首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improved irrigation water use efficiency is an important component of sustainable agricultural production. Efficient water delivery systems such as subsurface drip irrigation (SDI) can contribute immensely towards improving crop water use efficiency and conserving water. However, critical management considerations such as choice of SDI tube, emitter spacing and installation depth are necessary to attain improved irrigation efficiencies and production benefits. In this study, we evaluated the effects of subsurface drip tape emitter spacing (15, 20 and 30 cm) on yield and quality of sweet onions grown at two locations in South Texas—Weslaco and Los Ebanos. Season-long cumulative crop evapotranspiration (ETc) was 513 mm in Weslaco and 407 mm at Los Ebanos. Total crop water input (rain + irrigation) at Weslaco was roughly equal to ETc (92% ETc) whereas at Los Ebanos, water inputs exceeded ETc by about 35%. Onion yields ranged from 58.5 to 70.3 t ha−1 but were not affected by drip tube emitter spacing. Onion pungency (pyruvic acid development) and soluble solids concentration were also not significantly influenced by treatments. Crop water use efficiency was slightly higher at Weslaco (13.7 kg/m3) than at Los Ebanos (11.7 kg/m3) partly because of differences in total water inputs resulting from differences in irrigation management. The absence of any significant effects of drip tape emitter spacing on onion yield may be due to the fact that irrigation was managed to provide roughly similar irrigation amounts and optimum soil moisture conditions in all treatments.  相似文献   

2.
Salinization and nitrate leaching are two of the leading threats to the environment of the European Mediterranean regions. Inefficient use of water and fertilizers has led to a nitrate increase in the aquifers and reduction in crop yields caused by salts. In this study, a triple emitter source irrigation system delivers water, salt (Na+), and fertilizer (N) applications to maize (Zea mays L.). The objective of the study was to evaluate the combined effect of saline water and nitrogen application on crop yields in two different textured soils of Alentejo (Portugal) and to assess if increasing salinity levels of the irrigation water can be compensated by application of nitrogen while still obtaining acceptable crop yield. Maximum yield was obtained from both soils with an application of 13 g m−2 of nitrogen. Yield response to Na+ application was different in the two studied soils and depended on the total amount of Na+ or irrigation water applied. No significant interaction was found between nitrogen and sodium, but a positive effect on maize yield was observed in the medium textured soil for amounts of Na+ less than 905 g m−2 when applied in the irrigation water.  相似文献   

3.
Water is the most important limiting factor of wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping systems in the North China Plain (NCP). A two-year experiment with four irrigation levels based on crop growth stages was used to calibrate and validate RZWQM2, a hybrid model that combines the Root Zone Water Quality Model (RZWQM) and DSSAT4.0. The calibrated model was then used to investigate various irrigation strategies for high yield and water use efficiency (WUE) using weather data from 1961 to 1999. The model simulated soil moisture, crop yield, above-ground biomass and WUE in responses to irrigation schedules well, with root mean square errors (RMSEs) of 0.029 cm3 cm−3, 0.59 Mg ha−1, 2.05 Mg ha−1, and 0.19 kg m−3, respectively, for wheat; and 0.027 cm3 cm−3, 0.71 Mg ha−1, 1.51 Mg ha−1 and 0.35 kg m−3, respectively, for maize. WUE increased with the amount of irrigation applied during the dry growing season of 2001-2002, but was less sensitive to irrigation during the wet season of 2002-2003. Long-term simulation using weather data from 1961 to 1999 showed that initial soil water at planting was adequate (at 82% of crop available water) for wheat establishment due to the high rainfall during the previous maize season. Preseason irrigation for wheat commonly practiced by local farmers should be postponed to the most sensitive growth stage (stem extension) for higher yield and WUE in the area. Preseason irrigation for maize is needed in 40% of the years. With limited irrigation available (100, 150, 200, or 250 mm per year), 80% of the water allocated to the critical wheat growth stages and 20% applied at maize planting achieved the highest WUE and the least water drainage overall for the two crops.  相似文献   

4.
This study was conducted to develop the relationship between canopy-air temperature difference and vapour pressure deficit for no stress condition of wheat crop (baseline equations), which was used to quantify crop water stress index (CWSI) to schedule irrigation in winter wheat crop (Triticum aestivum L.). The randomized block design (RBD) was used to design the experimental layout with five levels of irrigation treatments based on the percentage depletion of available soil water (ASW) in the root zone. The maximum allowable depletion (MAD) of the available soil water (ASW) of 10, 40 and 60 per cent, fully wetted (no stress) and no irrigation (fully stressed) were maintained in the crop experiments. The lower (non-stressed) and upper (fully stressed) baselines were determined empirically from the canopy and ambient air temperature data obtained using infrared thermometry and vapour pressure deficit (VPD) under fully watered and maximum water stress crop, respectively. The canopy-air temperature difference and VPD resulted linear relationships and the slope (m) and intercept (c) for lower baseline of pre-heading and post-heading stages of wheat crop were found m = −1.7466, c = −1.2646 and m = −1.1141, c = −2.0827, respectively. The CWSI was determined by using the developed empirical equations for three irrigation schedules of different MAD of ASW. The established CWSI values can be used for monitoring plant water status and planning irrigation scheduling for wheat crop.  相似文献   

5.
Irrigation performance assessments are required for hydrological planning and as a first step to improve water management. The objective of this work was to assess seasonal on-farm irrigation performance in the Ebro basin of Spain (0.8 million ha of irrigated land). The study was designed to address the differences between crops and irrigation systems using irrigation district data. Information was only available in districts located in large irrigation projects, accounting for 58% of the irrigated area in the basin. A total of 1617 records of plot water application (covering 10,475 ha) were obtained in the basin. Average net irrigation requirements (IRn) ranged from 2683 m3 ha−1 in regulated deficit irrigation (RDI) vineyards to 9517 m3 ha−1 in rice. Average irrigation water application ranged from 1491 m3 ha−1 in vineyards to 11,404 m3 ha−1 in rice. The annual relative irrigation supply index (ARIS) showed an overall average of 1.08. Variability in ARIS was large, with an overall standard deviation of 0.40. Crop ARIS ranged between 0.46 and 1.30. Regarding irrigation systems, surface, solid-set sprinkler and drip irrigated plots presented average ARIS values of 1.41, 1.16 and 0.65, respectively. Technical and economic water productivities were determined for the main crops and irrigation systems in the Aragón region. Rice and sunflower showed the lowest productivities. Under the local technological and economic constraints, farmers use water cautiously and obtain reasonable (yet very variable) productivities.  相似文献   

6.
With a population of more than 150 million, Pakistan cannot meet its need for food, if adequate water is not available for crop production. Per capita water availability has decreased from 5600 m3 in 1947 to 1000 m3 in 2004. Water table has gone down by more than 7 m in most parts of the country. Present need is to identify and adopt measures, that will reduce water use and increase crop production. This study was conducted in farmers’ fields during 2002–2004 to evaluate the water use efficiency and economic viability of sprinkler irrigation system for growing rice and wheat crops. Yields and water use were also measured on adjacent fields irrigated by basin flooding, which were planted with the same crop varieties. Sprinkler irrigation of rice produced 18% more yield, while reducing consumption of water to 35% of that used in the traditional irrigation system. Sprinkler irrigation of wheat resulted in a water use efficiency of 5.21 kg of grain per cubic meter of water used compared to 1.38 kg/m3 in the adjacent flooded basins. Benefit–cost analysis showed that adoption of rain-gun sprinkler irrigation for rice and wheat is a financially viable option for farmers. While these findings show large potentials for improving water use efficiency in crop production they also indicate that a large portion of the water applied in traditional flooded basin irrigation is going to groundwater recharge, which has high value near large cities which draw their water from the aquifer.  相似文献   

7.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

8.
We assessed the basin-scale crop water productivity (CWP) on staple grain crops, i.e. rice, wheat, maize, soybean, at major breadbasket basins of China over time periods of 1997-2004. The multiple-year average CWP was 1.06 kg m−3 for the selected basins (equivalents of 946 m3 water consumption in producing 1 metric ton of crop economic yield), varying from 0.97 kg m−3 to 1.18 kg m−3. Of all the water consumed in crop production, irrigation water contributes 28-41%, while soil-stored precipitation contributes 59-72%, confirming the crucial yet hitherto under-estimated role played by green water in total crop yield formation. The blue water depletion rate ranges from 0.48 to 0.87, with most of the basins exceeding 0.50, while the green water depletion rate from 0.39 to 0.85, with the majority of basins being beyond 0.60. We conclude that both blue and green water shortage will contribute to water scarcity in grain crop production. The mission of ensuring China's food security will entail multiple trade-offs among water security, ecosystem conservation, environment protection, and human development with increasing challenges in the years to come. However, increasing water productivity through research innovation and technological upgrades at river basin scale is a key to mitigating water stress that may be caused by increasing food production in the coming decades.  相似文献   

9.
Corn crop response under managing different irrigation and salinity levels   总被引:1,自引:0,他引:1  
Non-uniformity of water distribution under irrigation system creates both deficit and surplus irrigation areas. Water salinity can be hazard on crop production; however, there is little information on the interaction of irrigation and salinity conditions on corn (Zea Mays) growth and production. This study evaluated the effect of salinity and irrigation levels on growth and yield of corn grown in the arid area of Egypt. A field experiment was conducted using corn grown in northern Egypt at Quesina, Menofia in 2009 summer season to evaluate amount of water applied, salinity hazard and their interactions. Three salinity levels and five irrigation treatments were arranged in a randomized split-plot design with salinity treatments as main plots and irrigation rates within salinity treatments. Salinity treatments were to apply fresh water (0.89 dS m−1), saline water (4.73 dS m−1), or mixing fresh plus saline water (2.81 dS m−1). Irrigation treatments were a ratio of crop evapotranspiration (ET) as: 0.6ET, 0.8ET, 1.0ET, 1.2ET, and 1.4ET. In well-watered conditions (1.0ET), seasonal water usable by corn was 453, 423, and 380 mm for 0.89EC, 2.81EC and 4.73EC over the 122-day growing season, respectively. Soil salt accumulation was significantly increased by either irrigation salinity increase or amount decrease. But, soil infiltration was significantly decreased by either salinity level or its interaction with irrigation amount. Leaf temperature, transpiration rate, and stomata resistance were significantly affected by both irrigation and salinity levels with interaction. Leaf area index, harvest index, and yield were the greatest when fresh and adequate irrigation was applied. Grain yield was significantly affected in a linear relationship (r2 ≥ 0.95) by either irrigation or salinity conditions with no interaction. An optimal irrigation scheduling was statistically developed based on crop response for a given salinity level to extrapolate data from the small experiment (uniform condition) to big field (non-uniformity condition) under the experiment constraints.  相似文献   

10.
Using EPIC model to manage irrigated cotton and maize   总被引:1,自引:0,他引:1  
Simulation models are becoming of interest as a decision support system for management and assessment of crop water use and of crop production. The Environmental Policy Integrated Climate (EPIC) model was used to evaluate its application as a decision support tool for irrigation management of cotton and maize under South Texas conditions. Simulation of the model was performed to determine crop yield, crop water use, and the relationships between the yield and crop water use parameters such as crop evapotranspiration (ETc) and water use efficiency (WUE). We measured actual ETc using a weighing lysimeter and crop yields by field sampling, and then calibrated the model. The measured variables were compared with simulated variables using EPIC. Simulated ETc agreed with the lysimeter, in general, but some simulated ETc were biased compared with measured ETc. EPIC also simulated the variability in crop yields at different irrigation regimes. Furthermore, EPIC was used to simulate yield responses at various irrigation regimes with farm fields’ data. Maize required ∼700 mm of water input and ∼650 mm of ETc to achieve a maximum yield of 8.5 Mg ha−1 while cotton required between 700 and 900 mm of water input and between 650 and 750 mm of ETc to achieve a maximum yield of 2.0-2.5 Mg ha−1. The simulation results demonstrate that the EPIC model can be used as a decision support tool for the crops under full and deficit irrigation conditions in South Texas. EPIC appears to be effective in making long-term and pre-season decisions for irrigation management of crops, while reference ET and phenologically based crop coefficients can be used for in-season irrigation management.  相似文献   

11.
Water scarcity and nitrate contamination in groundwater are serious problems in desert oases in Northwest China. Field and 15N microplot experiments with traditional and improved water and nitrogen management were conducted in a desert oasis in Inner Mongolia Autonomous Region. Water movement, nitrogen transport and crop growth were simulated by the soil-plant system with water and solute transport model (SPWS). The model simulation results, including the water content and nitrate concentration in the soil profile, leaf area index, dry matter weight, crop N uptake and grain yield, were all in good agreement with the field measurements. The water and nitrogen use efficiency of the improved treatment were better than those of the traditional treatment. The water and nitrogen use efficiency under the traditional treatment were 2.0 kg m−3 and 21 kg kg−1, respectively, while under the improved treatment, they were 2.2 kg m−3 and 26 kg kg−1, respectively. Water drainage accounted for 24-35% of total water input (rainfall and irrigation) for the two treatments. Nitrogen loss by ammonia volatilization and denitrification was less than 5% of the total N input (including the N comes from irrigation). However, 32-61% of total nitrogen input was lost through nitrate leaching, which agreed with the 15N isotopic result. It is impetrative to improve the water and nitrogen management in the desert oasis.  相似文献   

12.
Research on crop response to deficit irrigation is important to reduce agricultural water use in areas where water is a limited resource. Two field experiments were conducted on a loam soil in northeast Spain to characterize the response of maize (Zea mays L.) to deficit irrigation under surface irrigation. The growing season was divided into three phases: vegetative, flowering and grain filling. The irrigation treatments consisted of all possible combinations of full irrigation or limited irrigation in the three phases. Limited irrigation was applied by increasing the interval between irrigations. Soil water status, crop growth, above-ground biomass, yield and its components were measured. Results showed that flowering was the most sensitive stage to water deficit, with reductions in biomass, yield and harvest index. Average grain yield of treatments with deficit irrigation around flowering (691 g m−2) was significantly lower than that of the well-irrigated treatments (1069 g m(2). Yield reduction was mainly due to a lower number of grains per square metre. Deficit irrigation or higher interval between irrigations during the grain filling phase did not significantly affect crop growth and yield. It was possible to maintain relatively high yields in maize if small water deficits caused by increasing the interval between irrigations were limited to periods other than the flowering stage. Irrigation water use efficiency (IWUE) was higher in treatments fully irrigated around flowering.  相似文献   

13.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

14.
Studies on irrigation scheduling for soybean have demonstrated that avoiding irrigation during the vegetative growth stages could result in yields as high as those obtained if the crop was fully irrigated during the entire growing season. This could ultimately also lead to an improvement of the irrigation water use efficiency. The objective of this study was to determine the effect of different irrigation regimes (IRs) on growth and yield of four soybean genotypes and to determine their irrigation water use efficiency. A field experiment consisting of three IR using a lateral move sprinkler system and four soybean genotypes was conducted at the Bledsoe Research Farm of The University of Georgia, USA. The irrigation treatments consisted of full season irrigated (FSI), start irrigation at flowering (SIF), and rainfed (RFD); the soybean genotypes represented maturity groups (MGs) V, VI, VII, and VIII. A completely randomized block design in a split-plot array with four replicates was used with IR as the main treatment and the soybean MGs as the sub-treatment. Weather variables and soil moisture were recorded with an automatic weather station located nearby, while rainfall and irrigation amounts were recorded with rain gauges located in the experimental field. Samplings for growth analysis of the plant and its components as well as leaf area index (LAI) and canopy height were obtained every 12 days. The irrigation water use efficiency (IWUE) or ratio of the difference between irrigated and rainfed yield to the amount of irrigation water applied was estimated. The results showed significant differences (P < 0.05) between IR for dry matter of the plant and its components, canopy height, and maximum leaf area index as well as significant differences (P < 0.05) between MGs due to IR. Differences for the interaction between IR and MG were significant (P < 0.05) only for dry matter of pods and seed yield. In general, seed yield increased at a rate of 7.20 kg for each mm of total water received (rainfall + irrigation) by the crop. Within IR, significant differences (P < 0.05) on IWUE were found between maturity groups with values as low as 0.55 kg m−3 for MG V and as high as 1.14 kg m−3 for MG VI for the FSI treatment and values as low as 0.48 kg m−3 for maturity group V and as high as 1.02 kg m−3 for maturity group VI for the SIF treatment. We also found that there were genotypic differences with respect to their efficiency to use water, stressing the importance of cultivar selection as a key strategy for achieving optimum yields with reduced use of water in supplemental irrigation.  相似文献   

15.
This study compares the effects of different irrigation regimes on seed yield and oil yield quality and water productivity of sprinkler and drip irrigated sunflower (Helianthus annus L.) on silty-clay-loam soils in 2006 and 2007 in the Mediterranean region of Turkey. In sprinkler irrigation a line-source system was used in order to create gradually varying irrigation levels. Irrigation regimes consisted of full irrigation (I1) and three deficit irrigation treatments (I2, I3 and I4), and rain-fed treatment (I5). In the drip system, irrigation regimes included full irrigation (FI-100), three deficit irrigation treatments (DI-25, DI-50, DI-75), partial root zone drying (PRD-50) and rain-fed treatment (RF). Irrigations were scheduled at weekly intervals both in sprinkler and drip irrigation, based on soil water depletion within a 0.90 m root zone in FI-100 and I1 plots. Irrigation treatments influenced significantly (P < 0.01) sunflower seed and oil yields, and oil quality both with sprinkler and drip systems. Seed yields decreased with increasing water stress levels under drip and sprinkler irrigation in both experimental years. Seed yield response to irrigation varied considerably due to differences in soil water contents and spring rainfall distribution in the experimental years. Although PRD-50 received about 36% less irrigation water as compared to FI-100, sunflower yield was reduced by an average of 15%. PRD-50 produced greater seed and oil yields than DI-50 in the drip irrigation system. Yield reduction was mainly due to less number of seeds per head and lower seed mass. Soil water deficits significantly reduced crop evapotranspiration (ET), which mainly depends on irrigation amounts. Significant linear relationships (R2 = 0.96) between ET and oil yield (Y) were obtained in each season. The seed yield response factors (kyseed) were 1.24 and 0.86 for the sprinkler and 1.19 and 1.06 for the drip system in 2006 and 2007, respectively. The oil yield response factor (kyoil) for sunflower was found to be 1.08 and 1.49 for both growing seasons for the sprinkler and 1.36 and 1.25 for the drip systems, respectively. Oil content decreased with decreasing irrigation amount. Consistently greater values of oil content were obtained from the full irrigation treatment plots. The saturated (palmitic and stearic acid) and unsaturated (oleic and linoleic acid) fatty acid contents were significantly affected by water stress. Water stress caused an increase in oleic acid with a decrease in linoleic acid contents. The palmitic and stearic acid concentrations decreased under drought conditions. Water productivity (WP) values were significantly affected by irrigation amounts and ranged from 0.40 to 0.71 kg m−3 in 2006, and from 0.69 to 0.91 kg m−3 in 2007. The PRD-50 treatment resulted in the greatest WP (1.0 kg m−3) and irrigation water productivity (IWP) (1.4 kg m−3) in both growing seasons. The results revealed that under water scarcity situation, PRD-50 in drip and I2 in sprinkler system provide acceptable irrigation strategies to increase sunflower yield and quality.  相似文献   

16.
Agricultural food production in arid and semi-arid regions faces the challenge to ensure high yields with limited supply of water. This raises the question to which extent irrigation supply can be reduced without detriment to yield. Our study focuses on the yield-water uptake relationship for maize in the moderate water stress range in order to determine the onset of stress-induced dry-matter and yield losses. Compensatory plant responses under moderate stress levels are discussed in relation to seasonal climatic conditions.Summer-sown and spring-sown maize were irrigated with a decreasing amount of water in a field experiment in Pakistan. Water supply ranged from 100% water required to maintain soil at field capacity (FC) to 40% of FC. The average dry-matter and yield levels were slightly higher for summer-sown (15.0 Mg ha−1) compared to spring-sown maize (13.1 Mg ha−1). The onset of significant dry-matter and yield reduction started at the least irrigation treatment in both seasons. The amount of water required to avoid production losses was 272 mm in the summer-sown maize during the autumn growing season, and 407 mm for the spring-sown maize in the summer season, when the evaporative demand of the atmosphere was +27% higher. Water use efficiency (WUEET), normalized by vapour pressure deficit, of the summer-sown maize which was 10.0 kg kPa m−3, was +15% higher compared to the spring-sown crop; while the irrigation water productivity (2.9 kg m−3) was +11% more. WUEET increased over the whole range of applied water deficits for summer-sown maize, while the spring-sown crop showed a decreasing WUEET in the less irrigated treatment. Due to the higher efficiency in summer-sown maize, the potential in irrigation reduction without production losses (129 mm) was higher compared to the spring-sown maize (57 mm). Our results showed that in Pakistan water saving irrigation practices can be applied without yield loss mainly during the cooler growing season when the crop can efficiently compensate a lower total water uptake by increased use efficiency. For spring-sown maize the increasing evaporative demand of the atmosphere towards summer implies a higher risk of yield losses and narrows the range to exploit higher irrigation water productivity under moderate water deficit conditions.  相似文献   

17.
The majority of rice grown in south-east Australia is continuously flooded for much of its growing season, but reduced irrigation water availability brought about by a combination of drought and environmental flow legislation has presented a need to maintain (or even increase) rice production with less irrigation water. Delaying the application of continuous flooding until prior to panicle initiation can increase input water productivity by reducing non-beneficial evaporation losses from free water and the soil. A field experiment was conducted over two growing seasons, 2008/9 and 2009/10, comparing a conventional dry seeded treatment (the control - continuous flooding from the 3 leaf stage) with delayed continuous flooding (10-20 days prior to panicle initiation) with several irrigation scheduling treatments prior to flooding commencement. In the first year, the delayed water treatments were irrigated at intervals of 40, 80 and 160 mm of cumulative reference evapotranspiration (ETo) prior to delayed continuous flooding, thereby imposing differing degrees of crop water stress. In year 2, the 80 and 160 mm treatments were modified by use of a crop factor (Kc) when the plants were small and the 40 mm treatment was replaced with a continuously flooded treatment throughout the crop duration.Decreases in net water input (irrigation + rain − surface drainage) and increases in input water productivity were achieved by reducing the flush irrigation frequency during the pre-flood period. Savings of 150 and 230 mm (10 and 15%) were achieved in Year 1 from the 80 and 160 mm cumulative ETo irrigation frequency treatments, respectively, in comparison to the control. In the second year, net water input savings of 230 and 330 mm (15 and 22%) were achieved with the 80/Kc and 160/Kc mm treatments, respectively. Input water productivity of the 160 mm treatment was 0.06 kg/m3 (8%) higher than the control in Year 1, while in Year 2 a 0.15 kg/m3 (17%) increase in input water productivity above the control was achieved by the 160/Kc mm treatment. Delaying the application of continuous flooding in the second year greatly extended the period of crop growth suggesting the need for earlier sowing (by 7-10 days) to ensure pollen microspore still occurs at the best time to minimise yield loss due to cold damage. Nitrogen fertiliser management is an important issue when delaying continuous flooding, and nitrogen losses appeared to increase with the frequency of irrigation prior to continuous flooding. This was likely due to increased denitrification from alternate wetting and drying of the soil. Further research is required to determine the most appropriate nitrogen management strategies, and to also better define the optimal pre-flood irrigation frequency.  相似文献   

18.
The purpose of this work is to contribute to the development of a combined approach to evaluate irrigated areas based on: (1) irrigation performance analysis intended to assess the productive impacts of irrigation practices and infrastructures, and (2) water accounting focused on the hydrological impacts of water use. Ador-Simulation, a combined model that simulates irrigation, water delivery, and crop growth and production was applied in a surface irrigated area (1213 ha) located in the Bear River Irrigation Project, Utah, U.S.A.. A soil survey, a campaign of on-farm irrigation evaluations and an analysis of the database from the Bear River Canal Company and other resources were performed in order to obtain the data required to simulate the water flows of the study area in 2008. Net land productivity (581 US$ ha−1) was 20% lower than the potential value, whereas on-farm irrigation efficiency (IE) averaged only 60%. According to the water accounting, water use amounted to 14.24 Mm3, 86% of which was consumed through evapotranspiration or otherwise non-recoverable. Gross water productivity over depleted water reached 0.132 US$ m−3. In addition, two strategies for increasing farm productivity were analyzed. These strategies intended to improve water management and infrastructures raised on-farm IE to 90% reducing the gap between current and potential productivities by about 50%. Water diverted to the project was reduced by 2.64 Mm3. An analysis based on IE could lead to think that this volume would be saved. However, the water accounting showed that actually only 0.91 Mm3 would be available for alternative uses. These results provide insights to support the decision-making processes of farmers, water user associations, river basin authorities and policy makers. Water accounting overcomes the limitations and hydrological misunderstandings of traditional analysis based on irrigation efficiency to assess irrigated areas in the context of water scarcity and competitive agricultural markets.  相似文献   

19.
The purpose of optimal water and nutrient management is to maximize water and fertilizer use efficiency and crop production, and to minimize groundwater pollution. In this study, field experiments were conducted to investigate the effect of soil salinity and N fertigation strategy on plant growth, N uptake, as well as plant and soil 15N recovery. The experimental design was a 3 × 3 factorial with three soil salinity levels (2.5, 6.3, and 10.8 dS m−1) and three N fertigation strategies (N applied at the beginning, end, and in the middle of an irrigation cycle). Seed cotton yield, dry matter, N uptake, and plant 15N recovery significantly increased as soil salinity level increased from 2.5 to 6.3 dS m−1, but they decreased markedly at higher soil salinity of 10.8 dS m−1. Soil 15N recovery was higher under soil salinity of 10.8 dS m−1 than those under soil salinity of 6.3 dS m−1, but was not significantly different from that under soil salinity of 2.5 dS m−1. The fertigation strategy that nitrogen applied at the beginning of an irrigation cycle had the highest seed cotton yield and plant 15N recovery, but showed higher potential loss of fertilizer N from the root zone. While the fertigation strategy of applying N at the end of an irrigation cycle tended to avoid potential N loss from the root zone, it had the lowest cotton yield and nitrogen use efficiency. Total 15N recovery was not significantly affected by soil salinity, fertigation strategy, and their interaction. These results suggest that applying nitrogen at the beginning of an irrigation cycle has an advantage on promoting yield and fertilizer use efficiency, therefore, is an agronomically efficient way to provide cotton with fertilizer N under the given production conditions.  相似文献   

20.
Excessive amounts of irrigation water and fertilizers are often utilized for early potato cultivation in the Mediterranean basin. Given that water is expensive and limited in the semi-arid areas and that fertilizers above a threshold level often prove inefficacious for production purposes but still risk nitrate and phosphorous pollution of groundwater, it is crucial to provide an adequate irrigation and fertilization management. With the aim of achieving an appropriate combination of irrigation water and nutrient application in cultivation management of a potato crop in a Mediterranean environment, a 2-year experiment was conducted in Sicily (South Italy). The combined effects of 3 levels of irrigation (irrigation only at plant emergence, 50% and 100% of the maximum evapotranspiration - ETM) and 3 levels of mineral fertilization (low: 50, 25 and 75 kg ha−1, medium: 100, 50 and 150 kg ha−1 and high: 300, 100 and 450 kg ha−1 of N, P2O5 and K2O) were studied on the tuber yield and yield components, on both water irrigation and fertilizer productivity and on the plant source/sink (canopy/tubers dry weight) ratio. The results show a marked interaction between level of irrigation and level of fertilization on tuber yield, on Irrigation Water Productivity and on fertilizer productivity of the potato crop. We found that the treatments based on 50% ETM and a medium level of fertilization represent a valid compromise in early potato cultivation management. Compared to the high combination levels of irrigation and fertilization, this treatment entails a negligible reduction in tuber yield to save 90 mm ha−1 year−1 of irrigation water and 200, 50 and 300 kg ha−1 year−1 of N, P2O5 and K2O, respectively, with notable economic savings for farmers compared to the spendings that are usually made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号