diets ranged from 1.73 to 3.91 g/d in Exp. 1, from 2.18 to 5.32 g/d in Exp. 2, and from 1.96 to 6.26 g/d in Exp. 3. Fecal P excretion and P absorption increased linearly (P < 0.05) with increasing P intake. In the 3 experiments, urinary P excretion (g/d) was low for pigs fed diet 1 (0.010, 0.011, 0.019) and diet 2 (0.013, 0.058, 0.084) and was low for pigs fed diet 3 in Exp. 1 (0.037); however, urinary P was greater in pigs fed diet 3 in Exp. 2 and 3 (0.550 and 0.486, respectively). When P absorption (Y, g/d) was regressed on P intake (X, g/d) in Exp. 1, 2, and 3, the relationships were linear (P < 0.01): Y = -0.110 + 0.971X (R2 = 0.999), Y = -0.156 + 0.939X (R2 = 0.998), and Y = -0.226 + 0.8919X (R2 = 0.982), respectively. Thus, our estimates of endogenous P loss at zero P intake were 110, 156, and 226 mg/d for 27-, 59-, and 98-kg pigs, respectively. When these Y-intercepts were regressed on BW, the relationship was Y = 63.06 + 1.632X (R2 = 0.996), where Y = endogenous P loss in mg/d and X = BW in kg. Based on these data, we estimate the endogenous P loss of pigs fed highly digestible, semi-purified diets to increase by approximately 1.632 mg for each 1-kg increase in BW from 25 to 100 kg.  相似文献   

9.
Two experiments were conducted to evaluate the efficacy of low doses of Aspergillus niger (AN) phytase for growing and finishing pigs fed corn-soybean meal (SBM) diets with narrow Ca:P ratios that were about 0.9 g/kg deficient in available P and Ca. Experiment 1 utilized 120 pigs with an early finisher period from 51.5 +/- 0.2 to 89.7 +/- 0.9 kg of BW and a late finisher period that ended at 122.5 +/- 2.0 kg of BW. During each period, treatments were the low-P diets with 0, 150, 300, or 450 units (U) of AN phytase added/kg of diet, and a positive control (PC) diet. There were linear increases (P < or = 0.001) in bone strength and ash weight, the absorption of P (g/d and %) and Ca (%), and overall ADG (P = 0.01) with increasing concentration of AN phytase. Pigs fed the diets with 150, 300, or 450 U of AN phytase/kg did not differ from pigs fed the PC diet in growth performance overall, and pigs fed the diets with 300 or 450 U of AN phytase did not differ in P and Ca absorption (g/d) or bone ash weight from pigs fed the PC diet. However, only pigs fed the diet with 450 U of AN phytase/kg had bone strength similar to that of pigs fed the PC diet. Experiment 2 utilized 120 pigs in a grower phase from 25.3 +/- 0.1 to 57.8 +/- 0.8 kg of BW and a finisher phase that ended at 107.6 +/- 1.0 kg of BW. Treatments were the low-P diet with AN phytase added at 300, 500, or 700 U/kg of grower diet, and 150, 250, or 350 U/kg of finisher diet, respectively, resulting in treatments AN300/150, AN500/250, and AN700/350. Growth performance and the absorption (g/d) of P and Ca for the grower and finisher phases were not different for pigs fed the diets containing AN phytase and pigs fed the PC diets. However, pigs fed the PC diets excreted more fecal P (g/d, P < or = 0.01) during the grower and more P and Ca (g/d, P < 0.001) during the finisher phases than the pigs fed the diets with phytase. There were linear increases (P < or = 0.05) in bone strength and bone ash weight with increasing concentration of AN phytase. However, pigs fed the PC diets had a greater bone strength and bone ash weight than pigs fed diets AN300/150, AN500/250 (P < or = 0.02), or AN700/350 (P < or = 0.08). There were no treatment responses for N or DM digestibility in either experiment. Phytase supplementation reduced fecal P excretion from 16 to 38% and fecal Ca excretion from 21 to 42% in these experiments. In conclusion, 450 U of AN phytase/kg was effective in replacing 0.9 g of the inorganic P/kg of corn-SBM diet for finishing swine based on bone strength, whereas 300 or 150 U of AN phytase/kg of diet maintained growth performance of grower or finisher pigs, respectively.  相似文献   

10.
In three experiments the interrelationship between dietary CP and recombinant porcine somatotropin (rpSt, i.m. daily) on ADG, feed efficiency (F/G) and carcass traits was examined in crossbred Yorkshire gilts and barrows given ad libitum access to their diets during the finishing period (55 to 110 kg BW). Pigs, blocked by BW and gender, were assigned (four/pen) within block. In Exp. 1, 140 pigs were assigned two/gender per pen to each of five pens/block and received a diet of either 12%, 18% or 24% CP (n = 2, 1 and 2 pens/block, respectively). Pigs received rpSt, either 0 or 120 micrograms/kg BW (12% and 24% CP groups) or 60 micrograms/kg BW (18% CP group). When CP was 12%, rpSt decreased ADG and increased F/G (P less than .05), whereas when CP was 18% or 24%, rpSt increased ADG and lowered F/G (P less than .05). Backfat thickness was reduced (P less than .05) by rpSt regardless of CP. In Exp. 2, 120 pigs were assigned two/gender per pen to each of five pens/block and received a diet of 24% CP. Either 0, 15, 30, 60 or 120 micrograms of rpSt/kg BW was administered to each pig. All doses of rpSt increased ADG, lowered F/G and decreased backfat thickness compared with measurements for control pigs (P less than .05). In Exp. 3, 140 pigs were assigned two/gender per pen to each of seven pens/block and received a diet of either 14%, 18% or 24% CP (n = 3, 2 and 2 pens/block, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A 28-d experiment was conducted using 126 crossbred barrows to evaluate the addition of a genetically engineered Escherichia coli phytase to diets that were 0.15% deficient in available P. Growth performance, bone strength, ash weight, and the apparent absorption of P, Ca, Mg, N, energy, DM, Zn, Fe, and Cu were the response criteria. The pigs (2 pigs/pen) averaged 7.61 kg of BW and 30 d of age initially. The low-P basal diet was supplemented with 0, 100, 500, 2,500, or 12,500 units (U) of E. coli phytase/kg of diet, or 500 U of Peniophora lycii phytase/kg of diet. The positive control (PC) diet was adequate in available P. Pigs were fed the diets in meal form. Fecal samples were collected from each pig from d 22 to 27 of the experiment. There were linear and quadratic increases (P < 0.001) in 28-d growth performance (ADFI, ADG, and G:F), bone breaking strength and ash weight, and the apparent absorption (g/d and %) of P, Ca, and Mg (P < or = 0.01 for quadratic) with increasing concentrations of E. coli phytase. Pigs fed the low-P diets containing 2,500 or 12,500 U/kg of E. coli phytase had greater (P < or = 0.01 or P < 0.001, respectively) values for growth performance, bone breaking strength and ash weight, and the apparent absorption (g/d and %) of P, Ca, and Mg than pigs fed the PC diet. The addition of E. coli phytase did not increase the apparent percentage absorption of N, GE, DM, Zn, Fe, or Cu. There were no differences in the efficacy of the E. coli or P. lycii phytase enzymes at 500 U/kg of low-P diet for any criterion measured. In conclusion, there were linear increases in growth performance, bone breaking strength and ash weight, and the apparent absorption of P, Ca, and Mg with increasing addition of E. coli phytase up to 12,500 U/kg of diet. Also, all of these criteria were greater for pigs fed the low-P diets containing 2,500 or 12,500 U of E. coli phytase/kg than for pigs fed the PC diet. The addition of 500, 2,500, or 12,500 U of E. coli phytase/kg of low-P diet reduced P excretion (g/d) in manure by 35, 42, and 61%, respectively, compared with pigs fed the PC diet.  相似文献   

12.
The effect of dietary Echinacea purpurea on performance, viremia, and ontogeny of the humoral antibody response against porcine reproductive and respiratory syndrome virus (PRRSV) infection was evaluated in weaned pigs. In three replicates, 120 weaned pigs (25 +/- 1 d of age; 8.46 +/- 0.48 kg of BW) from a PRRSV-naive herd were allotted randomly to one of eight pens (diets) in two separate rooms (four pens/room), with each pen containing five pigs. Pigs began one of four dietary treatments (as-fed basis) 1 wk before inoculation with PRRSV: 1) basal diet composed of corn, soybean meal, whey, and essential vitamins and minerals; 2) basal diet plus carbadox (0.055 g/kg of diet; as-fed basis); 3) basal diet plus Echinacea 2% (2% of the total diet); 4) basal diet plus Echinacea 4% (4% of the total diet). The diets were formulated to be isocaloric and isolysinic. Echinacea purpurea was purchased in powder form and determined by chemical analysis to contain 1.35% cichoric acid (as-fed basis). Seven days after starting the diets, all pigs in one room were intranasally inoculated with PRRSV isolate ATCC VR-2332 at a concentration of 10(4) tissue culture infectious dose50/mL. To monitor the effects of Echinacea and PRRSV challenge, BW and blood samples were obtained from all pigs at 7-d intervals. Serum samples were analyzed for the presence of PRRSV and PRRSV-specific antibodies. All challenged pigs became infected with PRRSV, and all unchallenged pigs remained free of infection. No differences (P > 0.10) in ADG, ADFI, or gain:feed (G:F) were observed in PRRSV-challenged compared with unchallenged animals. For PRRSV-challenged animals receiving diets supplemented with Echinacea at 2 or 4%, no differences (P > 0.10) were observed in ADG, ADFI, or G:F ratio. Among PRRSV-challenged pigs, dietary Echinacea did not affect (P > 0.10) the rate or level of the ELISA-detectable antibody response from d 7 to 42 or the level and duration of PRRSV in serum. For PRRSV-unchallenged animals receiving diets supplemented with Echinacea at 2 or 4%, no differences (P > 0.10) were observed in ADG, ADFI, and G:F ratio. Under the conditions of this study, dietary Echinacea did not enhance growth, exhibit antiviral effects to PRRSV, or show any evidence of immune enhancing properties.  相似文献   

13.
Two experiments, each consisting of 2 trials, were conducted to determine the effect of salmon protein hydrolysate (SPH) and spray-dried plasma protein (SDPP) fed during the first week postweaning and their subsequent effect on the growth performance of weanling pigs. Pigs were fed in a 3-phase feeding program with durations of 7 d for phase 1 in both Exp. 1 and 2; 14 or 15 d for phase 2 in Exp. 1 and 2, respectively; and 7 or 8 d for phase 3 in Exp. 1 and 2, respectively. Dietary treatments were fed only during phase 1, whereas the same diet was fed to all pigs in phases 2 and 3. Pigs were blocked by initial BW and sex, and littermates were balanced across treatments. Data from the 2 trials within each experiment were combined and analyzed together; no treatment × trial interactions (P > 0.10) were observed. In Exp. 1, a total of 324 weanling pigs (10 replications of 5 or 6 pigs per pen) with an average initial BW of 6.4 ± 1.3 kg were assigned to 1) a control diet with no SPH or SDPP, 2) 1.5% SPH, 3) 3.0% SPH, 4) 1.5% SDPP, 5) 3.0% SDPP, or 6) 1.5% SPH + 1.5% SDPP. Experiment 2 was similar to Exp. 1, but red blood cells were removed from all diets to reduce diet complexity. In Exp. 2, weanling pigs (n = 320, 14 replications of 5 or 6 pigs per pen) with an average initial BW of 5.4 ± 1.2 kg were assigned to 1) a control diet with no SPH or SDPP, 2) 1.5% SPH, 3) 1.5% SDPP, or 4) 1.5% SPH + 1.5% SDPP. Three batches of SPH were used, and each batch was analyzed for AA composition. In Exp. 1, the inclusion of SDPP or SPH during phase 1 did not affect (P > 0.10) ADG, ADFI, or G:F compared with those of pigs fed the control diet. No carryover effects on growth performance were observed in any of the subsequent phases. Overall, G:F was greater (P = 0.08) in pigs fed the 1.5% diets compared with those fed the 3.0% diets. In Exp. 2, no differences (P > 0.10) were observed in ADG, ADFI, or G:F among pigs fed the SPH or SDPP diets compared with those of pigs fed the control diet. Pigs fed the combined diet had greater (P < 0.10) overall ADFI compared with that of pigs fed the control diet, but ADFI was similar to that of pigs fed the SPH and SDPP diets. These results indicate that inclusion of up to 3% SDPP or SPH in diets fed during the first week postweaning did not affect the growth performance of weanling pigs, and no subsequent carryover effects were observed. Salmon protein hydrolysate did not affect the growth performance of weanling pigs and may be considered an alternative protein source in diets for weanling pigs.  相似文献   

14.
Forty-eight barrows and forty-eight gilts (PIC 337 sires x PIC C22 dams) were evaluated to determine the effects of feeding ractopamine hydrochloride (RAC) and different cereal grains on the carcass and fat quality in late finishing pigs. The study was carried out using four replicates with 24 animals in each replicate (four pigs per pen, six pens per replicate, two replicates per slaughter date, 12 pens per slaughter date). Treatments for the experiment included corn, wheat, and barley (early finisher period); and corn, corn + RAC, wheat, wheat + RAC, barley, and barley + RAC for the late finisher period. Ractopamine was fed at the level of 10 mg/kg (as-fed basis) of feed. Pigs were allotted to early finisher period treatments at approximately 45 kg BW. Pigs were then given late finisher period treatments at approximately 80 kg BW and fed for 28 d. The dietary digestible lysine level for all diets was maintained at 2.7 g/Mcal of ME. Pigs fed the wheat and corn diets during the late finisher period had a greater (P <0.05) G:F than those fed the barley diets. Pigs fed diets with RAC had lower (P <0.05) leaf fat weights, 10th-rib fat, last-rib fat, and belly firmness and had improved (P <0.05) dressing percents and loin muscle areas compared with those not receiving RAC. Pigs fed the wheat diets had a greater (P <0.05) dressing percent than those receiving the barley diets, but pigs fed the barley diets had a higher (P <0.05) Minolta L* for fat color than pigs fed wheat. Pigs fed diets containing RAC produced pork that was less tender (P <0.05) compared with pigs that did not receive RAC. Linoleic acid percent values were higher (P <0.05) for pigs fed diets with RAC than in those that did not. Feeding RAC improved G:F and lowered feed intake of pigs during the late finisher period (P <0.05). Feeding diets equal in lysine (2.7 g/Mcal of ME) but varying in ME, whether based on corn, wheat, or barley with or without RAC, had little to no effect on carcass, meat, or fat quality attributes.  相似文献   

15.
A total of 150 weanling pigs [(Yorkshire × Landrace) × Duroc] with an average BW of 7.22 ± 0.80 kg (21 d of age) were used in a 28-d trial to determine the effects of dietary fructan and mannan oligosaccharides on growth performance, nutrient digestibility, blood profile, and diarrhea score in weanling pigs. Pigs were allotted randomly to 1 of 5 dietary treatments: 1) negative control (NC), basal diet; 2) positive control (PC), NC + 0.01% apramycin (165 mg/kg); 3) NC + 0.1% fructan (FC); 4) NC + 0.1% mannan oligosaccharide source (MO); and 5) NC + 0.05% fructan + 0.05% mannan oligosaccharide source (FM). There were 3 replications per treatment with 10 pigs per pen (5 barrows and 5 gilts). From d 0 to 14, ADG and ADFI of pigs fed the PC, MO, and FM diets were greater (P < 0.05) than pigs fed the NC diet. From d 15 to 28, there were no differences (P > 0.05) in ADG, ADFI, and G:F. During the overall period (d 0 to 28), pigs fed the MO diet had a greater ADG than pigs fed the NC diet (P < 0.05). Pigs fed the PC and MO diets increased ADFI (P < 0.05) compared with pigs fed the NC diet. However, no differences were detected among dietary treatments in G:F during the overall experimental period. On d 14, the apparent total tract digestibility (ATTD) of DM and N in pigs fed the PC, MO, and FM diets was greater (P < 0.05) than pigs fed the NC diet. The ATTD of DM increased (P < 0.05) in pigs fed the MO and FM diets compared with pigs fed the FC diet. However, at the end of the experiment, pigs fed the FM diet had a greater (P < 0.05) ATTD of DM compared with pigs fed the NC diet. Additionally, there were no differences in IgG, red blood cells, white blood cells, and lymphocyte counts among dietary treatments on d 0, 14, or 28. The diarrhea score in pigs fed the MO diet was reduced (P < 0.05) compared with pigs fed the NC diet. In conclusion, mannan oligosaccharides have a beneficial effect on growth performance and nutrient digestibility in weanling pigs. Furthermore, mannan oligosaccharides can decrease diarrhea score in weanling pigs.  相似文献   

16.
The prevalence of deoxynivalenol (DON) is a concern for swine producers, and although there has been extensive research into the effects of DON in pigs, focus has been in young pigs and/or in short-term studies. The objective of the study was to determine the effect of long-term exposure to DON-contaminated diets in finisher pigs. A total of 200 pigs (76.6 ± 3.9 kg initial weight) were group housed (five pigs per pen; n = 10 pens/treatment) in a 6-wk trial. Pigs were fed a wheat-barley-soybean meal-based control (CONT) diet with no DON or the basal diet in which clean wheat was replaced by DON-contaminated wheat and wheat screenings to provide DON content of 1, 3, or 5 ppm (DON1, DON3, and DON5, respectively). Individual BW and pen feed intake were recorded weekly to calculate average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F). Blood was collected on days 0, 14, and 43 and analyzed for indicators of liver and kidney health. Nitrogen (N)-balance was conducted immediately following the growth performance period to determine the effect of DON on nutrient utilization. Blood and urine samples collected during N balance were analyzed for DON content. Feeding DON reduced (P < 0.05) ADFI and ADG from days 0 to 28 compared with CONT, after which there was no effect of diet on ADFI and ADG. The G:F was lower (P < 0.05) in DON5 fed pigs compared with all treatments during days 0 to 7; however, no treatment effects on G:F was observed from days 8 to 42. Nitrogen retention was lower (P < 0.05) in DON3 and DON5 compared with DON1-fed pigs. Nitrogen retention efficiency was higher (P < 0.05) in DON1 compared with DON3 and DON5 and protein deposition for DON1 pigs was higher (P < 0.05) than all treatments. There were no treatment effects on indicators of liver and kidney health. As dietary DON intake increased, concentration of DON in blood and urine increased. Overall, although there was an initial decrease in ADG and ADFI in pigs receiving diets containing >1 ppm DON, pig performance recovered after a period of time, whereas nutrient utilization continued to be affected after recovery of performance. Moreover, the lack of DON on G:F indicates that the negative effects of DON on growth performance are largely due to reduced feed intake. Overall, although pigs maybe capable of adapting to intake of DON-contaminated diets, their final body weight will be reduced when fed diets containing >1 ppm DON.  相似文献   

17.
In Exp. 1, a total of 144 pigs (BW, 6.68 ± 0.17 kg) were weaned at 21 d, blocked by BW, and allocated to 48 pens with 3 pigs per pen. Pens were randomly assigned to 1 of 6 dietary treatments (0, 2.5, 5, 7.5, and 10% glycerol supplemented to replace up to 10% lactose in a basal starter 1 diet containing 20% total lactose, which was fed for 2 wk), and a negative control diet with 10% lactose and 0% glycerol. A common starter diet was fed for the next 2 wk. In Exp. 2, a total of 126 pigs (BW, 6.91 ± 0.18 kg) were weaned at 21 d of age, blocked by BW, and allocated to 42 pens with 3 pigs per pen. Pigs were assigned to 1 of 6 treatments in a 2 × 3 factorial arrangement in a randomized complete block design with factors being 1) glycerol inclusion in replacement of lactose in starter 1 diets (0 or 5%) fed for 2 wk, and 2) glycerol inclusion in starter 2 diets (0, 5, or 10%) fed for 3 wk. In Exp. 1, glycerol supplementation at 10% improved (P=0.01) ADG (266 vs. 191 g/d) and G:F (871 vs. 679 g/kg) during the starter 1 period when compared with the negative control. Incremental amounts of glycerol linearly (P<0.05) increased ADG and ADFI, but did not affect G:F during starter 1. There was no effect of feeding glycerol during the starter 1 phase on subsequent performance during the starter 2 phase or overall. Serum glycerol concentrations increased linearly (P=0.003) with increasing dietary glycerol, and serum creatinine (P=0.004) and bilirubin (P=0.03) concentrations decreased with increasing glycerol. In Exp. 2, glycerol did not affect performance during starter 1, but it linearly increased (P≤0.01) ADG and ADFI during starter 2 (464, 509, and 542 and 726, 822, and 832 g/d, respectively) and overall (368, 396, and 411 and 546, 601, and 609 g/d, respectively). At the end of the study, pigs were 1.0 and 1.5 kg heavier when fed 5 and 10% glycerol, respectively (linear, P<0.01). Serum glycerol concentrations increased linearly during starter 2 (P<0.001), but were not affected during starter 1. Glycerol supplementation increased serum urea N quadratically (P<0.001) and decreased creatinine linearly (P<0.05) in the starter 2 phase. Overall, data indicate that glycerol can be added to nursery pig diets at 10%, while improving growth performance.  相似文献   

18.
Piglets (n = 240, 11.0+/-0.1 d old, 3.93+/-0.05 kg) were allotted to one of four treatments in a 2 x 2 factorial arrangement to examine the effects of diet physical form and nursery environment during the first 14 d after weaning on growth to market weight. During the treatment period, pigs were housed (10 pigs/ pen) in either a conventional hot nursery (30 degrees C) or a segregated-temperature nursery (cool ambient temp. of 24 degrees C, with enclosed hot-box hovers at 32 degrees C). Pigs in each environment were fed nutritionally identical diets in either liquid or dry-pellet form for 14 d. Subsequently, all pigs were fed identical dry diets and were housed in common grower-finisher facilities (penned by sex, five pigs/pen). At the end of the treatment period (d 14), pigs fed the liquid diet were 21% heavier than pigs fed the dry pellet diet (9.22 vs 7.60 kg; P < 0.001). Similarly, gain, feed intake, and gain/feed of liquid-fed pigs were 44%, 18%, and 22% greater, respectively, than observed for pigs fed the dry pellet diet. No main effect of environment was observed (P > 0.10); however, an interaction with diet physical form occurred during the early-nursery period (P < 0.01). Pigs fed the liquid diet showed better performance in the conventional nursery, whereas pigs fed the dry pellet diet were favored in the segregated-temperature nursery. No major differences in growth performance or in ultrasound carcass measurements were detected during the growing-finishing period; however, the advantage in body weight of liquid-fed pigs gained during the first 2 wk postweaning was maintained to the end of the trial (113.9 vs 110.6 kg; P < 0.05). Pigs that were fed the early-nursery diet in liquid form reached market weight (110 kg) 3.7 d sooner than the dry-fed controls (P < 0.01). Estimates of lean gain (calculated from live ultrasound data) were unaffected, suggesting that composition of growth was not altered. Collectively, these results show that liquid feeding during early life can markedly accelerate piglet growth performance and that the growth advantage is maintained to market weight, with no evidence of compensatory gain in the dry-fed control pigs.  相似文献   

19.
Three experiments were conducted to determine the optimal true ileal digestible (TID) Trp:Lys ratio for 90- to 125-kg barrows. Basal diets contained 0.55% TID Lys and were either corn-based (Exp. 1) or corn- and soybean meal-based (Exp. 2 and 3) diets supplemented with crystalline AA. In addition, each experiment contained a corn-soybean meal control diet. The number of pigs per pen progressively increased, with pigs housed in 2 (n = 82; initial and final BW of 88.5 and 113.6 kg, respectively), 7 (n = 210, initial and final BW of 91.2 and 123.3 kg, respectively), or 20 to 22 (n = 759; initial and final BW of 98.8 and 123.4 kg, respectively) pigs per pen for each successive experiment. Pigs in Exp. 1 were fed 6 incremental additions of L-Trp, equating to TID Trp:Lys ratios of 0.109, 0.145, 0.182, 0.218, 0.255, and 0.290. For the 28-d period, there was a quadratic improvement in G:F (P = 0.05) and ADG (P = 0.08) with increasing TID Trp:Lys, characterized by an improvement in performance of pigs fed the basal diet compared with those consuming diets with a 0.145 TID Trp:Lys ratio, with a plateau thereafter as TID Trp:Lys increased. Pigs fed the control diet had less increase in backfat depth than the average of pigs fed the titration diets (1.30 vs. 4.09 mm, respectively; P = 0.02), but pork quality was unaffected by dietary treatment. Pigs in Exp. 2 were fed 4 incremental additions of L-Trp, equating to TID Trp:Lys ratios of 0.130, 0.165, 0.200, and 0.235. Average daily gain and ADFI increased in a linear fashion with increasing TID Trp:Lys for the 29-d trial (P < 0.01), with quadratic improvements in d-29 BW (P = 0.06) and G:F (P = 0.05). Pigs fed the diet containing a TID Trp:Lys ratio of 0.165 had greater d-29 BW, ADG, G:F, and lower serum urea N concentration than pigs fed the basal diet (P < 0.05), but were similar to pigs fed TID Trp:Lys ratios of 0.200 and 0.235 for all criteria measured. In Exp. 3, TID Trp:Lys ratios of 0.13, 0.15, 0.17, 0.19, and 0.21 were evaluated. The response to increasing TID Trp:Lys was limited to a quadratic (P < 0.10) improvement in G:F with increasing TID Trp:Lys ratios. Maximum G:F was noted at a TID Trp:Lys ratio of 0.17. No relationship was noted between TID Trp:Lys and carcass characteristics. These experiments demonstrate that the minimum TID Trp:Lys ratio for pigs from 90 to 125 kg of BW is at least 0.145, but not greater than 0.17.  相似文献   

20.
An experiment was conducted to test the hypothesis that inclusion of Cu oxide (Cu2O) in diets for growing–finishing pigs improves body weight (BW) and bone mineralization, and reduces accumulation of Cu in the liver compared with pigs fed diets containing Cu sulfate (CuSO4). Two hundred growing pigs (initial BW: 11.5 ± 0.98 kg) were allotted to a randomized complete block design with 2 blocks of 100 pigs, 5 dietary treatments, 5 pigs per pen, and a total of 8 pens per treatment. Treatments included the negative control (NC) diet that contained 20 mg Cu/kg, and 4 diets in which 125 or 250 mg Cu/kg from CuSO4 or Cu2O were added to the NC diet. The experiment was divided into 4 phases and concluded when pigs reached market weight. Pig weights were recorded on day 1 and at the end of each phase and feed provisions were recorded throughout the experiment. On the last day of phases 1 and 4, 1 pig per pen was sacrificed to obtain samples of liver and spleen tissue, and the right metacarpal was collected. Results indicated that pigs fed diets containing 250 mg Cu/kg from CuSO4 had greater BW at the end of phases 1 and 2 than pigs fed NC diets. Pigs fed diets containing 250 mg Cu/kg from Cu2O had greater (P < 0.05) BW at the end of phases 1, 2, 3, and 4 compared with pigs fed NC diets, and these pigs also had greater BW at the end of phases 3 and 4 than pigs fed all other diets. Pigs fed the diets with 250 mg Cu/kg tended to have greater (P < 0.10) feed intake than pigs fed the NC diet at the end of phase 2, and for the overall experimental period, pigs fed diets containing 250 mg Cu/kg from Cu2O had greater (P < 0.05) feed intake than pigs on all other treatments. However, no differences in gain:feed ratio were observed among treatments. Copper accumulation in liver and spleen increased with Cu dose, but at the end of phase 1, pigs fed 250 mg Cu/kg from CuSO4 had greater (P < 0.05) Cu concentration in liver and spleen than pigs fed 250 mg Cu/kg from Cu2O. Pigs fed diets containing 250 mg Cu/kg from Cu2O had greater (P < 0.05) quantities of bone ash and greater (P < 0.05) concentrations of Ca, P, and Cu in bone ash than pigs fed NC diets or the 2 diets containing CuSO4, but Zn concentration in bone ash was less (P < 0.05) in pigs fed diets containing 250 mg Cu/kg from Cu2O. To conclude, supplementing diets for growing pigs with Cu2O improves growth performance and bone mineralization with less Cu accumulation in liver compared with pigs fed diets containing CuSO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号